分式培优训练(含答案)

合集下载

初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

初中数学分式方程的应用培优训练(精选40道习题  附答案详解)
(1)求第一批采购的书包的单价是多少元?
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?

分式培优练习题(完整答案)

分式培优练习题(完整答案)

分式 (一)一 选择1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知k b a c c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-=4 若2222,2b a b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-∙-÷ 2 111122----÷-a a a a a a 3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x 四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值 五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x 七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( ) A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________. 6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算(1)168422+--x x x x (2)m n n n m m m n n m -+-+--2 9. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++- 12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值. 13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式33+-x x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y -3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a ac bc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x n m -++2的值为( )A 、2B 、3C 、4D 、512. 下列式子:(1)y x y x yx -=--122;(2)c a b a a c a b --=--;(3)1-=--b a a b ;(4)y x yx y x yx +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x (x>0)的值随着x 的增大越来越小;②3-x-1x (x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( ) A 、0个 B 、1个 C 、2个 D 、3个16. 已知分式xy yx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系()A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab -+.18、当21,23-==b a 时,求⎪⎭⎫⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值.19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()n n n ab a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac1 ,2 1-a a ,3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。

八年级数学—分式培优练习题(完整问题详解)

八年级数学—分式培优练习题(完整问题详解)

分式培优练习题分式 (一)一 选择1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -1 2 分式28,9,12z y x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-x x 上述所列方程,正确的有( )个A 1B 2C 3D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -310 已知 k ba c c abc b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b K ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 4 若2222,2ba b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-•-÷ 2 111122----÷-a a a a a a3⎪⎭⎫ ⎝⎛---÷--225262x x x x四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值 2 若0<x<1,且xx x x 1,61-=+求 的值五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 112332-=-x x 2 1412112-=-++x x x七 2008年5月12日,省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值围是__________. 6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算 (1)168422+--x x x x (2)m n n n m m m n n m -+-+--29. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.1412112-=-++x x x11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m元,(m为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m元.设初三年级共有x名学生,则①x的取值围是;②铅笔的零售价每支应为元;③批发价每支应为元.(用含x、m的代数式表示).14.A、B两地相距20 km,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12 km的C地相遇,求甲、乙两人的车速.分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式3-x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y -3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a ac bc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x n m -++2的值为( ) A 、2 B 、3 C 、4 D 、512. 下列式子:(1)y x y x y x -=--122;(2)ca b a a c a b --=--;(3)1-=--b a a b ; (4)yx y x y x y x +-=--+-中正确的是 ( ) A 、1个 B 、2 个 C 、3 个 D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-xB 、012=+x xC 、0122=-xD 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x(x>0)的值随着x 的增大越来越小; ②3-x-1x (x>0)的值有可能等于2;③3-x-1x(x>O)的值随着x 的增大越来越接近于2. 则推测正确的有( )A 、0个B 、1个C 、2个D 、3个16. 已知分式xyy x -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系( )A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab-+.18、当21,23-==b a 时,求⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值.19、A 玉米试验田是边长为a 米的形减去一个边长为1米的形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么围?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()nn n a b a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac1 ,2 1-a a ,3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。

分式培优练习题(完整标准答案)

分式培优练习题(完整标准答案)

分式培优练习题(完整标准答案)分式(一)选择1.下列运算正确的是()。

A。

-4=1 B。

(-3)-1=1 C。

(-2m-n)2=4m-n D。

(a+b)-1=a-1+b-12.分式 y-z/x+z+x-y 的最简公分母是()。

A。

2 B。

C。

D。

23.用科学计数法表示的数-3.6×10-4写成小数是()。

A。

0. B。

-0.0036 C。

-0. D。

-0.若分式 x-2/x-5x+6 的值为 k,则 x 的值为()。

A。

2 B。

-2 C。

2或-2 D。

2或35.计算 |1+(1/x-1)/(x-1)| 的结果是()。

A。

1 B。

x+1 C。

x+1/x-1 D。

x/(x-1)6.工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派 x 人挖土,其它的人运土,列方程①72-x=3x+72④=3.上述所列方程,正确的有()个。

