《管理运筹学》复习提纲PDF.pdf
《管理运筹学期末复习题》

《管理运筹学期末复习题》运筹学期末复习题⼀、判断题:1、任何线性规划⼀定有最优解。
()2、若线性规划有最优解,则⼀定有基本最优解。
()3、线性规划可⾏域⽆界,则具有⽆界解。
()4、基本解对应的基是可⾏基。
()5、在基本可⾏解中⾮基变量⼀定为零。
()6、变量取0或1的规划是整数规划。
()7、运输问题中应⽤位势法求得的检验数不唯⼀。
()8、产地数为3,销地数为4的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为⼀组基变量.()9、不平衡运输问题不⼀定有最优解。
()10、m+n-1个变量构成基变量组的充要条件是它们不包含闭回路。
()11、含有孤⽴点的变量组不包含有闭回路。
()12、不包含任何闭回路的变量组必有孤⽴点。
()13、产地个数为m销地个数为n的平衡运输问题的系数距阵为A,则有r(A)≤m+n-1()14、⽤⼀个常数k加到运价矩阵C的某列的所有元素上,则最优解不变。
()15、匈⽛利法是求解最⼩值分配问题的⼀种⽅法。
()16、连通图G的部分树是取图G的点和G的所有边组成的树。
()17、求最⼩树可⽤破圈法.()18、Dijkstra算法要求边的长度⾮负。
()19、Floyd算法要求边的长度⾮负。
()20、在最短路问题中,发点到收点的最短路长是唯⼀的。
()21、连通图⼀定有⽀撑树。
()22、⽹络计划中的总⼯期等于各⼯序时间之和。
()23、⽹络计划中,总时差为0的⼯序称为关键⼯序。
()24、在⽹络图中,关键路线⼀定存在。
()25、紧前⼯序是前道⼯序。
()26、后续⼯序是紧后⼯序。
()27、虚⼯序是虚设的,不需要时间,费⽤和资源,并不表⽰任何关系的⼯序。
()28、动态规划是求解多阶段决策问题的⼀种思路,同时是⼀种算法。
()29、求最短路径的结果是唯⼀的。
()30、在不确定型决策中,最⼩机会损失准则⽐等可能性则保守性更强。
()31、决策树⽐决策矩阵更适于描述序列决策过程。
()32、在股票市场中,有的股东赚钱,有的股东赔钱,则赚钱的总⾦额与赔钱的总⾦额相等,因此称这⼀现象为零和现象。
管理运筹学复习-图文

管理运筹学复习-图文对偶问题基本可行解:满足非负条件的基本解。
【最优解不一定是基本可行解,因为问题有可能有无穷多最优解,最优解是两个基可行解】可行解:对应于基本可行解的基。
最优基:是原问题的最优解对应初始单纯行表中列向量所组成的m阶方阵(B)。
对偶问题的基本性质对称性:原问题与对偶问题是两个互为对偶的问题。
弱对偶性:两个问题的可行解对应的目标函数值互为上下界。
最优性:两个问题最优解的目标函数值一定相等。
强对偶性:两个问题都有可行解时则两个问题一定都有最优解。
互补松弛性:两个问题最优解中,一个问题中某个变量取值非零,则该变量在对偶问题中对应的某个约束条件必为紧约束。
若原问题的最优基为B,则其对偶问题的最优解为:Y某CBB1对偶定理:原问题P与对偶问题D1.P有最优解,则D有最优解;2.若某某与Y某分别为P和D的可行解,则它们分别也为P和D的最优解且有C某某=Y某b。
影子价格:在其他条件不变的情况下,单位资源b变化所引起的目标函数f某CBB1Y某的最优值的变化.f某CBBbY某b,对b求导:b灵敏度分析1、价值系数的灵敏度分析假定目标函数只有一个Cj发生变化,模型中其他系数保持不变;确定Cj在什么范围内变化,原问题的最优解不变,称这个范围为Cj的可变范围.依据:保证最优解不变保证检验数≤02、资源系数的灵敏度分析整数规划分支定界法:是对有界的规划问题的可行域,以恰当的方式进行系数的搜索的算法。
(求ma某是下界;求min是上界。
)指派问题:假设必须指派每个人去完成一项任务,怎样把n项任务指派给n个人,使完成n项任务的总效率最高。
匈牙利算法:求min,则各行/列减去本行/列最小值,且保证每行/列至少有一个0元素;求ma某,则各行/列减去本行/列最大值,且保证每行/列至少有一个0元素。
运输问题模型的特点:[有可行解的条件]a、有m个产地n个销地且产销平衡运输问题的基变量个数为m+n-1个b、产销平衡的运输问题存在可行解。
《管理运筹学》复习提纲

