分式方程培优专题训练

合集下载

初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

初中数学分式方程的应用培优训练(精选40道习题  附答案详解)
(1)求第一批采购的书包的单价是多少元?
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?

八年级分式培优习题

八年级分式培优习题

八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。

二、具体措施:1、思想方面培优辅差。

做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。

了解学生们的学习态度、学习习惯、学习方法等。

从而根据学生的思想心态进行相应的辅导。

定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。

2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。

3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。

2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。

3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。

并开展“手拉手”活动,让优生和差生结成对子。

4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。

这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。

分式培优专题训练

分式培优专题训练

1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n m m ---=-中,成立的是( )A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 【题型2:分式的约分】4.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.【题型3:分式的定义及有无意义】1.(辨析题)下列各式πa ,11x +,15x y +,22a b a b --,23x -,0中,是分式的有___ ________;是整式的有_____ ____。

2.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 3.(探究题)当x _______时,分式2212x x x -+-的值为零. 4.分式24x x -,当x _______时,分式有意义;当x _______时,分式的值为零. 5.分式31x a x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零;B .分式无意义C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零7.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 8.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±9.(2005.杭州市)当m =________时,分式2(1)(3)32mm m m ---+的值为零. 10.(妙法巧解题)已知13x y 1-=,求5352x xy y x xy y+---的值.1.下列运算正确的是( ) A.326x xx = B.0=++y x y x C.1-=-+-y x y x D.ba xb x a =++ 2.下列分式运算,结果正确的是( ) A.n m m n n m =•3454; B.bc ad d c b a =• C . 222242b a a b a a -=⎪⎭⎫ ⎝⎛-; D.3334343y x y x =⎪⎪⎭⎫ ⎝⎛3.已知a-b 0≠,且2a-3b=0,则代数式ba b a --2的值是( )A.-12B.0C.4D.4或-124.已知72=y x ,则222273223y xy x y xy x +-+-的值是( ) A.10328 B.1034 C.10320 D.1037 5.如果y=1-x x ,那么用y 的代数式表示x 为( ) A. 1+-=y y x B. 1--=y y x C. 1+=y y x D. 1-=y y x 7.若将分式x x x +22化简得1+x x ,则x 应满足的条件是( ) A. x>0 B. x<0 C.x 0≠ D. x 1-≠8.计算:(1)222210522y x ab b a y x -⋅+;(2) 232222)()()(x y xyxy x y y x -⋅+÷-;(3) (3))22(2222a b ab b a a b ab aba -÷-÷+--9.若m 等于它的倒数,求分式22444222-+÷-++m mm m m m 的值;1. 若432zyx ==,求222z y x zxyz xy ++++的值.2. 如果32=b a ,且a ≠2,求51-++-b a b a 的值。

分式方程培优训练

分式方程培优训练

1131=-+-x xm 分式方程培优训练1.若解分式方程2111x x m x x x x +-++=+产生增根,求m 的值;2. m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?3.求值:,其中,a=3.4、关于x 的分式方程的解为正数,求m 的取值范围。

5.当a 为何值时,关于x 的方程223242ax x x x +=--+无解?6. 先化简,再求值:,其中x=-3.7、关于x 的方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的一个解,求m 的取值范围8. 先化简再求值:,其中x 是不等式组的整数解.9、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。

(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。

10、一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、 轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。

10、一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.11、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km ,王老师家到学校的路程为0.5km ,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min ,问王老师的步行速度及骑自行车的速度各是多少?12、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A 港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。

培优专题分式方程培优提高经典例题

培优专题分式方程培优提高经典例题

1分式方程专题例1:去分母法解分式方程1、()()113116=---+x x x 2 2、、22416222-+=--+-x x x x x 3、22412212362x x x x x x x -+++=++--- 4 4、、64534275--+--=--+--x x x x x x x x 例2:整体换元与倒数型换元:1、用换元法解分式方程:(1)6151=+++x x xx (2)12221--=+--x xx x 变式练习:(11上海)用换元法解分式方程13101x x x x --+=-时,如果设1xy x-=,将原方程化为关于y 的整式方程,那么这个整式方程是()A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=例3:分式方程的(增)根的意义1、若分式方程:024122=+-+-x x a 有增根,求a 的值。