A。

1 B。

2 C。

3 D。

47.在分式a/(x^2+2πx+y)+m/(x-2) 中,分式的个数是()。

A。

2 B。

3 C。

4 D。

58.若分式方程 (1-a)/(x-2)+(a+x)/(x-1)=3 有增根,则 a 的值是()。

A。

-1 B。

C。

1 D。

29.若 1/(11-ba)=1/(ab+ba)=-3,则 (a-b)/(a+b) 的值是()。

A。

-2 B。

2 C。

3 D。

-310.已知 b0,且ab≠0,其中第 7 个式子是 1/(a+7b),一组按规律排列的式子:-b^2/a,-b^5/a^2,-b^8/a^3,-b^11/a^4,……,其中第 n 个式子是 -b^(3n-2)/a^n。

若 7m=3,7n=5,则 72m-n=()。

A。

-1 B。

1 C。

2 D。

311.化简 (a^2-ab+b^2)/(a-b)^2.2.若 0<x<1,且 x+1/x=6,求 x-1/x 的值。

分式方程培优答案(教师版)

分式方程培优答案(教师版)

分式方程培优一、分类解析 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得xx x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。

故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。

2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。

B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。

【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。

4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。

A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。

分式培优训练(含答案)

分式培优训练(含答案)

13、分式总复习【知识精要】分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。

如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =⨯⨯≠=÷÷≠⎧⎨⎪⎪⎩⎪⎪-=+⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪()()005113【分类解析】1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。

分析:要判断1111a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。

解: ab a b +--=10∴+-+=a b b ()()110即()()b a +-=110∴+=b 10或a -=10∴-+1111a b ,中至少有一个无意义。

2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。

例2. 计算:a a a a a a 2211313+-+--+- 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。

解:原式=+-+--+-a a a a a a ()()111313=-+-+-=-+--=--+++-=--+-a a a a a a a a a a a a a 1113111331132213()()()()()()()例3. 解方程:11765556222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。

人教版八年级数学上册 第15章 分式 培优训练(含答案)

人教版八年级数学上册 第15章 分式 培优训练(含答案)

人教版 八年级数学 第15章 分式 培优训练一、选择题1. 若分式||x -1(x -2)(x +1)的值为0,则x 等于 ( ) A .-1B .-1或2C .-1或1D .12. 计算2x 2-1 ÷1x -1的结果是( ) A.2x -1B.2x 3-1C.2x +1D .2(x +1)3. (2020·成都)已知x =2是分式方程1的解,那么实数k 的值为( ) A .3B .4C .5D .64. 若△÷a 2-1a =1a -1,则“△”可能是( ) A.a +1aB.a a -1C.a a +1D.a -1a5. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =420080x - B .3000x +80=4200xC .4200x =3000x -80D .3000x =420080x +6. (2020·福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A.62103(1)-=x x B.621031=-x C.621031-=x x D.62103=x7. 当分式的值为0时,x 的值是 ( )A .5B .-5C .1或5D .-5或5 8. △△△x △△△x △m x △3△3m3△x △3△△△△△△△m △△△△△△( )A. m <92B. m <92△m ≠32C. m >△94D. m >△94△m ≠△349. 关于x 的方程+=0可能产生的增根是 ( ) A .x=1B .x=2C .x=1或x=2D .x=-1或x=210. 已知=,则的值为 ( ) A .B .C .D .二、填空题11. 计算:y 2x2·x y =________.12. (2020·杭州)若分式11x +的值等于1,则x =________.13. 分式32(x +1),2x -15(x -1),2x +1x2-1的最简公分母是________________.14. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.15. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.16. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.三、解答题17. △△△△△△△△aa△b(1b△1a)△a△1b△△△a△2△b△13.18. △△△△△△△△(1△1a△1)÷a2△4a△4a2△a△△△a△△1.19. (2020·襄阳)(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?20. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.21. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版八年级数学第15章分式培优训练-答案一、选择题1. 【答案】D[解析] 因为分式||x-1(x-2)(x+1)的值为0,所以|x|-1=0,x-2≠0,x+1≠0,解得x=1.2. 【答案】C3. 【答案】B【解析】把x=2代入分式方程计算即可求出k的值.解:把x=2代入分式方程得:1=1,解得:k=4.故选:B.4. 【答案】A[解析] △=a2-1a·1a-1=(a+1)(a-1)a·1a-1=a+1a.5. 【答案】D【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x+人,再结合快递公司人数不变可列方程:3000x=420080x+.故选项D正确.6. 【答案】A【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱列分式方程A ,因此本题选A .7. 【答案】B [解析] 由分式的值为0,得-5=0,解得x=±5.但当x=5时,x 2-4x -5=0,故舍去,所以分式的值为0时,x 的值是-5.8. 【答案】B △△△△△x △mx △3△3m3△x △3△△x △mx △3△3mx △3△3△△△x △9△2m 2△△△△△⎩⎪⎨⎪⎧9△2m 2>09△2m 2≠3△△m <92△m ≠32△△△B.9. 【答案】C10. 【答案】D [解析] ∵=,∴=6. ∴a+=5.∴a+2=25,即a 2++2=25.∴=a 2++1=24. ∴=.二、填空题11. 【答案】12x12. 【答案】0 【解析】本题考查了分式的值的意义,因为分式11x +的值等于1,所以分子、分母相等,即x +1=1,解得x =0,当x =0时,分母x +1≠0,所以分式11x +的值等于1时,x =0,因此本题答案为0.13. 【答案】10(x +1)(x -1) [解析] 因为x2-1=(x +1)(x -1),所以三个分式的最简公分母是10(x +1)(x -1).14. 【答案】±1 [解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解.故答案为±1.15. 【答案】6 [解析] 因为对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,所以-2+a =0,4-b =0,解得a =2,b =4,则a +b =6.16. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0,所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2),得x(x -1)=2(x +2)+(x -1)(x +2).解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0.所以原分式方程的解为x =-12.(3)方程两边同乘x(x +1)(x -1),得三、解答题17. 【答案】△△△△△a a△b ·a△b ba △a△1b△1b △a△1b△a b .(4△)△△a△2△b△13△△△△△a b △2×3△6.(6△)18. 【答案】△△(1△1a△1)÷a 2△4a△4a 2△a △a△2a△1·a△a△1△△a△2△2△a a△2.△a △△1△△△△△a a△2△△1△1△2△13.19. 【答案】设原来每天用水量为x 吨,则现在每天用水量是45x 吨,根据题意,得 120120345x x -=,即1501203x x -=,解得x =10. 经检验,x =10是原方程的解且符合实际,则45x =8. 答:现在每天用水量是8吨.20. 【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. 依题意得-=10,解得x=40.经检验,x=40是原方程的解且符合题意.1.5x=60.答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.21. 【答案】 解:(1)1(2)设该商品在乙商场的原价为x 元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13、分式总复习【知识精要】分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。

如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =⨯⨯≠=÷÷≠⎧⎨⎪⎪⎩⎪⎪-=+⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪()()005113【分类解析】1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。

分析:要判断1111a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。

解: ab a b +--=10∴+-+=a b b ()()110即()()b a +-=110∴+=b 10或a -=10∴-+1111a b ,中至少有一个无意义。

2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。

例2. 计算:a a a a a a 2211313+-+--+- 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。

解:原式=+-+--+-a a a a a a ()()111313=-+-+-=-+--=--+++-=--+-a a a a a a a a a a a a a 1113111331132213()()()()()()()例3. 解方程:11765556222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。

由于x x x x x x x x x x 222225556561561156-+-+=-+--+=--+故可得如下解法。

解: x x x x x x 222561561156-+--+=--+ 原方程变为1176115622-++=--+x x x x ∴++=-+∴++=-+∴=176156765602222x x x x x x x x x经检验,x =0是原方程的根。

3. 在代数求值中的应用例4. 已知a a 269-+与||b -1互为相反数,求代数式 ()42222222222a b a b ab a b a ab b a b abb a -++-÷+-++的值。

分析:要求代数式的值,则需通过已知条件求出a 、b 的值,又因为a a a 226930-+=-≥(),||b -≥10,利用非负数及相反数的性质可求出a 、b的值。

解:由已知得a b -=-=3010,,解得a b ==31,原式=+-++-÷+-++[()()()]()42222a b a b a b ab b a a ab b ab a b b a=---+÷-+-++=---+⋅+-++=-++[()()()]()()()()()()()a b ab a b a b a b ab b ab a b b aa b ab a b a b ab a b a b a b b aa b a b222222221 把a b ==31,代入得:原式=1124. 用方程解决实际问题例5. 一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。

解:设这列火车的速度为x 千米/时根据题意,得450312450312x x x=+-. 方程两边都乘以12x,得540042450030=+-x x解得x =75经检验,x =75是原方程的根 答:这列火车原来的速度为75千米/时。

5. 在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。

而公式的变形实质上就是解含有字母系数的方程。

例6. 已知x y y =+-2332,试用含x 的代数式表示y,并证明()()323213x y --=。

解:由x y y =+-2332,得3223xy x y -=+ ∴-=+∴-=+∴=+-322332232332xy y x x y x y x x ()()()()()323233226964321332323213x y y y y y y x y -=+--=+-+-=-∴--=6、中考原题:例1.已知M x y xy y x y x y x y 222222-=--+-+,则M=__________。

