第六章弯曲应力

合集下载

材料力学06(第六章 弯曲应力)分析

材料力学06(第六章 弯曲应力)分析

F / 4 2 103 mm 134 mm
30 MPa 5493104 mm4
F 24.6 kN
因此梁的强度由截面B上的最大拉应力控制
[F] 19.2 kN
§6-3 梁横截面上的切应力•梁的切应力强度条件
Ⅰ、梁横截面上的切应力
分离体的平衡
横截面上切应力 分布规律的假设
横截面上弯曲切 应力的计算公式
二.工字形截面梁 1、腹板上的切应力
h
d
y
d
O
y b
O
' A*
y dA
FS
S
* z
Izd
S
* z
bd
2
h
d
d 2
h 2
d
2
y2
腹板与翼缘交界处
max
min
FS Izd
bd

h d
max O
中性轴处
max
FS
S
* z,m
ax
Izd
y
min
FS
bd
h
d
d
h
d
2
I z d 2
160 MPa 148 MPa
2
Ⅲ 梁的正应力强度条件
max 材料的许用弯曲正应力
中性轴为横截面对称轴的等直梁
M max
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
为充分发挥材料的强度,最合理的设计为
t,max
M max yt,max Iz
[
t]
c,max
M max yc,max Iz
Myc,max Iz
典型截面的惯性矩与抗弯截面系数 ( d D)
b

第六章__弯曲应力及剪力流的知识点

第六章__弯曲应力及剪力流的知识点
Page 4
第六章 弯曲应力
上一讲回顾(12)
•梁变形与受力假设:平面假设,单向受力假设。 y My s •正应力公式: s E E Iz M Iz s max •最大正应力: Wz Wz y S z ydA, S y zdA •静矩:
A A
•惯性矩与惯性积 :

50
a
F l
a
a = ? [ F ] 最大.
Page
27
第六章 弯曲应力
配重降低最大弯矩作用分析
M
Pa Pa F P
F a
P
l
a
a
l
a
M
Fl/4 +
M
Fl/4-Pa Pa
+
Pa
Page 28
第六章 弯曲应力
弯拉(压)组合分析
A F
l 2
q
B
C
l 2
F
C
FN M max
sN

sM
y
sN sM

20 kN 20 kN
C
D
解:计算截面形心 与惯性矩
A
B
1m
3m
1m
yC 139mm I z 40.3 106 mm 4
M 图:

10kN m

20kN m
200
为校核梁的强度,需计算 B截面a点的拉应力与b点 压应力,C截面b点拉应力
a
30
y1
z
170
yC
b 30
Page 19
3. 弯矩计算 或
EI z
bd 2s max M s max W 1.14kNM 6

第6章 弯曲应力

第6章  弯曲应力

称为抗弯截面系数
只有一根对称轴的横截面形状: yt,max yc,max O y
O y
z
t,max
My t ,max Iz
c,max
Myc,max Iz
z
简单截面的弯曲截面系数 b h ⑴ 矩形截面
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy 源自/2 63()
Ⅱ .纯弯曲理论的推广 对于细长梁( l/h > 5 ),纯弯曲时的正应力计算 公式用于横力弯曲情况,其结果仍足够精确。 F
l
M ( x) y Iz
Fl
4
max
M ( x) Wz
解:
由弯曲曲率公式 可得:
M EIz
M EI z
1
代入弯曲正应力公式:
M EIZ Ed 533.3MPa WZ WZ 2
3.正应力的正负号与弯矩 及点的坐标 y的正负号有关。实际计算中,可根 据截面上弯矩的方向,直接判断中性 轴的哪一侧产生拉应力,哪一侧产生 压应力,而不必计及M和y的正负。
三、最大弯曲正应力 有两根对称轴的横截面形状: b h
z
y y
z
max
M M Mymax I z Wz Iz y max

基本假设2:
梁内各纵向纤维无挤压 假设,纵向纤维间无正应 力。

中性层与中性轴
纵向对称面 中性层 Z 中性轴
中性层 根据变形的连续性 可知,梁弯曲时从其凹 入一侧的纵向线缩短区 到其凸出一侧的纵向线 伸长区,中间必有一层 纵向无长度改变的过渡 层,称为中性层 。 中性轴: 中性层与横截面的交 线就是中性轴。