2、关于x 的分式方程131=---xx a x 无解,则a=_________。

变式练习:当m 为时,分式方程()01163=-+--+x x m x x x 有根。

例4一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t 180t;若乙、丙两车合;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t 270t..问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算元计算) )课堂总练习1关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是的取值范围是2.关于x 的方程223242mx x x x +=--+会产生增根,则m 为____________3.若关于x 的方程2111x m x x ++=--产生增根,则产生增根,则 m =________________________;;4.k 取何值时,方程x x k x x x x +=+-+2112会产生增根?会产生增根?5.5.当当a 为何值时,关于x 的方程223242ax x x x +=--+无解?无解?6/某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么万元.去年销售额为8万元,今年销售额只有6万元.)今年甲型号手机每台售价为多少元?(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手台,请问有几种进货方案?机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客应取何值? 现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?练习一、填空题:1、(12盐外)关于x 的方程4332=-+xa ax 的解为x=1, 则._____=a2、(12成外)若关于x 的分式方程3232-=--x mx x有增根,则m 的值为__________。

八年级分式与分式方程培优专题

八年级分式与分式方程培优专题

八年级分式与分式方程培优专题
1.无论x取何值,分式都有意义的是C。

2.当x=-a时,分式的值为零。

3.当x=2时,分式的值为零。

4.(1)xy+yz+zx/15x+3xy-5y=3,求的值。

2)若x/y=y/z=z/x,求x^3/y^3的值。

5.甲种什锦糖的单价较高,因为10千克A种糖和10千克B种糖混合而成的甲种什锦糖的单价为(10a+10b)/(10+10)=a+b 元/千克,而乙种什锦糖的单价为(100a+100b)/(100+100)=a+b 元/千克,两者单价相同,但甲种什锦糖的混合比例更合理,因此其单价较高。

6.当a-6a+9与|b-1|互为相反数时,(a^2+b^2)/(a^2-b^2)的值为-4.
7.(1)(1/2)x^2-4x+8
2)1/[(x(x+1)(x+2))(x+2)(x+3)(x+9)(x+10)]
8.解方程:x=2或x=-3/2.
9.解方程:x=1或x=-3.
10.如果关于x的方程(-3/2)x-3/(2m)=1有增根,则m的值等于-2.
11.当m=1/2时,关于x的方程2mx^3+2=0会产生增根。

12.设轮船在静水中的速度为v,水流速度为u,则由题意可列出以下方程组:
80/(v+u)+42/(v-u)=7
40/(v+u)+70/(v-u)=7
解得v=28千米/小时,u=6千米/小时。

13.XXX单独完成工程所需的天数为x,乙队单独完成所需天数为y,则由题意可列出以下方程组:
y/x=2
1/x+2/(x+y)=1
解得x=3天,y=6天。

八年级数学分式专题培优

数学分式方程辅优卷1、学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的2、下列四种说法(1)分式的分子、分母都乘以(或除以)2+a ,分式的值不变;(2)分式y-83的值可以等于零;(3)方程11111-=++++x x x 的解是1-=x ;(4)12+x x 的最小值为零;其中正确的说法有( )A .1个 B.2 个 C. 3 个 D. 4 个3、关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-24.若解分式方程x x x x m x x 11122+=++-+产生增根,则m 的值是( ) A.B. C. D. 5. 已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 6.若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个7. 已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、48. 甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )A. B. C. D.9、当x = 时,分式12x -无意义. 10、①())0(10 53≠=a axy xy a ②()1422=-+a a 。

分式培优训练含答案

分式培优训练含答案专训一:分式求值的方法分式的求值是数学方法运用的考查,既要突出式子的化简计算,又要灵活选用方法。

常见的分式求值方法有设参数求值、活用公式求值、整体代入法求值、巧变形法求值等。

直接代入法求值需要先化简,再代入参数求值,例如题目a+2a÷(a+1)(a-1)+2/(a-1),其中a=5.活用公式求值需要熟悉公式,例如题目x2-5x+1=(x2+3xy+y2)/(2xy),求x4+(x4)/(x2+3xy+y2)的值。