《管理运筹学》复习提纲管理运筹学是现代管理科学的一门重要学科,旨在帮助管理者进行决策和规划,以实现组织的最佳效益。
为了帮助大家复习管理运筹学,下面是一份复习提纲,共分为四个部分:运筹学的基础知识、线性规划、网络分析和决策分析。
每个部分都包含了相关的概念、方法和应用案例,希望对大家复习有所帮助。
一、运筹学的基础知识(300字)1.运筹学的定义和发展历程2.运筹学的研究对象和基本方法3.运筹学在管理中的应用场景和作用4.运筹学与其他管理学科的关系二、线性规划(300字)1.线性规划的基本概念和原理2.线性规划的求解方法:图解法、单纯形法3.线性规划的应用案例:生产计划、资源分配等4.敏感性分析在线性规划中的应用三、网络分析(300字)1.网络图的表示和性质2.关键路径法和关键事件法的基本原理3.网络分析的应用案例:项目管理、生产调度等4.项目的时间和资源的优化分配四、决策分析(300字)1.决策分析的基本概念和理论2.决策树的构建和分析方法3.敏感性分析在决策分析中的应用4.决策分析的应用案例:投资决策、市场营销策略等这些提纲覆盖了管理运筹学的核心内容,帮助大家回顾基本概念、原理和方法,并通过具体的应用案例加深对管理运筹学的理解和应用能力。
在复习过程中,可以结合课堂讲义、教材和相关参考资料,做题、做案例分析,并与同学进行讨论和交流,提高自己的学习效果。
同时,也建议大家不仅仅局限于复习知识点,还要进行实际问题的解决和分析,如企业生产优化、项目管理等,这将有助于将理论知识与实践能力相结合,提高综合运筹能力。
最后提醒大家,复习不仅要注重理论的牢固掌握,更要重视实践操作的能力培养,只有理论与实践相结合,才能真正将管理运筹学的知识运用到实际管理中,并取得优秀的管理业绩。
希望大家能够在复习中找到适合自己的方法和学习策略,取得好成绩。
加油!。
管理运筹学考试必备 复习课二

问题2: x1 = 4, x2 = 10 / 3, Z = 58
问题3: x1 = 5, x2 = 0, Z = 35
x2 ≥4
上界: 58 下界: 55
x2≤3
问题4: x1 = 4, x2 = 3, Z = 55
问题 5: 上界: 55 无可行解 下界: 55
管
理
运
筹
学
19
目标规划的建模
目标函数一般有三种基本表达形式: 目标函数一般有三种基本表达形式 (1):要求恰好达到目标值 即各正负偏差变量都要尽可能小 要求恰好达到目标值:即各正负偏差变量都要尽可能小 要求恰好达到目标值 minz= d+ +dd (2):要求不超过目标值 即正偏差变量要尽可能小 要求不超过目标值:即正偏差变量要尽可能小 要求不超过目标值 minz= d+ (3):要求不低于目标值 即负偏差变量要尽可能小 要求不低于目标值:即负偏差变量要尽可能小 要求不低于目标值 minz= d目标规划的数学模型特点: 目标规划的数学模型特点 (1)目标函数是关于优先权、罚数权重和偏差变量。 目标函数是关于优先权、罚数权重和偏差变量。 目标函数是关于优先权 (2)约束条件包括绝对约束和目标约束 约束条件包括绝对约束和目标约束 (3)所有决策变量和偏差变量都收到非负约束 所有决策变量和偏差变量都收到非负约束
管
理
运
筹
学
8
改进运输方案的办法——闭回路调整法 闭回路调整法 改进运输方案的办法
偶数偶点x 偶数偶点 14=3,x23=1,x24=min(3,1)=1 , ,
偶数顶点的运输量都减少这个值1,奇数顶点的运输量都增加这个值 偶数顶点的运输量都减少这个值 ,奇数顶点的运输量都增加这个值1
《管理运筹学》总复习46页PPT

《管理运筹学》总复习
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
Hale Waihona Puke 谢
2024级工商管理12级物流工程专业《运筹学》复习提纲