分析:通过分式加减运算等式左边和右边的分母相同,则其分子也必然相同,即可求出M 。

解: 2222xy y x y x y x y --+-+ =-+-+-=-=-222222222222xy y x xy y x y x x y Mx y ∴=M x 2例2.已知x x 2320--=,那么代数式()x x x --+-11132的值是_________。

分析:先化简所求分式,发现把x x 23-看成整体代入即可求的结果。

解:原式=--+=-+--=-()()x x x x x x x 112113222x x x x 2232032--=∴-=∴=-=原式x x 232例3(2013•重庆•B卷•21)先化简,再求值:,其中x 是不等式考点: 分式的化简求值;一元一次不等式的整数解分析: 首先把分式进行化简,再解出不等式,确定出x 的值,然后再代入化简后的分式即可. 解答:解:原式=[﹣]×, =×=×,=,3x+7>1,3x >﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.点评: 此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简. 例4(2014•重庆•A卷•21)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.考点:分式的化简求值;解一元一次方程.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,求出方程的解得到x 的值,代入计算即可求出值.解答:解:原式=÷+=•+=+=,解方程2x=5x ﹣1,得:x=,当x=时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7、题型展示:例1. 当x 取何值时,式子||x x x -++2322有意义?当x 取什么数时,该式子值为零? 解:由x x x x 232120++=++=()()得x =-1或-2所以,当x ≠-1和x ≠-2时,原分式有意义由分子||x -=20得x =±2当x =2时,分母x x 2320++≠当x =-2时,分母x x 2320++=,原分式无意义。

所以当x =2时,式子||x x x -++2322的值为零例2. 求x m n x mn x m n x mn x m x n 222222---+--⋅--()()的值,其中x m n ===-2312。

分析:先化简,再求值。

解:原式=-++-⋅+-+-()()()()()()()()x m x n x m x n x m x m x n x n=--()()x m x n 22x m n x m x n m n ===-∴===-=-2312231416,,,∴=--=--原式()()()()x m x n m m n n 222223==-⨯-=m n 2222414416916()()【实战模拟】1. 当x 取何值时,分式2111x x+-有意义?1解:由题意得xx ≠-≠⎧⎨⎪⎩⎪011解得x ≠0且x ≠1∴当x ≠0且x ≠1时,原式有意义2. 有一根烧红的铁钉,质量是m ,温度是t 0,它放出热量Q 后,温度降为多少?(铁的比热为c)解:设温度降为t ,由已知得:Q mc t t t t Qmc t t Qmc=--==-()000答:温度降为()t Q mc0-。

3. 计算:x y y x y x y y x++-+-242442222 分析:此题的解法要比将和后两个分式直接通分计算简便,它采用了逐步通分的方法。

因此灵活运用法则会给解题带来方便。

同时注意结果要化为最简分式。

解:原式=+-+-++-()()()()x y x y y x y x y y x y x 224242222 =--+-=+-+-=-+-=+x x y x y x y x y x x y x y x y x y x x y x y x y x x y2232222242224222222()()()()()()()4. 解方程:x x x x x x x x ++-++=++-++21436587解:原方程化为111113115117++--+=++--+x x x x ∴+-+=+-+11131517x x x x 方程两边通分,得213257()()()()x x x x ++=++ ∴++=++()()()()x x x x 5713化简得832x =-解得x =-4经检验:x =-4是原方程的根。

说明:解分式方程时,在掌握一般方法的基础上,要注意根据题目的特点,选用简便的方法,减少繁琐计算。

5. 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天。

现在甲、乙两人合作2天后,再由乙单独做,正好按期完成。

问规定日期是多少天?分析:设规定日期是x天,则甲的工作效率为1x ,乙的工作效率为13x +,工作总量为1 解:设规定日期为x 天根据题意,得2113231()x x x x +++-+= 解得x =6经检验x =6是原方程的根答:规定日期是6天。

6. 已知43602700x y z x y z xyz --=+-=≠,,,求x y z x y z +--+2的值。

解: 436012702x y z x y z --=++=()(),由(1)(2)解得x zy z ==⎧⎨⎩32 ∴+--+=+--+=x y z x y z z z z z z z 232322437. (2014•重庆•B 卷•21)先化简,再求值:2344(1)11x x x x x ++--÷++,其中x 是方程12025x x ---=的解。

相关文档
最新文档