整体代入法求值需要将分式整体代入,/(x2y2z2)+4/(x+y+z)=1,且x+y+z≠0,求(x+y)/(z+x)+y/(z+y)的值。

巧变形法求值需要巧妙变形,例如题目4x2-4x+1=1/(2x),求2x+(2x)/(4x2-4x+1)的值。

设参数求值需要设定参数,例如题目x2-y2+/(xy+yz+xz)=2/3,y+z/x+z+x+y=4/3,求x/y的值。

专训二:六种常见的高频考点本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现。

分式方程是中考必考内容之一,一般考查解分式方程,并要求会用增根的意义解题。

考题常以解答题的形式出现,有时也会出现在选择题和填空题中。

分式的概念是指由两个整式相除得到的表达式,分式有意义的条件是分母不能为0.选择题和填空题常考查分式的有、无意义条件。

分式的基本性质包括分式的加减乘除和约分,考试中常以选择题和填空题的形式出现。

1.4x^2 - 2x + 12.分式的有关运算3.下列运算中,正确的个数是(2)4.m^4n^4m^2/n^3 = mnx-y/11 ÷(y-x)/22 = -2mn/(m-n) = n/(m-n)a-b)/(a-2) = 1/25.a-21/2 + 34/a-16.10.计算:(a+1)/(a-2) ÷ 1/(a-1) 的结果是 (B) a-1/a+111.计算:-1/(a+2) + 2/(a^2+2a+2) = -a^2+1/a^2+2a+212.化简:1/(m+1) - 1/(m+2) = -1/(m^2+3m+2)13.(1) (2a^2+2a)/(a-1)^2 + (a-4a^4)/(a-1+a) = (2a^2-2a)/(a-1)2) x^2+2x(1-1/x)/(x-1) = (x+1)/(x-1)选x=3,原式的值为 10/314.先化简:(x^2-1)/(x-1) = x+1整数指数幂15.下列计算正确的是 (B) x^2/x^6 = x^-416.下列说法正确的是 (A) -1/2 + 2 = 3/217.计算(π-3) + (-2)^3 = -1+8 = 718.由2×10^5个直径为5×10^-5cm的圆球体细胞排成的细胞链的长是 5cm19.分式方程 (x+2a)/(x-13) = x-3/(x-3)20.若关于x的方程 (x-1)/(x-2) = 1/a+1 的解为x=3,则a 等于 (C) -221.解分式方程:(x-2)/(x-1) + 1/(x-2) = 1/x,得到 x=322.2x+1/x-3 = 1,得到 x=11.解:原式 = [a/(a+1) + 2/(a-1) - 12/(a+1)(a-1)],化简后得到 (3a+1)/(a+1),再代入a=5,得到原式的值为 2/3.2.解:由 x^2 - 5x + 1 = 0,解出x = (5 + √21)/2,代入 x + 1/x = 5,得到 x^2 + 1/x^2 = 23,代入原式,化简得到 (x^2 + 3)/(x^4 + 1) - 2 = 527/4.3.解:将分子化简得到 xy(x+y)/(x+y)^3,代入 x+y=12,xy=9,得到原式的值为 1/8.4.解:将等式两边同时乘以 (x+y+z),化简得到(xy+yz+zx)/(xyz) + 1 = (x+y+z)/(x+y)(y+z)(z+x),代入已知条件,化简得到 (x+y+z)/(xy+yz+zx) = 0,所以原式的值为 0.5.解:将等式移项得到 4x^2 - 4x + 1 = 0,化简得到 (2x-1)^2 = 0,解得 x = 1/2,代入原式得到 2.6.解:设k ≠ 0,代入已知条件,解出 x = 2k,y = 3k,z = 4k,代入原式化简得到 2.1.B2.A3.A4.B2.(答案不唯一) a+1/(x+y+z) + y(x+y+z)/(z+x) =(a(x+y+z)+y(x+y+z))/(z+x) = (ax+ay+yz+y^2+z^2)/(z+x)3.26.D4.删除此段落5.解:(1) 原式 = (a+2)(a-2)a+2/[(a-2)(2a-2)] = (a+2)/2(a-2) - 1/(a-2) = (a^2-2)/2(a-2) = -3/2 (a=0) (2) 原式 = (x-11)/[(x-1)(2x-1)] = -1/(2x-1) + 3/(x-1) = (4x-3)/(2x-1)(x-1)6.删除此段落7.解:(1) 最简公分母是15m^2n^2.840n/39m * 2/5mn^2 = -8/13m^2n (2) 最简公分母是(a+1)^2(a-1)。

初中数学分式方程的应用培优训练题(附答案详解)