2024级工商管理12级物流工程专业《运筹学》复习提纲运筹学复习提纲一、运筹学概述1.运筹学的定义和发展历程2.运筹学在实际问题中的应用领域3.运筹学与管理科学的关系二、线性规划1.线性规划的基本概念和特点2.线性规划模型的建立3.线性规划问题的图形解法4.单纯形表法求解线性规划问题5.整数线性规划的求解方法三、网络图与最短路径算法1.网络图及其表示方法2.最小生成树算法3.最短路径问题的定义和求解方法4.最短路径算法的应用实例四、整数规划1.整数规划的基本概念和特点2.整数规划模型的建立3.整数规划问题的求解方法4.0-1整数规划的解法和应用实例五、动态规划1.动态规划的概念和基本思想2.动态规划的状态转移方程3.动态规划问题的求解方法4.应用实例分析六、排队论1.排队论的概念和基本假设2.排队系统基本模型3.排队系统的性能指标和评价方法4.排队论的应用实例七、决策分析1.决策分析的基本概念和决策环境2.决策树模型的建立和解析3.敏感性分析和价值分析4.决策分析的应用领域和实例八、多目标决策1.多目标决策的基本概念和目标函数形式2.多目标决策的解法和权重确定方法3.多目标决策的应用实例九、模拟仿真1.模拟仿真的概念和基本原理2.模拟仿真的建模方法和过程3.模拟仿真的应用实例十、运筹学在实际问题中的应用案例分析1.接受订单问题的运筹学方法分析2.物流配送问题的运筹学方法分析3.供应链管理中的运筹学应用案例分析4.资源调度问题的运筹学方法分析该提纲中包含了运筹学的主要概念、基本模型和解法,并结合了实际应用案例的分析,有助于理解运筹学的基本原理和应用方法。
学生可以根据提纲进行复习,并根据自己的实际情况进行重点、难点的整理和深入学习。
管理运筹学考研总复习

1.线性规划的概念
Max z = 3x1–5x2’+5x2‖–8x3 +7x4 s.t. 2x1–3x2’+3x2‖+5x3+6x4+x5= 28 4x1+2x2’-2x2‖+3x3-9x4-x6= 39 -6x2’+6x2‖-2x3-3x4-x7 = 58 x1 ,x2’,x2”,x3 ,x4 ,x5 ,x6 ,x7 ≥ 0
6
《管理运筹学》
决策分析
不缺性决策-乐观准则、悲观准则、乐 观系数准则、等可能性准则、后悔值准 则 风险型决策-损益矩阵法、决策树法、 Bayes决策、效用值理论 系统评价- The Analytic Hierarchy Process,AHP
7
《管理运筹学》
对策论
矩阵对策的基本概念 矩阵对策的解法
34
2.线性规划的图解法
结果
若目标函数等值线能够移动 到既与可行域有交点又达到最 优的位置,此目标函数等值线 与可行域的交点即最优解(一 个或多个),此目标函数的值 即最优值。 否则,目标函数等值线与可 行域将交于无穷远处,此时称 无有限最优解。
35
2.线性规的图解法
例2.4:某工厂拥有 A 、 B 、 C 三种 类型的设备,生产甲、乙两种产品。 每件产品在生产中需要占用的设备机 时数,每件产品可以获得的利润以及 三种设备可利用的时数如下表所示:
22
1.线性规划的概念
为了使约束由不等式成为等式 而引进的变量 s 称为“松弛变量”。 如果原问题中有若干个非等式约束, 则将其转化为标准形式时,必须对 各个约束引进不同的松弛变量。
23
1.线性规划的概念
管理运筹学期末复习权威资料