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号

课件:第六章 弯曲应力

课件:第六章  弯曲应力

A y0dA 0
同理:
Iz Iz0 a2 A I y I y0 b2 A
Page
Cy0z0-形心直角坐标系 Oyz-任意直角坐标系
二者平行
16
思考:下列计算是否正确? 其中C是截面形心。
IZ2 IZ1 Aa2
•C
解:不正确。
z1
a
因为 Z1 不是形心轴
z2
Page
17
典型截面的惯性矩与抗弯截面系数 ( d D)
( y) 1 dF
b dx
l F dA
My
Iz
M Iz
y * dA
ydA Sz ( )
MSz ( )
Iz
Sz()-面积 对中性轴 z 的静矩
l
( y) Sz ( ) dM
bIz dx
( y) FSSz ( )
I zb Page
1
2
M
M dM
y
FS
FS
y* mn
1
2
x
dx
d
l 2 0
0.002
3
x l
4(
x l
)2
dx
l l 2
0.002 1
x l
dx
0.002
3l 2
( x )2 l
l
4l 3
(
x l
)3
2 0
0.002 x
x2 l
2l
l
2 103 m 3
2
Page
29
作业
6-1 6-3 6-8 A-8
Page
30
§6-3 对称弯曲切应力
解:1. 问题分析
已知=(D+d)/2, E, 截面尺寸,可应

材料力学第六章弯曲应力

材料力学第六章弯曲应力

但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显

第六章 弯曲剪应力

第六章  弯曲剪应力

所 以 d m in 1 3 7m m
[例6-7]两个尺寸完全相同的矩形截面梁叠在一起承受荷载如图 所示。若材料许用应力为[],其许可载荷[P]为多少?如将两 个梁用一根螺栓联成一体,则其许可荷载为多少?若螺栓许 用剪应力为[τ],求螺栓的最小直径?
L
FQ
P
-PL
M
P
解:叠梁承载时,每
梁都有自己的中性层
§6-3 弯曲剪应力和强度校核
一.具有纵对称轴截面梁的剪应力
对于薄壁、高截面的梁须计算弯曲剪应力
My
Iz
q(x) x dx
P
bh
z
q(x)
M(x)
M (x)dM (x)
y
FQ
FQ dFQ
在hb的情况下
假设 1)的 :方向F都 Q平与 行
2)沿宽度均布。
y
NI
N II
NI A*ⅠdA
M ydA M
(1)当外力偶作用在平行于形心主惯性平面的任一平 面内时,梁产生平面弯曲。
(2)当横向外力作用在平行于形心主惯性平面的平面 内,并且通过特定点时,梁发生平面弯曲。否则将 会伴随着扭转变形。但由于实体构件抗扭刚度很大
,扭转变形很小,其带来的影响可以忽略不计。
二. 开口薄壁截面的弯曲中心
对于开口薄壁截面梁,即使横向力作用于形心主惯性 平面内(非对称平面),则梁除发生弯曲变形外,还将 发生扭转变形。
b(x)
3P
4[]h
即: b(x)min4[3P]h
P/2
P
A
C
xL
P/2 同理:若b为常量,高度h=h(x)
B W(x)1bh2(x) Px
6
2[]
h(x) 3Px 半抛物线

第六章弯曲应力

第六章弯曲应力

? 中性轴的位置
中性层的曲率半径r
3. 静力学关系
statics relation
M
z
FN
A dFN
σdA
A
O
x
M y
A dM y
zσdA
A
y
M z
A dM z
yσdA
A
凹入一侧的受压应力,凸出的一侧受拉应力
应用公式时,一般将 My 以绝对值代入. 根据梁变形的情况直接
按强度要求设计梁时,主要是依据梁的正应力强度条件
σmax M max [σ] Wz
一、降低梁的最大弯矩值
1.合理地布置梁的荷载
F
F
l
Fl/4
l/4
l/2 l/4
Fl/8
2.合理地设置支座位置
q
q
l
ql2/2
a
a
l
0.0214ql2
当两端支座分别向跨中移动a=0.207l 时,最大弯矩减小.
二、增大Wz
deformation geometric relationship
physical relationship
static relationship
Examine the deformation, 变
then propose the hypothesis 形