初中数学分式方程的应用培优训练题(附答案详解)1.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成. (1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?2.已知一个长方形的面积为6,它的一边为x ,它的另一边长为y ,周长为p .(1)填空:(用含x 的代数式表示)① y=__________;② p=__________;(2)当x 值从2增大到a+2时,y 的值减少了2,求增量a 的值;(3)当x=m 时,p 的值为1p ;当1x m =+时,p 的值为2p ,求21p p -的值,并化成最简分式.3.在Rt△ABC 中,∠B=90°,AB=3cm ,BC=4cm.(1)如图1,点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿CB 匀速运动.两点同时出发,在B 点处首次相遇.设点P 的速度为xcm/s. 表示点Q 的速度是多少cm/s (用含x 的代数式表示);(2)在(1)的条件下,两点在B 点处首次相遇后,点P 的运动速度每秒提高了2 cm ,并沿B→C→A 的路径匀速运动;点Q 保持原速度不变,沿B→A→C 的路径匀速运动,如图2.两点在AC 边上点D 处再次相遇后停止运动.又知AD=1cm.求点P 原来的速度x 的值.4.广州市中山大道快速公交(简称BRT )试验线道路改造工程中,某工程队小分队承担了300米道路的改造任务.为了缩短对站台和车道施工现场实施围蔽的时间,在确保工程质量的前提下,该小分队实际施工时每天比原计划多改造道路20%,结果提前5天完成了任务,求原计划平均每天改造道路多少米?5.如果一辆汽车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上行驶的平均速度是多少千米∕小时?6.近年来,泰州多条动车路线的开通进一步加强了与其他城市的沟通,同时也为市民的出行带来了方便.已知某市到泰州的路程约为900km,一列动车的平均速度比特快列车快50%,所需时间比特快列车少2h,求该列动车的平均速度.7.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的1 3后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已修建道路多少米?(2)求原计划每小时修建道路多少米?8.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.9.某单位在疫情期间用3000 元购进A、B 两种口罩1100 个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B 种口罩单价的1.2 倍求A,B 两种口罩的单价各是多少元?10.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?11.甲、乙两火车站相距1200千米,采用“和谐号”动车组提速后,列车行驶的速度是原来的2.5倍,从甲站到乙站的时间缩短了6小时,求列车提速前的速度.12.工程队在完成某项工程的过程中,因提高了工作效率从而缩短了工作时间.经测试:工作时间缩短的百分率是工作效率提高的百分率的2倍,且提高工作效率后的工作量是原来工作量的0.88倍.若完成原来工作量的时间为3小时,求提高工作效率后完成工作量所花的时间.13.A市到B市的距离约为210km,小刘开着小轿车,小张开着大货车,都从A市去B市,小刘比小张晚出发1小时,最后两车同时到达B市,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少.(列方程解答)(2)当小刘出发时,求小张离B市还有多远.14.阅读材料:一般情形下等式11x y+=1不成立,但有些特殊实数可以使它成立,例如:x=2,y=2时,1122+=1成立,我们称(2,2)是使11x y+=1成立的“神奇数对”.请完成下列问题:(1)数对(43,4),(1,1)中,使11x y+=1成立的“神奇数对”是;(2)若(5﹣t,5+t)是使11x y+=1成立的“神奇数对”,求t的值;(3)若(m,n)是使11x y+=1成立的“神奇数对”,且a=b+m,b=c+n,求代数式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.15.某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.16.小丽和爸爸进行1200米竞走比赛,爸爸的速度是小丽的1.5倍,小丽走完全程比爸爸多用5分钟,小丽和爸爸每分钟各走多少米?17.某校初二年级的同学乘坐大巴车去展览馆参观,展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.18.列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积.(1)在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.设首届进博会企业平均展览面积为x平方米,把下表补充完整:第二届330 000(2)根据以上分析,列出方程(不解..方程). 19.如图,“主收1号”小麦的试验田是边长为am(a >1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a ﹣1)m 的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的3a a+(kg)倍,求a 的值 (3)利用(2)中所求的a 的值,分解因式x 2﹣ax ﹣108=_____.20.一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于14,求这个分数. 21.设231,24x A B x x =-=--,当x 为何值时A 与B 的值相等. 22.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以关于x 的方程ab x a b x+=+有两个解,分别为1x a =,2x b =. 应用上面的结论解答下列问题:(1)方程p x q x+=的两个解分别为12x =-,23x =,则p =_________,q =_________; (2)方程23x x -+=的两个解分别为1x a =,2x b =,求44a b +的值; (3)关于x 的方程222221n n x n x +-+=+的两个解分别为()1212x x x x <、,求122122x x +-的值.23.列分式方程解应用题:从甲地到乙地的路程是15千米,小明骑自行车从甲地到乙地先走,40分钟后,小亮骑自行车从甲地出发,结果同时到达,已知小亮的速度是小明速度的3倍,求小明,小亮两人的速度。