运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减少)50 元利润,这称为该约束条件的对偶价格。
B.假设原料 A 增加 10 千克,即 b2 变化为 410,这时可行域扩大,但最 优解仍为 x2 = 250 和 x1 + x2 = 300 的交点 x1 = 50,x2 = 250。此变化对总利 润无影响,该约束条件的对偶价格为 0。 解释:原最优解没有把原料 A 用尽,有 50 千克的剩余,因此增加 10 千克只增加了库存,而不会增加利润。 在一定范围内,当约束条件中常数项增加 1 个单位时, (1)若约束条件的对偶价格大于 0,则其最优目标函数值得到改善
书山有路
《管理运筹学》复习提纲
第一章 绪论(P1-P9) 1.决策过程(解决问题的过程) (1)认清问题。 (2)找出一些可供选择的方案。 (3)确定目标或评估方案的标准。 (4)评估各个方案:解的检验、灵敏性分析等。 (5)选出一个最优的方案:决策。 (6)执行此方案:回到实践中。 (7)进行后评估:考察问题是否得到圆满解决。 其中: (1)(2)(3)形成问题。 (4)(5)分析问题:定性分析与定量分析,构成决策
2.运筹学的分支:线性规划、整数线性规划、动态规划、图与网络模型、存储论、排队论、 排序与统筹方法、决策分析、对策论、预测、目标规划,此外,还有多目标规划、随机规划、 模糊规划等。 3.运筹学在工商管理中的应用 1)生产计划:生产作业的计划、日程表的编排、合理下料、配料问题、
物料管理等,追求利润最大化和成本最小化。 2)库存管理:多种物资库存量的管理,某些设备的库存方式、库存量等
的确定。 3)运输问题:确定最小成本的运输线路、物资的调拨、运输工具的调度
以及建厂地址的选择等。 4)人事管理:对人员的需求和使用的预测,确定人员编制、人员合理分
配,建立人才评价体系等。 5)市场营销:广告预算、媒介选择、定价、产品开发与销售计划制定等。 6)财务和会计:预测、贷款、成本分析、定价、证券管理、现金管理等。 此外,还有设备维修、更新,项目选择、评价,工程优化设计与管理等。
3.学习管理运筹学必须使用相应的计算机软件,必须注重学以致用的原则。
第二章 线性规划的图解法(P10-P26) 1.一些典型的线性规划在管理上的应用
合理利用线材问题:如何在保证生产的条件下,下料最少; 配料问题:在原料供应量的限制下如何获取最大利润; 投资问题:从投资项目中选取方案,使投资回报最大; 产品生产计划:合理利用人力、物力、财力等,使获利最大; 劳动力安排:用最少的劳动力来满足工作的需要; 运输问题:如何制定调运方案,使总运费最小。
化为标准形式。 7.为了使约束由不等式成为等式而引进的变量 s,当不等式为“小于等 于”时称为“松弛变量”;当不等式为“大于等于”时称为“剩余变量”。 如果原问题中有若干个非等式约束,则将其转化为标准形式时,必须对各 个约束引进不同的松弛变量或剩余变量。
4
书山有路
8.
9.灵敏度分析:在建立数学模型和求得最优解之后,研究线性规划的一 个或多个参数(系数)ci , aij , bj 变化时,对最优解产生的影响。 一、目标函数中的系数 c例 1 的数学模型中再增加一个约束条件 4x1+3x2
≥1200,则可行域为空域,不存在满足约束条件的解,当然也就 不存在最优解了。 5.线性规划的标准化
6.线性规划的标准形式有四个特点: —目标最大化; —约束为等式; —决策变量均非负; —右端项非负。 对于各种非标准形式的线性规划问题,我们总可以通过变换,将其转
4.重要结论 —如果线性规划有最优解,则一定有一个可行域的顶点对应一个最 优解; —无穷多个最优解。若将例 1 中的目标函数变为 max z=50x1+50x2, 则线段 BC 上的所有点都代表了最优解; —无界解。即可行域的范围延伸到无穷远,目标函数值可以无穷大 或无穷小。一般来说,这说明模型有错,忽略了一些必要的约束
一般形式 目标函数:max(min)z = c1 x1 + c2 x2 + … + cn xn 约束条件:s.t. a11 x1 + a12 x2 + … + a1n xn ≤(=, ≥)b1 a21 x1 + a22 x2 + … + a2n xn ≤(=, ≥)b2
…… am1 x1 + am2 x2 + … + amn xn ≤(=, ≥)bm
5
书山有路
二、约束条件中常数项 bj 的灵敏度分析 当约束条件中常数项 bj 变化时,线性规划的可行域发生变化,可能
引起最优解的变化。
A.考虑例 1 的情况: 假设设备台时增加 10 个台时,即 b1 变化为 310,这时可行域扩大,
最优解为 x2 = 250 和 x1 + x2 = 310 的交点 x1 = 60,x2 = 250。 变化后的总利润 − 变化前的总利润 = 增加的利润
2.线性规划的组成 目标函数:max f 或 min f ;
1
书山有路
约束条件:s.t. (subject to),满足于; 决策变量:用符号来表示可控制的因素。 3.建模过程 (1)理解要解决的问题,明确在什么条件下,要追求什么目标。 (2)定义决策变量(x1 ,x2 ,…,xn),每一组值表示一个方案。 (3)用决策变量的线性函数形式写出目标函数,确定最大化或最小化 目标。 (4)用一组决策变量的等式或不等式表示解决问题过程中必须遵循的 约束条件。
x1 ,x2 ,… ,xn ≥0 对于只包含两个决策变量的线性规划问题,可以在平面直角坐标系上作图表示 线性规划问题的有关概念,并求解。下面通过例 1 详细介绍图解法的解题过程
2
书山有路
取各约束条件的公共部分(如图 2-1(f) 所示)。
目标函数 z = 50x1 + 100x2,当 z 取某一固定值时得到一条直线, 直线上的每一点都具有相同的目标函数值,称之为“等值线”。平行移动 等值线,当移动到 B 点时,z 在可行域内实现了最大化。A、B、C、D、E 是可行域的顶点,有限个约束条件其可行域的顶点也是有限的。 线性规划的标准化内容之一—引入松弛变量(资源的剩余量) 例 1 中引入 s1,s2,s3,模型变化为: