电大经济数学形考册第三次作业答案
(完整版)经济数学基础形成性考核册答案

电大经济数学基础形成性核查册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x) x 2 1, x0 0 处连续,则 k________ .答案: 1k ,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是.答案: y1 x 12 24. 设函数 f ( x 1) x 2 2x 5 ,则 f ( x)__________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π __________ . 答案:π) 22(二)单项选择题1. 函数 y x 1的连续区间是(D )x 2x 2A . (,1) (1, )B . ( , 2) ( 2,)C . ( , 2) ( 2,1) (1,)D . (, 2)( 2, ) 或( ,1) (1, )2. 以下极限计算正确的选项是(B )x1B. limx1A. limx xxx 011D. lim sin x 1C. lim x sinxxxx3. 设 ylg2 x ,则 d y( B ).A .1dxB .1 dx C .ln10dxD .1dx2xx ln10xx4. 若函数 f ( x)在点 x 0 处可导,则 (B )是错误的.A .函数 f (x)在点 x 0 处有定义B . limf ( x)A,但A f (x 0 )xx 0C .函数 f (x) 在点 x 0 处连续D .函数 f (x) 在点 x 0 处可微5. 当 x0 时,以下变量是无量小量的是(C) .A . 2xB . sin xC . ln(1x) D . cos xx ( 三)解答题 1.计算极限( 1) limx 22 3x21x 1x12原式 lim( x1)( x 2)x 1( x 1)( x 1)limx2 x 1 x1 12( 2) lim x25x 6 1 x 2x26x 8 2原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3 x2x 4 12( 3)lim1 x 11x2x原式 =lim(1 x 1)( 1 x 1) xx( 1 x 1)1= limx 01 x 11 =2x 23x5 1 ( 4) lim2x3x 2x4 31 351xx 2原式 == 3 3 4 3x x 2( 5)limsin 3x3 xsin 5x53sin 3x3lim 3x原式 =sin 5x=5 x55xx 2 44( 6) limx2sin( x 2)原式 =limx 22)x2sin( xx 2lim ( x 2)x 2= 4=lim sin( x 2)x 2x 2x sin1b, x 02.设函数 f (x)xx 0 ,a,sin xx 0x问:(1)当 a, b 为何值时,f ( x) 在 x 0处有极限存在?(2)当 a, b 为何值时, f ( x) 在x0处连续 .解: (1) limf ( x) b , lim f ( x)1xx当a b 1时,有 lim f(x)f(0) 1x(2). 当ab 1时, 有lim f(x)f(0) 1x函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)yx22xlog 2 x22 ,求 y答案: y2x 2 x ln 21x ln 2( 2)yax bcx ,求 yd答案:ya(cx d )c(ax b) ad bc (cxd) 2(cx d )2( 3)y1,求 y3x 53(3x3答案: y5) 22( 4) yx xe x ,求 y答案:y 1 (e x xe x ) = 1 e x xe x2 x 2 x( 5)y eax sin bx ,求 dyy (e ax ) (sin bx e ax (sin bx)答案:∵ax axae sin bx be cosbxe ax (sin bx bcosbx)∴ dy e ax (a sin bx bcosbx)dx 1( 6)y e x x x ,求 dy1 1 3答案:∵ y e x xx2 2( 311∴ dy x e x )dx2 x2( 7)y cos x e x2 ,求 dy答案:∵ y sin x ( x) e x 2 (= sin x 2xe x22 x∴ dy ( sin x 2xe x2 )dx2 x( 8)y sin n x sin nx ,求 y答案: y nsin n 1 x cos x n cosnx ( 9)y ln( x 1 x2 ) ,求y答案: y 1 ( x 1 x 2 )x 1 x 2=1 1 x2 x=x2 x 2x 1 1cot 1 1 3 x 2 2x( 10)y 2 x ,求 yx x 2 )=1 (1 x )1 x2 1 x2x11x2111 1cos( x 2 x 6y 2xln 2 (cos ) 2) 答案:x12 cos11 112 x ln 2 sinxx 2x 3 6 x 54.以下各方程中y 是 x 的隐函数,试求 y 或dy(1) 方程两边对 x 求导:2x 2 y y y xy 3 0(2 y x) yy 2x 3所以 dyy 2x3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy )4[cos(x y)xe xy ] y4 cos(x y) ye xy所以y4 cos(x y) ye xy cos(x y)xe xy5.