专题39 分式方程 初中数学学科素养能力培优竞赛试题精选专练含解析卷

专题39 分式方程一、解复杂分式方程 【典例】计算(1)x 2x+y−x +y ;(2)1x(x+1)+1(x+1)(x+2)+⋯1(x+2005)(x+2006).【解答】解:(1)x 2x+y −x +y ,=x 2x+y −x 2−y 2x+y, =y 2x+y ;(2)1x(x+1)+1(x+1)(x+2)+⋯+1(x+2005)(x+2006),=1x −1x+1+1x+1−1x+2+⋯+1x+2005−1x+2006, =1x −1x+2006, =2006x(x+2006).【巩固】实数x 与y 使得x +y ,x ﹣y ,xy ,xy 四个数中的三个有相同的数值,求出所有具有这样性质的数对(x ,y ).二、求分式方程的取值范围 【典例】若以x 为未知数的方程1x−1−a 2−x=2(a+1)x 2−3x+2无解,则a = .【解答】解:去分母得:x ﹣2+a (x ﹣1)=2(a +1) 解得:x =3a+4a+1当a +1=0即a =﹣1时,方程无解. 根据题意得:3a+4a+1=1时,解得a =−32;当3a+4a+1=2时,解得:a =﹣2故答案是﹣1或−32或﹣2.【巩固】若关于x 的方程k(x−1)x+2k+1x 2+x=1+2kx+1有且只有一个实数根,求实数k 的所有可能值.三、分式方程的应用【典例】为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本. (1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【解答】解:(1)设“文学类”图书的单价为x 元/本,则“科普类”图书的单价为(1+20%)x 元/本, 依题意:3600(1+20%)x−20=2700x, 解之得:x =15.经检验,x =15是所列方程的根,且符合题意, 所以(1+20%)x =18.答:科普类书单价为18元/本,文学类书单价为15元/本; (2)设“科普类”书购a 本,则“文学类”书购(100﹣a )本, 依题意:18a +15(100﹣a )≤1600, 解之得:a ≤1003. 因为a 是正整数, 所以a 最大值=33.答:最多可购“科普类”图书33本. 【巩固】某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?巩固练习1.若数a 使关于x 的不等式组{x−12<1+x3,5x −2≥x +a有且只有四个整数解,且使关于y 的分式方程y+a y−1+2a y−1=1的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .22.若关于x 的方程x +2x =c +2c 的两个解是x =c ,x =2c ,则关于x 的方程的x +2x−1=a +2a−1的解是( ) A .a ,2aB .a ﹣1,2a−1C .a ,2a−1D .a ,a+1a−13.已知关于x 的分式方程x x−2−3=k2−x的解为正数,则k 的取值范围是( ) A .k >﹣6 B .k >﹣2 C .k >﹣6且k ≠﹣2 D .k ≥﹣6且k ≠﹣24.对于两个不相等的实数a ,b ,我们规定符号min {a ,b }表示a ,b 中较小的数,如:min {3,5}=3.按照这个规定,方程min {﹣2,﹣3}=3x−2−x2−x的解为( ) A .﹣2 B .﹣3 C .13D .345.已知关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,则a 的值为 .6.解下列分式方程 (1)x x−2−1−x 2(x−3)(x−2)=2xx−3;(2)x+1x−1−4x 2−1=1;(3)y−2y−3=2−13−y.7.如图,某小区有一块长为4a 米(a >1),宽为(4a ﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a +1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A 型绿化方案,对正中间的长方形采用B 型绿化方案. (1)用含a 的代数式表示采用A 型绿化方案的四个正方形边长是 米,B 型绿化方案的长方形的另一边长是 米.(2)请你判断使用A 型,B 型绿化方案的面积哪个少?并说明理由.(3)若使用A 型,B 型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多540(2a−1)2元,求a 的值.8.两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天 (2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1,2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+−5x+1,则x+1x−1和2x−3x+1都是“和谐分式”. (1)下列式子中,属于“和谐分式”的是 (填序号); ①x+1x;②2+x 2;③x+2x+1;④y 2+1y 2(2)将“和谐分式”a 2−2a+3a−1化成一个整式与一个分子为常数的分式的和的形式为:a 2−2a+3a−1= + ;(3)应用:先化简3x+6x+1−x−1x÷x 2−1x 2+2x,并求x 取什么整数时,该式的值为整数.10.