分式方程培优专题训练
初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?
八年级分式培优习题

八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。
二、具体措施:1、思想方面培优辅差。
做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。
了解学生们的学习态度、学习习惯、学习方法等。
从而根据学生的思想心态进行相应的辅导。
定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。
2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。
3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。
2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。
3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。
并开展“手拉手”活动,让优生和差生结成对子。
4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。
这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。
分式培优专题训练

1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n m m ---=-中,成立的是( )A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 【题型2:分式的约分】4.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.【题型3:分式的定义及有无意义】1.(辨析题)下列各式πa ,11x +,15x y +,22a b a b --,23x -,0中,是分式的有___ ________;是整式的有_____ ____。
2.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 3.(探究题)当x _______时,分式2212x x x -+-的值为零. 4.分式24x x -,当x _______时,分式有意义;当x _______时,分式的值为零. 5.分式31x a x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零;B .分式无意义C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零7.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 8.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±9.(2005.杭州市)当m =________时,分式2(1)(3)32mm m m ---+的值为零. 10.(妙法巧解题)已知13x y 1-=,求5352x xy y x xy y+---的值.1.下列运算正确的是( ) A.326x xx = B.0=++y x y x C.1-=-+-y x y x D.ba xb x a =++ 2.下列分式运算,结果正确的是( ) A.n m m n n m =•3454; B.bc ad d c b a =• C . 222242b a a b a a -=⎪⎭⎫ ⎝⎛-; D.3334343y x y x =⎪⎪⎭⎫ ⎝⎛3.已知a-b 0≠,且2a-3b=0,则代数式ba b a --2的值是( )A.-12B.0C.4D.4或-124.已知72=y x ,则222273223y xy x y xy x +-+-的值是( ) A.10328 B.1034 C.10320 D.1037 5.如果y=1-x x ,那么用y 的代数式表示x 为( ) A. 1+-=y y x B. 1--=y y x C. 1+=y y x D. 1-=y y x 7.若将分式x x x +22化简得1+x x ,则x 应满足的条件是( ) A. x>0 B. x<0 C.x 0≠ D. x 1-≠8.计算:(1)222210522y x ab b a y x -⋅+;(2) 232222)()()(x y xyxy x y y x -⋅+÷-;(3) (3))22(2222a b ab b a a b ab aba -÷-÷+--9.若m 等于它的倒数,求分式22444222-+÷-++m mm m m m 的值;1. 若432zyx ==,求222z y x zxyz xy ++++的值.2. 如果32=b a ,且a ≠2,求51-++-b a b a 的值。
分式方程培优训练

1131=-+-x xm 分式方程培优训练1.若解分式方程2111x x m x x x x +-++=+产生增根,求m 的值;2. m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?3.求值:,其中,a=3.4、关于x 的分式方程的解为正数,求m 的取值范围。
5.当a 为何值时,关于x 的方程223242ax x x x +=--+无解?6. 先化简,再求值:,其中x=-3.7、关于x 的方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的一个解,求m 的取值范围8. 先化简再求值:,其中x 是不等式组的整数解.9、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
10、一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、 轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。
10、一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.11、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km ,王老师家到学校的路程为0.5km ,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min ,问王老师的步行速度及骑自行车的速度各是多少?12、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A 港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
培优专题分式方程培优提高经典例题

1分式方程专题例1:去分母法解分式方程1、()()113116=---+x x x 2 2、、22416222-+=--+-x x x x x 3、22412212362x x x x x x x -+++=++--- 4 4、、64534275--+--=--+--x x x x x x x x 例2:整体换元与倒数型换元:1、用换元法解分式方程:(1)6151=+++x x xx (2)12221--=+--x xx x 变式练习:(11上海)用换元法解分式方程13101x x x x --+=-时,如果设1xy x-=,将原方程化为关于y 的整式方程,那么这个整式方程是()A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=例3:分式方程的(增)根的意义1、若分式方程:024122=+-+-x x a 有增根,求a 的值。
2、关于x 的分式方程131=---xx a x 无解,则a=_________。
变式练习:当m 为时,分式方程()01163=-+--+x x m x x x 有根。
例4一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t 180t;若乙、丙两车合;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t 270t..问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算元计算) )课堂总练习1关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是的取值范围是2.关于x 的方程223242mx x x x +=--+会产生增根,则m 为____________3.若关于x 的方程2111x m x x ++=--产生增根,则产生增根,则 m =________________________;;4.k 取何值时,方程x x k x x x x +=+-+2112会产生增根?会产生增根?5.5.当当a 为何值时,关于x 的方程223242ax x x x +=--+无解?无解?6/某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么万元.去年销售额为8万元,今年销售额只有6万元.)今年甲型号手机每台售价为多少元?(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手台,请问有几种进货方案?机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客应取何值? 现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?练习一、填空题:1、(12盐外)关于x 的方程4332=-+xa ax 的解为x=1, 则._____=a2、(12成外)若关于x 的分式方程3232-=--x mx x有增根,则m 的值为__________。
八年级分式与分式方程培优专题