求以下函数的二阶导数:( 1)yln(1x 2 ) ,求 y答案: (1)y2x1 x2y 2(1 x 2 ) 2x 2x2 2x 2(1 22(1 22x )x )(2)y (xy3x41 11 x 2x 2 )25 321x 243 21 1x 223 1 1y (1)4 4作业(二)(一)填空题1.若f (x)dx 2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sinx) dx ________.答案: sin x c3. 若f ( x) dxF ( x) c ,则 xf (1 x 2 )dx.答案:1F (1 x 2 ) cd24.设函数eln(1 x 2)dx ___________ .答案: 0dx 15. 若 P(x) 01dt ,则 P ( x) __________ .答案:1x 2x1 t 21 (二)单项选择题1. 以下函数中,( D2)是 xsinx的原函数.A .1cosx 2B .2cosx 2C .- 2cosx2D . -1cosx 2222. 以低等式成立的是(C ).A . sinxdxd(cosx)B . ln xdxd( 1)xC . 2 xdx1 d(2 x )D .1 dx d xln 2x3. 以下不定积分中,常用分部积分法计算的是(C ).A . cos(2x1)dx ,B .x 1 x 2 dxC . xsin 2xdxD .x 2 dx1 x4. 以下定积分计算正确的选项是(D).12 d216B .dx15x x11C .23D . sin d( xx )dx 0x x5. 以下无量积分中收敛的是( B ).A .1(三)解答题1dx B .112dx C .e x dxD .sinxdxxx 011.计算以下不定积分3x( 1) 3xdx 原式 =3 x dx = (e )c3x ce x(e ) ln 3e x (ln 3 1)e( 2)(1x) 213dx 答案:原式 = (x 2 2 x x 2 )dxx=14 32 5 c2x 23 x 2x 25x 24 (x 2)dx1 x 22x c( 3)dx 答案:原式 =( 4)1 1 dx答案:原式 = 1 d (1 2x)1ln 1 2x c 2x 2 1 2x 21 13( 5)x 2 x2dx答案:原式 = 2 x 2 d (2 x 2 ) = ( 2 x2) 2 c2 3( 6)sinxdx 答案:原式=2 sin xd x 2 cos x c x( 7)xdx xsin2答案:∵ (+) x sinx2(-) 1 2 cosx2(+) 0 4 sinx2∴原式 = 2x cosx4 sinxc2 2(8) ln( x 1)dx答案:∵ (+) ln( x 1) 1(-)1x x 1∴原式 = x ln( x 1) x dxx 1= x ln( x 1) (1 1 )dxx 1 = x ln( x 1) x ln( x 1) c 2.计算以下定积分2xdx( 1) 111x)dx 2 1)dx = 2 ( 1x2 x)12 2 5 9答案:原式 = (1 (x1 12 2 212e x( 2) x2 dx11112e xx 2)d112答案:原式 =2 ( = ex e e 21xxe3( 3)1dx1x 1 ln xe3x d(1 ln x) = 2 1 ln xe 3 答案:原式 =1 ln x 21x1( 4)2x cos2xdx答案:∵ (+) xcos2x (-)11sin 2x2(+)01cos2x4∴ 原式 = (1x sin 2x1cos2x) 0224=1 1 1442e( 5) x ln xdx 1答案:∵ (+)ln xx(-)1x 2x21 2ln x e1e∴ 原式 =x 12 xdx21 =e 2 1 x 21e1 (e2 1)2 444 xxx(1( 6)答案:∵原式 = 44 xe xdx(-)1 -e x (+)0e x4e x ) 04∴xe xdx ( xex 0=5e 4 1故:原式 =55e4作业三(一)填空题10 4 51.设矩阵 A32 32 ,则 A 的元素 a 23 __________ ________ .答案: 321612.设 A, B 均为 3 阶矩阵,且 A B3,则2AB T = ________. 答案: 723. 设 A, B 均为 n 阶矩阵,则等式 ( AB) 2 A 2 2 ABB 2 成立的充分必要条件是.答案: AB BA4. 设 A, B 均为 n 阶矩阵, ( IB) 可逆,则矩阵 A BXX 的解 X__________ ____ .答案:( IB) 1 A1 01 0 0 5. 设矩阵 A020 ,则 A1__________ .答案:A0 10 0 032 10 03(二)单项选择题1. 以下结论或等式正确的选项是( C ).A .若 A,B 均为零矩阵,则有 A B B .若 AB AC ,且 A O ,则 BCC .对角矩阵是对称矩阵D .若 AO, B O ,则 AB O2. 设 A 为 34 矩阵, B 为5 2矩阵,且乘积矩阵 ACB T 有意义,则 C T 为(A )矩阵.A . 2 4B . 4 2C . 3 5D . 533. 设 A, B 均为 n 阶可逆矩阵,则以低等式成立的是(C ).`A . ( A B) 1A 1B 1 ,B . ( A B) 1 A 1 B 14. 以下矩阵可逆的是(A).1 2 31 01 A .2 3 B .10 1 0 0 3123C .1 11 1 0 0D .222 2 25. 矩阵 A3 3 3 的秩是(B ).4 44A . 0B . 1C .2D .3三、解答题 1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)2.计算0 2 1 1 0 0 03 0 00 0312 5 4= 0121 2 3 1 2 4 2 4 51 2 2 1 4 3 6 1 01 32 23 1 3 2 71 2 3 1 2 4 2 4 5 7 19 7 2 4 5 解1 221 4 3 6 17 12 0 6 1 013 223132 7 0 4 732 7515 2 =1 11 032142 31 12 33.设矩阵 A111 , B 1 12 ,求 AB 。
电大经济数学基础形成性考核册及参考答案

电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln 10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x 2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x (3)2111lim-=--→x x x 原式=)11()11)(11(lim 0+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31(5)535sin 3sin lim0=→x x x原式=xx x x x 55sin 33sin lim530→ =53(6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y '答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+=' (3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y axsin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'=' ∴dx bx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin x xe xx-+-∴dx xe xxdy x )22sin (2-+-= (8)nx x y nsin sin +=,求y '答案:nx n x x n y n cos cos sin1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='- 4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 0322=+'--'⋅+y x y y y x32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导: 4)()1)(cos(='+⋅+'++y x y e y y x xyxy xy ye y x y xe y x -+-='++)cos(4])[cos(所以 xyxyxey x ye y x y ++-+-=')cos()cos(4 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y '' 答案: (1) 212x xy +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2) 212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ).A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x xx +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 2cos2x - (+) 0 2sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=- (3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d x x x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x x (+)0 cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=-- (5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=440)(x x x e xe dx xe =154+--e故:原式=455--e作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵. A .42⨯ B .24⨯ C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
电大经济数学基础形成性考核册及参考答案[1]
![电大经济数学基础形成性考核册及参考答案[1]](https://img.taocdn.com/s3/m/2699fbff59f5f61fb7360b4c2e3f5727a5e924fa.png)
电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。
3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。
国家开放大学一网一平台电大《经济学》形考任务3及6网考题库答案

国家开放大学一网一平台电大《经济学》形考任务3及6网考题库答案形考任务3一、单选题(15道,共30分)1经济物品是指Oo【正确答案】有用且稀缺的物品2 .经济学主要是研究O o【正确答案】与稀缺性和选择有关的问题3 .供给曲线是一条倾斜的曲线,其倾斜的方向为O【正确答案】右上方4 .关于均衡价格的正确说法是O【正确答案】供给曲线与需求曲线交点上的价格5 .如果消费者消费15个面包获得的总效用是100个效用单位,消费16个面包获得的总效用是106个效用单位,则第16个面包的边际效用是O【正确答案】6个6 .如果某厂商的产量为9单位时,总成本为95元,产量增加到10单位时,平均成本为10元,由此可知边际成本为O【正确答案】5元7 .如果连续地增加某种生产要素,在总产量达到最大时,边际产量曲线O【正确答案】与横轴相交8 .在生产技术水平不变的条件下,生产同一产量的两种不同的生产要素的不同组合构成的曲线是O【正确答案】等产量曲线9 .在完全竞争市场上,厂商短期均衡的条件是O【正确答案】MR=SMC10 .垄断厂商面临的需求曲线是O【正确答案】向右下方倾斜的I1当价格大于平均成本时,此时存在()【正确答案】超额利润12 .基尼系数越小,收入分配越O,基尼系数越大,收入分配越O【正确答案】平均,不平均13 .劳动的供给曲线是一条O【正确答案】向右上方倾斜的曲线14 .西方国家使用最广泛的公共选择理论的原则是O【正确答案】多数票原则15 .如果上游工厂污染了下游居民的饮水,按照科斯定理,()问题可妥善解决【正确答案】只要产权明确,且交易成本为零二、多选题(10道,共30分)16 .微观经济学的特点有Oo【正确答案】考察微观经济行为【正确答窠】用西方经济理论和观点分析个体经济行为【正确答案】考察大生产条件下的微观经济【正确答案】突出微观经济分析方法【正确答案】运用数学分析工具17 .随着消费商品数量的增加O【正确答案】边际效用递减【正确答案】边际效用会小于零18 .关于交叉弹性,正确的是()【正确答案】交叉弹性可能是正值,也可能是负值【正确答案】如果交叉弹性是正值,说明这两种商品是替代品19 .属于等产量曲线的特征的有()【正确答案】等产量曲线向右下方倾斜【正确答案】等产量曲线有无数多条,其中每一条代表一个产值,并且离原点越远,代表的产量越大【正确答案】等产量曲线互不相交20 .厂商在生产过程中投入的生产要素主要有O【正确答案】劳动【正确答案】资本【正确答案】土地【正确答案】企业家才能21 .一个完全竞争的市场结构,必须具备下列条件()【正确答案】市场上有很多生产者和消费者【正确答案】行业中厂商生产的产品是无差别的【正确答案】厂商和生产要素可以自由流动【正确答案】购买者和生产者对市场信息完全了解22 .在亏损状态下,厂商继续生产的条件是O【正确答案】P>SAVC【正确答案】P=SAVC23 .洛伦斯曲线与基尼系数的关系是()【正确答案】洛伦兹曲线的弯度越大基尼系数越大【正确答案】洛伦兹曲线的弯度越小基尼系数越小24 .影响劳动供给的因素有()【正确答案】工资率【正确答案】闲暇【正确答案】人口总量及其构成25 .市场不能提供纯粹的公共物品是因为O【正确答案】公共物品不具有竞争性【正确答案】公共物品不具有排他性【正确答案】消费者都想“免费搭车”三、判断题(10道,共20分)26 .规范分析的特点是回答是什么?分析问题具有客观性和得出的结论可进行论证。
电大【经济数学基础】形成性考核册答案(附题目)

电大在线【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
电大经济数学基础形成性考核册答案[]
![电大经济数学基础形成性考核册答案[]](https://img.taocdn.com/s3/m/328fa305c8d376eeafaa31b7.png)
电大经济数学基础形成性查核册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x)x 2 1, x0 0 处连续,则 k________ .答案: 1k,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是 . 答案: y 1 x1224. 设函数 f ( x 1) x22 x 5,则f ( x) __________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π__________ . 答案:π ) 22(二)单项选择题1. 函数 yx 1 的连续区间是(D )x2x 2A . ( ,1) (1, )B . ( , 2) ( 2, )C . (, 2)( 2,1) (1,) D . ( , 2) ( 2, )或( ,1) (1, )2. 以下极限计算正确的选项是(B )A. limx 1 B. limx x1 x 0xxC. lim x sin11D. limsin x1xxxx3. 设 ylg2 x,则d y( B ).A .1dx B . 1 dx C . ln10dx D .2x x ln10 x4. 若函数 f (x)在点 x 0处可导,则( B) 是错误的.1d x xA .函数 f (x) 在点 x 0处有定义B .lim f ( x)A,但A f ( x 0 )x x 0C .函数 f ( x)在点 x 0 处连续D .函数 f ( x)在点 x 0 处可微5.当 x 0 时,以下变量是无量小量的是( C ).A . 2xB . sin xC . ln(1x)D . cos xx( 三)解答题 1.计算极限x 2 3x 21 ( 1) limx2 12x1原式 lim(x1)( x 2)x1 ( x 1)( x 1)limx2 x 1x 112( 2) lim x25x 6 1 x 2x26x82原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3x 2 x412( 3)lim1 x 11x2x 0原式 =lim( 1 x1)( 1 x 1)x 0x( 1 x 1)1= limx 01 x 11 =2( 4)limx2 3x 5 1 2x3x2x 4 31 351xx 2原式 ==34 33x x 2( 5) limsin 3x3 xsin 5x53lim sin 3x原式 =3x = 3 5 x 0 sin 5x 55x ( 6)limx 244原式 = limx22)x 2 sin( xx2lim ( x2)x 2= 4 =sin( x2)limx2x 2xsin 1b,x0 x2.设函数f (x)a,x0,sin xx0x问:( 1)当a,b为什么值时,f (x) 在x0处有极限存在?(2)当a, b为什么值时, f ( x) 在 x0处连续 .解: (1) lim f(x)b, lim f()1x0x0x当 a b1时,有lim f(x)f(0)1x0(2).当a b时,有lim f(x)f(0) 1x0函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)y x 22x log 2 x22,求 y答案:y2x 2 x ln 21ax b x ln 2( 2)ycx,求 y d答案:y a(cx d)c( ax b)ad bc (cx d ) 2(cx d ) 2( 3)y1,求 y3x53(3x3答案: y5) 22( 4)y x xe x,求y答案:y1x (e x xe x ) =1e x xe x22x ( 5)y e ax sin bx ,求dyy (e ax ) (sin bxe ax (sin bx)答案:∵axaxae sin bx be cosbxe ax (sin bx b cosbx)∴ dye ax (asinbx bcosbx)dx1( 6) ye x x x ,求 dy1 1 3答案:∵ ye x x x 2231 1∴ dy( x e x )dx 2x 2( 7)y cos xe x 2,求 dy答案:∵ysin x ( x ) e x 2( x 2 )= sin x 2xe x 22 x∴dy ( sin x2xe x 2 )dx2 x( 8) ysin n x sin nx ,求 y答案: y n sin n 1 x cosxn cosnx( 9)yln( x1 x2 ) ,求 y答案: y1 ( x1x 2 )=1(1x )x 1 x 2x 1 x 21 x 2=11 x 2x=1x1 x 21 x 21 x 211 3x 22 x( 10)y2cotx,求 yx1 ln2 (cos 1)11ycos( x2x62)2x答案:x121sin111cos2 x ln 2 26xxx 3 x 54.以下各方程中y 是 x 的隐函数,试求 y或 dy(1) 方程两边对 x 求导:2x 2y y y xy 3 0 (2 yx) y y 2x 3因此dyy2x 3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy ) 4[cos(xy) xe xy ] y 4 cos(x y) ye xy4 cos(x y)ye xy 因此ycos(x y)xe xy5.求以下函数的二阶导数:(1) y ln(1 x 2) ,求 y2x答案: (1) yx 212(1x 2 ) 2x 2x 2 2x 2y(1 x 2 )2(1 x 2 ) 21 13(2)y(x2x 2)1x2253y3 x 2 1 x 2441 x21 2y (1)3 1 144作业(二)(一)填空题1. 若 f (x)dx2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sin x) dx ________ .答案: sin x c3. 若 f (x)dxF ( x) c ,则 xf (1x 2)dx .答案:1F(1 x 2 ) cd2ex 2)dx___________ .答案: 04. 设函数ln(1dx15. 若 P( x)0 1dt ,则 P (x)__________ .答案:11 x 2xt 211. 以下函数中,( D )是 xsinx 2的原函数.A .1 cosx 2B . 2cosx2 C .- 2cosx 2D . - 1 cosx 22 22. 以下等式建立的是( C ). A . sinxdx d(cosx) B . ln xdxd( 1)xC . 2 x dx1d(2 x)D .1dx dxln 2x3. 以下不定积分中,常用分部积分法计算的是( C ).A . cos(2 x1)dx ,B . x 1x 2 dx C .x sin 2xdx D .x 2 dx1 x4. 以下定积分计算正确的选项是( D ).11615A . 2xdx2 B .dx1 1C .( x 2 x 3 )dx 0 D . sin xdx 05. 以下无量积分中收敛的是(B ).A .11dx B .1 1 dx C . 0 e x dxD .sinxdxxx 21( 三)解答题1.计算以下不定积分3x( 1) 3xdx 原式 =3 xdx = (e )ce x3xce x(e )ln 3(ln 3 1)e(1 x) 213( 2)dx 答案:原式 =(x22 xx 2 )dxx135= 2x 24x 22x 2 c3 5( 3)x 2 4(x2)dx1x 22x cxdx 答案:原式 =22( 4)1dx 答案:原式 =1 d(1 2x)112 xc121 2xln2x2113x2x 2d (2 x 2) = (2 x 2) 2 c( 5)2 x 2dx 答案:原式 =23( 6)sinxdx 答案:原式 = 2 sin xdx2cos x cx( 7)xsin xdx2答案:∵ (+)(-) 1(+) 0∴原式 =x sinx22 cosx24sinx22x cosx4sinxc2 2(8) ln( x 1)dx答案:∵ (+)ln( x 1)1(-)1 xx 1∴原式= x ln( x1)x dxx 1=x ln( x 1) (11 )dxx 1 =x ln( x 1) x ln(x1) c2.计算以下定积分2xdx ( 1)111x)dx21)dx = 2 ( 1x 2x)122 5 9答案:原式 =(1 (x1122 212e x(2)1 x2dx1112exx 2 )d112答案:原式 = 2 (=exe e 21xxe 31dx( 3)1x 1 ln xe 3答案:原式 =1x e 3 d(1 ln x) = 2 1 ln x2x 1 ln x1( 4)2x cos2xdx答案:∵ (+) x cos 2 x(-)11sin 2x2(+)01cos2x4∴ 原式 = ( 1x sin 2x1cos2x) 0224=1 11442e( 5)x ln xdx 1答案:∵ (+)ln x x(-)1x 2x21 2e1 e∴ 原式=x ln x12xdx21=e 2 1 x 2 1e 1(e 2 1)244( 6)4xxx(1e)d答案:∵原式 = 44xexdx又∵ (+) x ex(-)1 -e x(+)0e x4 xx x 4 0 xe dx(xee)0∴=5e 4 1故:原式 =55e 4作业三 (一)填空题10451.设矩阵 A323 2 ,则 A 的元素a23__________________ .答案:321612.设A,B均为3阶矩阵,且A B3,则 2 AB T= ________ . 答案:723. 设A, B均为n阶矩阵,则等式( A B) 2A22AB B2建立的充足必需条件是.答案:AB BA4.设 A, B 均为n阶矩阵, (I B) 可逆,则矩阵A BX X的解 X______________ .答案:(I B)1A1001005.设矩阵A020,则A1__________.答案: A01000321 003(二)单项选择题1.以下结论或等式正确的选项是( C ).A .若A, B均为零矩阵,则有AB B.若 AB AC,且 A O,则B CC.对角矩阵是对称矩阵D.若A O,B O,则 AB O2.设A为3 4 矩阵, B 为 5 2 矩阵,且乘积矩阵ACB T存心义,则 C T为(A)矩阵.A.2 4B.4 2C.3 5D.5 33. 设A, B均为n阶可逆矩阵,则以下等式建立的是( C ).`A.(A B)1 A 1 B 1,B.(A B) 1A1B1C.AB BA D.AB BA4.以下矩阵可逆的是( A).123101A .023B .10100312311D.11C.0222225.矩阵A333的秩是( B ).444A.0 B.1 C.2 D .3三、解答题1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)0 21 10 0 03 0 00 031 2 5 40 = 01212 3 1 2 4 2 4 5 2.计算1221 4 3 6 1 0 13 2 2 3132 712 3 1 2 4 2 4 5 7 19 7 2 4 5解1 2 21 4 36 17 12 0 6 1 013 22 31 32 74732 7515 2 =1 113 2 142 3 11 2 3 3.设矩阵 A1 1 1 , B1 12 ,求 AB 。
春电大《经济数学基础》形成性考核册及参考答案

