数据处理-单因素方差分析
单因素方差分析非量表

单因素方差分析非量表
方差分析(单因素方差分析),用于分析定类数据与定量数据之间
的关系情况。
例如研究人员想知道三组学生的智商平均值是否有显著差异。
方差分析可用于多组数据,比如本科以下,本科,本科以上共三
组的差异;而下述t检验仅可对比两组数据的差异。
异常值:如果数据有异常值,比如本身数据全部应该大于0,但却出现小于0的数字【可使用SPSSAU通用方法里的频数分析,或者
描述分析等进行检查】。
可以使用SPSSAU“数据处理”模块下的异
常值处理,右侧分析框可以设置“判断标准”
如有异常值,可以对异常值进行处理设为Null或者用平均值、
中位数、众数、随机数等进行填补。
正态分布:方差分析理论上是要求数据服从正态分布的,但是理论上的正态分布很难满足,数据接近于正态分布更符合实际情况,因此接近正态分布的数据直接使用方差分析即可,也可以说方差分析对于正态性的要求是稳健的。
方差齐性:一般来讲,方差轻微不齐仅会对方差分析的结论有少许影响。
如果方差不齐可以使用其他分析方法,例如:Welch anova、Brown-Forsythe anova。
方差分析是研究不同组别的差异,比如不同学历时满意度的差异。
因此数据格式中一定需要有组别X(比如学历)和分析项Y(比如满
意度)。
有时候只有分析项(比如3个分析项),但是现在希望此3个分
析项的差异,那么就需要对数据进行改造,自己加入一列‘组别’,然后把数据重叠起来得到分析项Y。
单因素方差分析

•
第3步 (需要多重比较时)点击【Post-Hoc】从中选择一种方法,如LSD; (需要均值图时)在
【Options】 下 选 中 【Means plot】 , ( 需 要 相 关 统 计 量 时 ) 选 择 【Descriptive】 , 点 击
【Continue】回到主对话框。点击【OK】
用SPSS进行方差分析
•
如果两个因素对试验结果的影响是相互独立的,分别判断行因素和列因素对试验数据的影
响,这时的双因素方差分析称为无交互作用的双因素方差分析或无重复双因素方差分析
(Two-factor without replication)
•
如果除了行因素和列因素对试验数据的单独影响外,两个因素的搭配还会对结果产生一种
无交互效应的双因素方差分析
• 因为我们考虑不同司机行使时间的差异,所以要对区组做假设检验。两组假设分别为:
• 1. 不同路线均值都相等
•
各路线均值不全相等
• 2. 区组均值都相等
•
H各0区1 组: 均值不全相等
112 1314 1
• 两因素方差分析表的格式与单因素方差分析的格式一致,唯一的区别是加了一行区组变差。
第三节 单因素方差分析
1. 设1为化肥品牌A下产量的均值,2为化肥品牌B下产量的均值,3为化肥品牌C下产量的 2. 提出的假设为
▪ H0 : 1 2 3 ▪ H1 : 1 , 2 , 3 不全相等 3. 计算检验统计量
4. 计算P值,作出决策
因子均方 F残差~ 均 F(k方 1,nk)
例题分析
1. 组内误差(within groups)
▪ 样本数据内部各观察值之间的差异
• 比如,同一位置下不同超市之间销售额的差异的差异
单因素试验方差分析(试验数据处理)

SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:
令
Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,
数据处理单因素方差分析

数据处理单因素方差分析1. 引言数据处理是科学研究中非常重要的一环,能够有效地获得有关实验数据的信息和结论。
其中,单因素方差分析是一种常用的统计方法,用于比较不同水平的因素对实验结果的影响。
2. 概念单因素方差分析是一种统计方法,用于比较三个或三个以上水平的因素在不同条件下其均值是否有显著差异。
它是通过比较组间变异与组内变异的大小来推断因素对实验结果的影响程度。
3. 步骤3.1 建立假设在进行单因素方差分析之前,首先需要建立相关的假设。
通常情况下,我们会假设各组样本的均值相等。
3.2 收集数据接下来,我们需要收集实验数据。
通常情况下,我们会收集每个水平下的多个样本,并计算其均值。
3.3 计算变异在单因素方差分析中,我们需要计算组间变异和组内变异的大小。
组间变异反映了不同水平的因素对实验结果的影响,而组内变异则反映了样本内部的随机误差。
3.4 计算方差比通过计算组间变异与组内变异的比值,可以得到方差比。
方差比越大,说明组间变异对总变异的贡献越大,也就意味着水平因素对实验结果的影响越显著。
3.5 推断结论最后,我们可以使用统计方法来推断水平因素对实验结果的影响是否显著。
通常情况下,我们会使用F检验来判断方差比是否显著大于1,从而决定是否拒绝原假设。
4. 数据处理的意义数据处理在科学研究中具有重要的意义。
通过进行单因素方差分析,我们可以推断不同水平的因素对实验结果的影响程度,帮助科学家们更好地理解实验结果,并为实验结论的科学性提供支持。
5. 应用案例5.1 药物疗效比较假设我们想要比较两种药物在治疗某种疾病上的疗效。