八年级分式与分式方程培优专题
1.无论x取何值,分式都有意义的是C。
2.当x=-a时,分式的值为零。
3.当x=2时,分式的值为零。
4.(1)xy+yz+zx/15x+3xy-5y=3,求的值。
2)若x/y=y/z=z/x,求x^3/y^3的值。
5.甲种什锦糖的单价较高,因为10千克A种糖和10千克B种糖混合而成的甲种什锦糖的单价为(10a+10b)/(10+10)=a+b 元/千克,而乙种什锦糖的单价为(100a+100b)/(100+100)=a+b 元/千克,两者单价相同,但甲种什锦糖的混合比例更合理,因此其单价较高。
6.当a-6a+9与|b-1|互为相反数时,(a^2+b^2)/(a^2-b^2)的值为-4.
7.(1)(1/2)x^2-4x+8
2)1/[(x(x+1)(x+2))(x+2)(x+3)(x+9)(x+10)]
8.解方程:x=2或x=-3/2.
9.解方程:x=1或x=-3.
10.如果关于x的方程(-3/2)x-3/(2m)=1有增根,则m的值等于-2.
11.当m=1/2时,关于x的方程2mx^3+2=0会产生增根。
12.设轮船在静水中的速度为v,水流速度为u,则由题意可列出以下方程组:
80/(v+u)+42/(v-u)=7
40/(v+u)+70/(v-u)=7
解得v=28千米/小时,u=6千米/小时。
13.XXX单独完成工程所需的天数为x,乙队单独完成所需天数为y,则由题意可列出以下方程组:
y/x=2
1/x+2/(x+y)=1
解得x=3天,y=6天。
八年级数学分式专题培优

数学分式方程辅优卷1、学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的2、下列四种说法(1)分式的分子、分母都乘以(或除以)2+a ,分式的值不变;(2)分式y-83的值可以等于零;(3)方程11111-=++++x x x 的解是1-=x ;(4)12+x x 的最小值为零;其中正确的说法有( )A .1个 B.2 个 C. 3 个 D. 4 个3、关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-24.若解分式方程x x x x m x x 11122+=++-+产生增根,则m 的值是( ) A.B. C. D. 5. 已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 6.若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个7. 已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、48. 甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )A. B. C. D.9、当x = 时,分式12x -无意义. 10、①())0(10 53≠=a axy xy a ②()1422=-+a a 。
分式培优训练含答案