某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶). (1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?专题39 分式方程一、解复杂分式方程 【典例】计算(1)x 2x+y−x +y ;(2)1x(x+1)+1(x+1)(x+2)+⋯1(x+2005)(x+2006).【解答】解:(1)x 2x+y −x +y ,=x 2x+y −x 2−y 2x+y ,=y 2x+y; (2)1x(x+1)+1(x+1)(x+2)+⋯+1(x+2005)(x+2006),=1x −1x+1+1x+1−1x+2+⋯+1x+2005−1x+2006, =1x −1x+2006, =2006x(x+2006).【巩固】实数x 与y 使得x +y ,x ﹣y ,xy ,xy 四个数中的三个有相同的数值,求出所有具有这样性质的数对(x ,y ).【解答】解:由题意知y ≠0,此时x +y ≠x ﹣y , 依题意,有x +y =xy =xy 或x −y =xy =xy , Ⅰ、当x +y =xy =xy 时, 即{x +y =xy ①xy =x y ② 由②得,y =±1,将y =1代入①得,x +1=x ,此等式不成立, 将y =﹣1代入①得,x ﹣1=﹣x , ∴x =12, 即{x =12y =−1.Ⅱ、当x −y =xy =xy 时,即{x −y =xy(1)xy =xy(2)由(2)得,y =±1,将y =1代入(1)得,x ﹣1=x ,此等式不成立, 将y =﹣1代入(1)得,x +1=﹣x , ∴x =−12, 即{x =−12y =−1故满足条件的数对(x ,y )为(12,﹣1)和(−12,﹣1).二、求分式方程的取值范围 【典例】若以x 为未知数的方程1x−1−a 2−x=2(a+1)x 2−3x+2无解,则a = .【解答】解:去分母得:x ﹣2+a (x ﹣1)=2(a +1) 解得:x =3a+4a+1当a +1=0即a =﹣1时,方程无解. 根据题意得:3a+4a+1=1时,解得a =−32;当3a+4a+1=2时,解得:a =﹣2故答案是﹣1或−32或﹣2. 【巩固】若关于x 的方程k(x−1)x+2k+1x 2+x=1+2kx+1有且只有一个实数根,求实数k 的所有可能值. 【解答】解:k(x−1)x+2k+1x 2+x=1+2kx+1两边同时乘以x (x +1)得:k (x ﹣1)(x +1)+2k +1=x (x +1)+2kx 整理得:(k ﹣1)x 2﹣(2k +1)x +k +1=0 (1)当k =1时,原方程可变为:﹣3x +2=0 解得:x =23经检验,x =23是原分式方程的唯一实数根,符合题意.(2)当k ≠1时,关于x 的方程(k ﹣1)x 2﹣(2k +1)x +k +1=0是一元二次方程, ∵原分式方程有且只有一个实数根, ∴△=[﹣(2k +1)]2﹣4(k ﹣1)(k +1)=0解得k =−54将k =−54代入方程得:−94x 2+32x −14=0 解得:x 1=x 2=13经检验,x =13是原分式方程的唯一实数根,符合题意. 当Δ≠0时,则方程必有一个实数根为0或﹣1.把x =0代入,可得k =﹣1,此时方程为﹣2x 2+x =0,解得x =0或12,经检验x =12是方程的解.把x =﹣1代入,可得k =−14,此时方程为5x 2+2x ﹣3=0, 解得x =﹣1或35,经检验x =35是方程的解,综上,实数k 的所有可能值为1或−54或0或﹣1. 三、分式方程的应用【典例】为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本. (1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【解答】解:(1)设“文学类”图书的单价为x 元/本,则“科普类”图书的单价为(1+20%)x 元/本, 依题意:3600(1+20%)x−20=2700x, 解之得:x =15.经检验,x =15是所列方程的根,且符合题意, 所以(1+20%)x =18.答:科普类书单价为18元/本,文学类书单价为15元/本; (2)设“科普类”书购a 本,则“文学类”书购(100﹣a )本, 依题意:18a +15(100﹣a )≤1600, 解之得:a ≤1003. 因为a 是正整数, 所以a 最大值=33.答:最多可购“科普类”图书33本.【巩固】某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?【解答】解:(1)设原来每天生产健身器械x 台,则提高工作效率后每天生产健身器械1.4x 台, 依题意得:150x+500−1501.4x=8,解得:x =50,经检验,x =50是原方程的解,且符合题意. 答:原来每天生产健身器械50台.(2)设使用m 辆大货车,使用n 辆小货车,∵同时使用大、小货车一次完成这批健身器械的运输, ∴50m +20n ≥500, ∴n ≥25−52m .