我们可以将患者分为两组,一组接受药物A治疗,另一组接受药物B治疗,然后收集两组患者的实验数据。
通过进行单因素方差分析,我们可以比较两种药物的疗效是否有显著差异。
5.2 品牌认知度比较假设我们想要比较两个品牌在消费者中的认知度。
我们可以对一定数量的消费者进行调查,询问他们对两个品牌的认知程度。
单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列
单因素方差分析

计算组间均方:组间均方是各组均值与总均值之差的平方和除以自由度, 用于衡量各组均值之间的离散程度。
计算组内均方:组内均方是各组观测值与组均值之差的平方和除以该组 的自由度,用于衡量观测值在各组内部的离散程度。
计算F值
检查数据是否符合正态分布
确定数据类型:连续型、离 散型或混合型
判断数据是否存在异常值 了解数据分布的对称性
检验数据是否满足前提假设
数据的独立性:确保各组数据之间相互独立,无关联性。 数据的正态性:各组数据应符合正态分布,满足方差分析的前提假设。 数据的方差齐性:各组数据的方差应大致相等,满足方差分析的前提假设。 数据的完整性:确保所有数据均已收集并可用于分析,无缺失值。
原理:比较不同组的均值是 否存在显著差异
前提条件:数据符合正态分 布、方差齐性、独立性等
结果解释:通过F检验和p值 判断各组间是否存在显著差
异
前提假设
每个观察值都是独立的 每个观察值来自随机样本 每个观察值服从正态分布 每个观察值的方差相等
Part Three
单因素方差分析的 步骤
观察数据分布情况
单因素方差分析的 应用场景
不同组间均值比较
不同产品在不同 地区的销售量比 较
不同品牌汽车在 不同行驶距离下 的油耗比较
不同学历人群的 工资水平比较
不同治疗方法对 同一病症的治疗 效果比较
不同处理效果比较
农业实验:比较 不同施肥处理对 农作物产量的影 响
医学研究:分析 不同药物治疗对 疾病疗效的差异
F检验的局限性
前提假设:数据需要满足正态分布、独立同分布等前提假设 样本量:样本量过小可能导致检验效能不足 异常值:异常值可能对F检验的结果产生影响 多重比较:F检验只能比较两组数据,无法进行多重比较
单因素方差分析完整实例
什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。
●水平:因素变化的各种状态或因素变化所分的等级或组别。
●单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。
设各总体服从正态分布,且方差相同。
青霉素四环素链霉素红霉素氯霉素29. 627.35.821.629.224. 332.66.217.432.828. 530.811.18.325.32. 034.88.319.24.2在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题。
单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。
单因素方差分析
单因素方差分析定义:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。
例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。
前提:1总体正态分布。
当有证据表明总体分布不是正态分布时,可以将数据做正态转化。
2变异的相互独立性。
3各实验处理内的方差要一致。
进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。
一、单因素方差分析1选择分析方法本题要判断控制变量“组别”是否对观察变量“成绩”有显著性影响,而控制变量只有一个,即“组别”,所以本题采用单因素分析法,但需要进行正态检验和方差齐性检验。
2在控制变量为“组别”,3正态检验(P>0.05,服从正态分布)正态检验操作过程:“分析”→“描述统计”→“探索”,出现“探索”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子列表”,将“人名”放入“标注个案”;点击“绘制”,出现“探索:图”窗口,选中“直方图”和“带检验的正态图”,点击“继续”;点击“探索”窗口的“确定”,输出结果。
因变量是用户所研究的目标变量。
因子变量是影响因变量的因素,例如分组变量。
标注个案是区分每个观测量的变量。
带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q概率图和无趋势正态Q-Q概率图。
正态检验结果分析:p值都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从正态分布(检验中的零假设是数据服从正态分布)。
即p值≥0.05,数据服从正态分布。
4单因素方差分析操作过程“分析”→“比较均值”→“单因素ANOVA”,出现“单因素方差分析”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子”列表;点击“选项”选择“方差同质性检验”和“描述性”,点击“继续”,回到主对话框;点击“两两比较”选择“LSD”和“S-N-K”、“Dunnett’s C”,点击“继续”,回到主对话框;点击“对比”,选择“多项式”,点击“继续”,回到主对话框;点击“单因素方差分析”窗口的“确定”,输出结果。