分式培优训练含答案专训一:分式求值的方法分式的求值是数学方法运用的考查,既要突出式子的化简计算,又要灵活选用方法。
常见的分式求值方法有设参数求值、活用公式求值、整体代入法求值、巧变形法求值等。
直接代入法求值需要先化简,再代入参数求值,例如题目a+2a÷(a+1)(a-1)+2/(a-1),其中a=5.活用公式求值需要熟悉公式,例如题目x2-5x+1=(x2+3xy+y2)/(2xy),求x4+(x4)/(x2+3xy+y2)的值。
整体代入法求值需要将分式整体代入,/(x2y2z2)+4/(x+y+z)=1,且x+y+z≠0,求(x+y)/(z+x)+y/(z+y)的值。
巧变形法求值需要巧妙变形,例如题目4x2-4x+1=1/(2x),求2x+(2x)/(4x2-4x+1)的值。
设参数求值需要设定参数,例如题目x2-y2+/(xy+yz+xz)=2/3,y+z/x+z+x+y=4/3,求x/y的值。
专训二:六种常见的高频考点本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现。
分式方程是中考必考内容之一,一般考查解分式方程,并要求会用增根的意义解题。
考题常以解答题的形式出现,有时也会出现在选择题和填空题中。
分式的概念是指由两个整式相除得到的表达式,分式有意义的条件是分母不能为0.选择题和填空题常考查分式的有、无意义条件。
分式的基本性质包括分式的加减乘除和约分,考试中常以选择题和填空题的形式出现。
1.4x^2 - 2x + 12.分式的有关运算3.下列运算中,正确的个数是(2)4.m^4n^4m^2/n^3 = mnx-y/11 ÷(y-x)/22 = -2mn/(m-n) = n/(m-n)a-b)/(a-2) = 1/25.a-21/2 + 34/a-16.10.计算:(a+1)/(a-2) ÷ 1/(a-1) 的结果是 (B) a-1/a+111.计算:-1/(a+2) + 2/(a^2+2a+2) = -a^2+1/a^2+2a+212.化简:1/(m+1) - 1/(m+2) = -1/(m^2+3m+2)13.(1) (2a^2+2a)/(a-1)^2 + (a-4a^4)/(a-1+a) = (2a^2-2a)/(a-1)2) x^2+2x(1-1/x)/(x-1) = (x+1)/(x-1)选x=3,原式的值为 10/314.先化简:(x^2-1)/(x-1) = x+1整数指数幂15.下列计算正确的是 (B) x^2/x^6 = x^-416.下列说法正确的是 (A) -1/2 + 2 = 3/217.计算(π-3) + (-2)^3 = -1+8 = 718.由2×10^5个直径为5×10^-5cm的圆球体细胞排成的细胞链的长是 5cm19.分式方程 (x+2a)/(x-13) = x-3/(x-3)20.若关于x的方程 (x-1)/(x-2) = 1/a+1 的解为x=3,则a 等于 (C) -221.解分式方程:(x-2)/(x-1) + 1/(x-2) = 1/x,得到 x=322.2x+1/x-3 = 1,得到 x=11.解:原式 = [a/(a+1) + 2/(a-1) - 12/(a+1)(a-1)],化简后得到 (3a+1)/(a+1),再代入a=5,得到原式的值为 2/3.2.解:由 x^2 - 5x + 1 = 0,解出x = (5 + √21)/2,代入 x + 1/x = 5,得到 x^2 + 1/x^2 = 23,代入原式,化简得到 (x^2 + 3)/(x^4 + 1) - 2 = 527/4.3.解:将分子化简得到 xy(x+y)/(x+y)^3,代入 x+y=12,xy=9,得到原式的值为 1/8.4.解:将等式两边同时乘以 (x+y+z),化简得到(xy+yz+zx)/(xyz) + 1 = (x+y+z)/(x+y)(y+z)(z+x),代入已知条件,化简得到 (x+y+z)/(xy+yz+zx) = 0,所以原式的值为 0.5.解:将等式移项得到 4x^2 - 4x + 1 = 0,化简得到 (2x-1)^2 = 0,解得 x = 1/2,代入原式得到 2.6.解:设k ≠ 0,代入已知条件,解出 x = 2k,y = 3k,z = 4k,代入原式化简得到 2.1.B2.A3.A4.B2.(答案不唯一) a+1/(x+y+z) + y(x+y+z)/(z+x) =(a(x+y+z)+y(x+y+z))/(z+x) = (ax+ay+yz+y^2+z^2)/(z+x)3.26.D4.删除此段落5.解:(1) 原式 = (a+2)(a-2)a+2/[(a-2)(2a-2)] = (a+2)/2(a-2) - 1/(a-2) = (a^2-2)/2(a-2) = -3/2 (a=0) (2) 原式 = (x-11)/[(x-1)(2x-1)] = -1/(2x-1) + 3/(x-1) = (4x-3)/(2x-1)(x-1)6.删除此段落7.解:(1) 最简公分母是15m^2n^2.840n/39m * 2/5mn^2 = -8/13m^2n (2) 最简公分母是(a+1)^2(a-1)。