Distribution regularity
z
0.8a2 a2
π D12 4
2a22
0.8 1.6a22 ,a2
1.05D1
Wz4 4.57Wz1
工字形截面与框形截面类似.
2.合理的放置
W1 h W2 b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A) (B) (C)
(D) (E) (F)
6.2.12图示正方形截面在xy平面内纯弯曲变形时,采用(a)、(b)两种放置方式,其最大正应力分别为 和 。合理的放置方式是();若使 ,则 =。
6.2.13纯弯曲的T形截面铸铁梁,如图所示。其放置方式最合理的是()。
6.2.14矩形截面梁在弯曲时,图示横截面上的弯矩不为零,z轴为形心轴,该截面上a、b、c三点正应力的关系为()。
6.2.17T形截面悬臂梁受力如图所示。已知截面高度h、惯性矩 和材料的弹性模量E,并测得D截面上、下边缘处的线应变 和 ,则外力偶矩 。图中C为形心。
6.2.18T形截面梁如图所示。测得D截面上、下边缘处的纵向线应变分别是 , ,此截面中性轴位置 。图中z为形心轴。
6.2.19在6.2.14题中,a、b、c三点切应力的关系为()。
(A) (B) (C) (D)
6.2.20矩形截面简支木梁受载如图所示。梁AC段任一横截面上a点的切应力是。
(C) (D)
(E) (F)
6.2.3图示箱形截面梁的抗弯截面系数为()。
(A) (B)
(C) (D)
6.2.4图示截面的抗弯截面系数为()。
(A) (B)
(C) (D)
6.2.5用直径为d的圆形木切割出一根高h,宽b的矩形截面梁,若使梁对z轴的抗弯截面系数为最大,则h/b是()。
(A)2.0(B) (C)1.5(D)
第六章-弯曲应力()
———————————————————————————————— 作者:
———————————————————————————————— 日期:

第六章弯曲应力(Ⅱ)
6.2.1下列各梁中,AB段为纯弯曲的有()。
6.2.2下列关于圆环截面几何性质的算式中正确的有()。
(A) (B)
(A) < < (B) = <
(C) < = (B) = =
6.2.10矩形截面简支梁分别采用图中(a)、(b)、(c)三种截面尺寸,其最大正应力之比为()。
(A) (B) (C)
(D) (E) (F)
6.2.11两根矩形截面悬臂梁的尺寸、荷载分别相同,材料分别为钢和木材。设二梁均在线弹性范围内变形,二梁C截面处的最大正应力的关系为(),上边缘的最大线应变的关系为()。
6.2.6悬臂梁由两根T形截面叠起来放置(略去相互之间的摩擦力),受力如图所示。任一横截面上的正应力分布规律应是()。
6.2.7圆形截面悬臂梁由圆筒B套入实心圆杆A而成,略去两接触面间的摩擦力,材料弹性模量 。
(1)他们最大正应力的比 是()。(A)Leabharlann 5/2(B)1/2(C)1/4(D)1
(2)任一横截面上正应力的分布规律是()。
(A) (B)
(C)
6.2.15工字形截面简支梁如图所示。已知截面对中性轴z的抗弯截面系数 、弹性模量E以及C截面下边缘的纵向线应变 。设梁的变形在线弹性范围内,则作用在梁上的荷载P=。
6.2.16一直径为 的圆截面梁,另一内外直径之比 的圆环截面梁,二梁的长度、材料及受力分别相同。若使二梁的最大正应力相同,则圆截面梁和圆环截面梁的重量之比 =。
6.2.8图示梁由材料相同的上、下两部分叠合而成,不计上、下两部分间的摩擦力,并可认为上、下两部分的曲率 相同。上、下两部分梁所承受的弯矩之比 ,上下两部分梁的最大正应力之比 。
6.2.9受力情况相同的三种等截面梁,分别由整块材料、两块材料并列和两块材料叠合(未粘接,并不计相互之间的摩擦力)组成,如图(a)、(b)、(c)所示。若用 、 、 本别表示这三种梁中横截面上的最大正应力,下列结论中正确的为()。
相关文档
最新文档