单因素方差分析 (2)
单因素方差分析1. 引言•单因素方差分析(One-way ANOVA)是一种常用的统计方法,用于比较两个或多个组之间的均值是否存在显著差异。
•在实际研究中,我们经常需要比较不同组之间某个变量的均值差异,例如不同教育水平对收入的影响,不同药物对疾病的治疗效果等。
•单因素方差分析提供了一种统计方法,可以判断不同组之间均值差异是否由随机因素引起,还是由于真正的因素差异引起。
2. 基本概念•因素(Factor):需要比较不同组之间的变量,也称为自变量或分类因素。
•水平(Level):每个因素具有的不同取值或组别,也称为处理或条件。
•观测值(Observation):每个组内的单个实验结果或数据点。
•总平均(Grand Mean):所有组的观测值的平均值。
•组内平均(Group Mean):每个组的观测值的平均值。
•组间平均(Between-group Mean):所有组的观测值的平均值。
3. 假设检验•零假设(H0):不同组的均值之间没有显著差异。
•备择假设(H1):不同组的均值之间存在显著差异。
4. 单因素方差分析的步骤1.收集数据:按照分类因素进行分组,获得每个组的观测值。
2.计算总平均:计算所有观测值的平均值。
3.计算组内平均:计算每个组的观测值的平均值。
4.计算组间平均:计算所有组的观测值的平均值。
5.构造统计模型:建立协方差矩阵和方差矩阵之间的关系。
6.计算平方和:计算组内平方和和组间平方和。
7.计算均方差:计算组内均方差和组间均方差。
8.计算F值:计算F统计量,用于检验组间均值差异是否显著。
9.假设检验:比较F值与临界值,确定是否拒绝零假设。
5. F分布与p值•在单因素方差分析中,我们使用F分布来进行假设检验。
•F分布是一种连续概率分布,取值范围大于等于0,且分布形状根据自由度的不同而变化。
•在单因素方差分析中,我们计算出的F值可以与F分布表中的临界值进行比较,以确定是否拒绝零假设。
•p值是统计假设检验中的一个重要指标,表示在零假设成立的情况下,观察到的样本数据或更极端结果出现的概率。
单因素方差分析方法计算公式以及用途
单因素方差分析方法-计算公式以及用途单因素方差分析,用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
以下是小编整理的单因素方差分析方法相关内容,欢迎借鉴参考!单因素方差分析方法-计算公式以及用途单因素方差分析方法例:某军区总医院欲研究A、B、C三种降血脂药物对家兔血清肾素血管紧张素转化酶(ACE)的影响,将26只家兔随机分为四组,均喂以高脂饮食,其中三个试验组,分别给予不同的降血脂药物,对照组不给药。
一定时间后测定家兔血清ACE浓度(u/ml),如表5.1,问四组家兔血清ACE浓度是否相同?方差分析的计算步骤为1)建立检验假设,确定检验水准H0:四组家兔的血清ACE浓度总体均数相等,μ1=μ2=μ3=μ4H1:四组家兔的血清ACE浓度总体均数不等或不全相等,各μi不等或不全相等α=0.052)计算统计量F值按表5.2所列公式计算有关统计量和F值=5515.3665ν总=N-1=26-1=25ν组间=k-1= 4-1=3ν组内=N-K=26-4=22表5.3例5.1的方差分析表变异来源总变异8445.787625组间变异5515.366531838.455513.80组内变异2930.421122133.20103)确定P值,并作出统计推断以= 3和= 22查F界值表(方差分析用),得P <0.01,按0.05水准拒绝H0,接受H1,可认为四总体均数不同或不全相同。
注意:根据方差分析的这一结果,还不能推断四个总体均数两两之间是否相等。
如果要进一步推断任两个总体均数是否相同,应作两两计算公式完全随机设计的单因素方差分析是把总变异的离均平方和SS及自由度分别分解为组间和组内两部分,其计算公式如下。
MS组间=离均平方和/组间自由度MS组内=离均平方和/组内自由度SS总=SS组间+SS组内单因素方差分析:核心就是计算组间和组内离均差平方和。
两组或两组以上数据,大组全部在一组就是组内,以每一组计算一均数,再进行离均平方和的计算:SS组间=组间离均平方和,MS组间=SS组间/组数-1(注:离均就有差的意思了!!)SS组内=组内离均平方和,MS组内=SS组内/全部数据-组数F值=MS组间/MS组内查F值,判断见上面的分析步骤部份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计与随机过程数据处理作业
——单因素方差法分析显著性差异
化学实验室需要检验A 、B 、C 三种催化剂的催化活性是否有显著性差异,在相同的温度,压力等条件下分别用A 、B 、C 三种催化剂催化反应的进行,得到6次试验产物D 的收率的结果如表1所示,试在0.05的显著性水平下分析A 、B 、C 三种催化剂的催化活性是否存在差异?
表1 三中催化剂所得的产物D 产量(kg )
A 50 46 49 52 48 48
B 49 50 47 47 46 49
C 51
50
49
46
50
50
实验目的:通过比较A 、B 、C 三种催化剂的催化活性是否有显著性差异的实验数据处理的实例,学习单因素方差分析的方法,学会用Excel 更方便的进行单因素方差分析,体会Excel 在统计分析中的应用。
实验原理:单因素方差分析方法
首先需要在单因素试验结果的基础上,求出总方差V 、组内方差v w 和组间方差v B 。
总方差 : V=()2
ij
x x -∑
组内方差 : v w
=()2
ij x x i
-∑ 组间方差 : v B
=b ()2
i
x x -∑
从公式可以看出,总方差衡量的是所有观测值x ij 对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值x ij 对组均值x 的偏离程度,而组间方差则衡量的是组均值x i 对总均值x 的偏离程度,反映系统的误差。
在此基础上,还可以得到组间均方差和组内均方差:
组间均方差:
2B
s ∧=
1
B
-a v
组内均方差:
2
w
s
∧=
a
ab v
w
-
在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。
原假设:
H
:均值相等即μ1=μ2=…=μn
备择假设:
H 1
:均值不完全不相等
则可以应用F 统计量进行方差检验:
F=)()(b ab a v
v w
--1B =
22
∧∧
s
s W
B
该统计量服从分子自由度a-1,分母自由度为ab-a 的F 分布。
给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值
)(a ab 1a F --,
α,则说明原假设H 0
不成立,总体均值不完全相等,差异并非仅
由随机因素引起。
实验步骤:要检验三种催化剂的催化活性是否存在显著差异,等同于检验三者产量的均值是否相等:
给定原假设H 0:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅催化剂种类一项,因此可以采用单因素方差分析进行多总体样本均值检验。
用Excel 作单因素方差分析具体步骤如下:
⑴新建工作表“催化活性比较方差分析”,分别单击B3:D8单元格,输入表2的产量数值。
⑵计算组均值,对应甲的均值,单击B9单元格,在编辑栏输入“=A VERAGE (B3:B8)”,再次单击B9单元格,拖曳鼠标至D9单元格,求出乙和丙的组均值。
⑶计算总均值,单击B10单元格,在编辑栏输入“=A VERAGE (B9:D9)”。
计算机结果如图1所示
图1
⑷计算
()2
i
ij
x x -,并求各组的组内方差v w
的值。
求甲组()2
i
ij x x -的值,单击B14单元格,在编辑栏输入“=(B3-$B$9)^2”。
再次单击B14单元格,拖曳鼠标至B19单元格。
求乙组
()2
i
ij
x x -的值,单击C14单元格,在编辑栏输入“=(C3-$C$9)^2”。
再次单击C14单元格,拖曳鼠标至C19单元格。
求丙组
()2
i
ij
x x -的值,单击D14单元格,在编辑栏输入“=(D3-$D$9)^2”。
再次单击D14单元格,拖曳鼠标至D19单元格。
计算v w 的值,单击C20单元格,在编辑栏输入“=SUM (B14:D19)”。
计算结果如图2所示。
图2
x i-的值,单击B24单元格,在编辑栏输入“=(B9-⑸根据组均值和总均值求()2x
$B$10)^2”。
再次单击B24单元格,拖曳鼠标至D24单元格,求出三个组的值。
⑹计算组间方差V B,单击C25单元格,在编辑栏输入“=6*SUM(B24:D24)”。
计算结果如图3所示。
图3
⑺计算F统计量的值,单击C28单元格,在编辑栏输入“=C25/(C27-1)/(C20/(C27*E27-C27))”。
⑻计算F a的值,单击C30单元格,在编辑栏输入“=FINV(C29,C27-1,C27*E27-C27)”。
⑼根据临界值给出的检验结果,单击C31单元格,在编辑栏输入“=IF(C28>C30,”三者产量均值不完全相等”,”三者产量均值相等”)”。
最终结果如图4所示。
图4
实验结论:从图4中可以看出,运用单因素方差分析,接受了原假设H0,因此在0.05的显著性水平下可以认为三者的均值相等,即三种催化剂催化效果无显著性差异。