又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元, ∴{m <101500m +800n ≤16000,即{m <101500m +800(25−52m)≤16000, 解得:8≤m <10. 又∵m 为整数, ∴m 可以为8,9.当m =8时,n ≥25−52m =25−52×8=5; 当m =9时,n ≥25−52m =25−52×9=52, 又∵n 为整数, ∴n 的最小值为3. ∴共有2种运输方案,方案1:使用8辆大货车,5辆小货车;方案2:使用9辆大货车,3辆小货车.方案1所需费用为1500×8+800×5=16000(元), 方案2所需费用为1500×9+800×3=15900(元). ∵16000>15900,∴运输方案2的费用最低,最低运输费用是15900元.巩固练习1.若数a 使关于x 的不等式组{x−12<1+x3,5x −2≥x +a有且只有四个整数解,且使关于y 的分式方程y+a y−1+2a y−1=1的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2【解答】解:解不等式x−12<1+x 3,得x <5.解不等式5x ﹣2≥x +a ,得x ≥a+24.由不等式组有且仅有4个整数解,得到0<a+24≤1,解得﹣2<a ≤2. 解分式方程y+a y−1+2a 1−y=2,得y =2﹣a (y ≠1,即a ≠1).∵关于y 的方程y+a y−1+2a 1−y=2的解为非负数,∴2﹣a ≥0, ∴a ≤2,∴满足条件的a 的值为﹣1、0、2,∴满足条件的整数a 的值之和是﹣1+0+2=1. 故选:C .2.若关于x 的方程x +2x =c +2c 的两个解是x =c ,x =2c ,则关于x 的方程的x +2x−1=a +2a−1的解是( ) A .a ,2aB .a ﹣1,2a−1C .a ,2a−1D .a ,a+1a−1【解答】解:x +2x−1=a +2a−1即x ﹣1+2x−1=a ﹣1+2a−1则x ﹣1=a ﹣1或2a−1解得:x 1=a ,x 2=2a−1+1=a+1a−1故选:D . 3.已知关于x 的分式方程x x−2−3=k 2−x 的解为正数,则k 的取值范围是( ) A .k >﹣6B .k >﹣2C .k >﹣6且k ≠﹣2D .k ≥﹣6且k ≠﹣2 【解答】解:分式方程x x−2−3=k 2−x , 去分母得:x ﹣3(x ﹣2)=﹣k ,去括号得:x ﹣3x +6=﹣k ,解得:x =6+k 2,由分式方程的解为正数,得6+k 2>0,且6+k 2≠2, 解得:k >﹣6且k ≠﹣2.故选:C .4.对于两个不相等的实数a ,b ,我们规定符号min {a ,b }表示a ,b 中较小的数,如:min {3,5}=3.按照这个规定,方程min {﹣2,﹣3}=3x−2−x 2−x 的解为( ) A .﹣2 B .﹣3C .13D .34 【解答】解:由题意:﹣3=3x−2−x 2−x ,两边乘x ﹣2得到:﹣3x +6=3+x解得:x =34,经检验:x =34是分式方程的解.故选:D .5.已知关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,则a 的值为 . 【解答】解:x−1x−2−x x+1=ax+1x 2−x−2,(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1,∵关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,∴x ﹣2=0或x +1=0,把x =2代入(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1中可得:3=2a +1,解得a =1,把x =﹣1代入(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1中可得:﹣3=﹣a +1,解得a =4,∴a 的值为1或4,故答案为:1或4.6.解下列分式方程(1)x x−2−1−x 2(x−3)(x−2)=2x x−3; (2)x+1x−1−4x 2−1=1; (3)y−2y−3=2−13−y .【解答】解:(1)两边同时乘以(x ﹣2)(x ﹣3)得:x (x ﹣3)﹣(1﹣x 2)=2x (x ﹣2),解得x =1,经检验,x =1是原方程的解,∴x =1;(2)两边同时乘以(x ﹣1)(x +1)得:(x +1)2﹣4=(x ﹣1)(x +1),解得x =1,经检验,x =1是原方程的增根,∴原方程无解;(3)两边同时乘以(y ﹣3)得:y ﹣2=2(y ﹣3)+1,解得y =3,经检验,y =3是原方程的增根,∴原方程无解;7.如图,某小区有一块长为4a 米(a >1),宽为(4a ﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a +1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A 型绿化方案,对正中间的长方形采用B 型绿化方案.