春电大《经济数学基础》形成性考核册及参考答案作业()(一)填空题 .___________________sin lim=-→xxx x .答案: .设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案: .曲线x y =在)1,1(的切线方程是 .答案:2121+=x y .设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 .设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 . 函数212-+-=x x x y 的连续区间是( )答案: .),1()1,(+∞⋃-∞ .),2()2,(+∞-⋃--∞.),1()1,2()2,(+∞⋃-⋃--∞ .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ . 下列极限计算正确的是( )答案: .1lim=→xx x .1lim 0=+→xx x.11sinlim 0=→x x x .1sin lim =∞→xx x. 设y x =lg2,则d y =( ).答案: .12d x x .1d x x ln10 .ln10x x d .1d xx . 若函数 ()在点处可导,则( )是错误的.答案:.函数 ()在点处有定义 .A x f x x =→)(lim 0,但)(0x f A ≠.函数 ()在点处连续 .函数 ()在点处可微 .当0→x 时,下列变量是无穷小量的是( ). 答案: .x2 .xxsin .)1ln(x + .x cos (三)解答题 .计算极限()=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x )1(2lim 1+-→x x x 21-()8665lim 222+-+-→x x x x x )4)(2()3)(2(lim 2----→x x x x x )4(3lim 2--→x x x 21 ()x x x 11lim--→)11()11)(11(lim 0+-+---→x x x x x)11(lim+--→x x x x 21)11(1lim 0-=+--→x x()=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x ()=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →53()=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:()当b a ,为何值时,)(x f 在0=x 处有极限存在? ()当b a ,为何值时,)(x f 在0=x 处连续.答案:()当1=b ,a 任意时,)(x f 在0=x 处有极限存在; ()当1==b a 时,)(x f 在0=x 处连续。
国开电大《高等数学基础》形考任务三国家开放大学试题答案

高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件( ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是( ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足( ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的( ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足( ),则)(x f 在0x 取到极小值.A. 0)(,0)(00=''>'x f x fB. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是( ).A. 单调减少且是凸的B. 单调减少且是凹的C. 单调增加且是凸的D. 单调增加且是凹的(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f . ⒊函数)1ln(2x y +=的单调减少区间是 .⒋函数2e )(x xf =的单调增加区间是 .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 . ⒍函数3352)(x x x f -+=的拐点是 .(三)计算题⒈求函数2)5)(1(-+=x x y 的单调区间和极值.⒉求函数322+-=x x y 在区间]3,0[内的极值点,并求最大值和最小值. ⒊求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.⒋圆柱体上底的中心到下底的边沿的距离为L ,问当底半径与高分别为多少时,圆柱体的体积最大?⒌一体积为V 的圆柱体,问底半径与高各为多少时表面积最小?⒍欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省?(四)证明题⒈当0>x 时,证明不等式)1ln(x x +>.⒉当0>x 时,证明不等式1e +>x x.上面题目答案在最后一页,购买后才能查看参考答案单项选择题 题1答案:D 题2答案:D 题3答案:A 题4答案:C 题5答案:C 题6答案:A填空题题1答案:极小值 题2答案:0题3答案:)0,(-∞ 题4答案:),0(+∞ 题5答案:)(a f 题6答案:x=0计算题题1答案:令)2)(5(2)5(2)1(2--=++='x x x x y5,2==⇒x x 驻点列表:极大值:27)2(=f 极小值:0)5(=f题2答案:令:)x x y 驻点(1022=⇒=-='6)3(=⇒f 最大值 2)1(=⇒f 最小值题3答案:解:上的点是设x y y x p 2),(2=,d 为p 到A 点的距离,则:x x y x d 2)2()2(222+-=+-=102)2(12)2(22)2(222=⇒=+--=+-+-='x xx x xx x d 令。