(1)用含a 的代数式表示采用A 型绿化方案的四个正方形边长是 米,B 型绿化方案的长方形的另一边长是 米.(2)请你判断使用A 型,B 型绿化方案的面积哪个少?并说明理由.(3)若使用A 型,B 型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多540(2a−1)2元,求a 的值.【解答】解:(1)A 型绿化方案的四个正方形边长是(a −12)米,B 型绿化方案的长方形的另一边长是(2a ﹣1)米;故答案为:(a −12);(2a ﹣1);(2)记A 型面积为S A ,B 型面积为S B ,根据题意得:S A =4(a −12)2=4a 2﹣4a +1,S B =(2a +1)(2a ﹣1)=4a 2﹣1, ∴S A ﹣S B =﹣4a +2,∵4a ﹣2>0,∴﹣4a +2<0,即S A ﹣S B <0,则S A <S B ;(3)由(2)得S A <S B ,∴1350S A −1350S B =540(2a−1)2,即1350(2a−1)2−1350(2a+1)(2a−1)=540(2a−1)2,解得:a =2,经检验a =2是分式方程的解.8.两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?【解答】解:(1)设乙队单独完成这项工程需x 天,由题意得:136×30+15x=1, 解得:x =90,经检验x =90是分式方程的解;答:乙队单独完成这项工程需90天;(2)设甲队每天的施工费为m 万元,乙队每天的施工费为n 万元,由题意得:{30(m +n)+15n =81036(m +n)=828, 解得:{m =15n =8; 答:甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)∵乙队单独完成这项工程需90天,甲、乙合作完成此项工程共需36天, ∴甲队单独完成这项工程的天数为1136−190=60, 设乙队施工a 天,甲队施工b 天,由题意得:{a 90+b 60=1①15b +8a ≤840②, 由①得:b =60−23a ,把b =60−23a 代入②得:15×(60−23a )+8a ≤840,解得:a ≥30,即乙队最少施工30天;答:乙队最少施工30天.9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1,2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+−5x+1,则x+1x−1和2x−3x+1都是“和谐分式”.(1)下列式子中,属于“和谐分式”的是 (填序号);①x+1x ;②2+x 2;③x+2x+1;④y 2+1y 2(2)将“和谐分式”a 2−2a+3a−1化成一个整式与一个分子为常数的分式的和的形式为:a 2−2a+3a−1= + ;(3)应用:先化简3x+6x+1−x−1x ÷x 2−1x 2+2x ,并求x 取什么整数时,该式的值为整数. 【解答】解:(1)①x+1x =1+1x ,是和谐分式;③x+2x+1=x+1+1x+1=1+1x+1,是和谐分式;④y 2+1y 2=1+1y 2,是和谐分式; 故答案为:①③④;(2)a 2−2a+3a−1=a 2−2a+1+2a−1=(a−1)2+2a−1=a ﹣1+2a−1,故答案为:a ﹣1、2a−1;(3)原式=3x+6x+1−x−1x •x(x+2)(x+1)(x−1) =3x+6x+1−x+2x+1=2x+4x+1 =2(x+1)+2x+1=2+2x+1,∴当x +1=±1或x +1=±2时,分式的值为整数,此时x =0或﹣2或1或﹣3,又∵分式有意义时x ≠0、1、﹣1、﹣2,∴x =﹣3.10.某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?【解答】解:(1)设扶梯露在外面的部分有x 级,乙每分钟走动的级数为a 级,则甲每分钟走动的级数为2a 级,扶梯每分钟向上运动b 级.由题意得:{242a =x 2a+b ①16a=x a+b ②, ①÷②得:34=a+b 2a+b ,整理得:b =2a ,代入②得x =48.答:扶梯露在外面的部分有48级;(2)设追上乙时,甲扶梯走了m 遍,楼梯走了n 遍,则乙走扶梯(m ﹣1)遍,走楼梯(n ﹣1)遍.由题意得:48m 4a +48n 2a =48(m−1)3a +48(n−1)a ,整理得:m +6n =16,这里m ,n 中必有一个是整数,且0≤m ﹣n ≤1.①若m 为整数,则n =16−m 6,∴{m =1n =52(不合,舍去),{m =2n =73(不合,舍去){m =3n =136(符合条件){m =4n =2(不合,舍去){m =5n =116(不合,以后均不合,舍去) ②若n 为整数,m =16﹣6n ,∴{n =1m =10,{n =2m =4,{n =3m =−2⋯,这些均不符合要求,∴{m =3n =136,此时,甲在楼梯上. 他已走动的级数是(48m 4a +48n 2a )×2a =24m +48n =72+104=176(级).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档