2016合肥一模理科数学(含答案)
安徽省合肥市2016届普通高等学校招生统一考试数学(理)试题 含答案

理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,。
在每小题给出的四个选项中,只有一项 是符合题目要求的。
1。
已知集合{}02M x R x =∈<<,{}ln 0N x R x =∈>,则MN =()A .[1,2)B .(1,2)C .(0,)+∞D .(0,1)2.复数331i i++在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3。
对于任意一个定义域是R 的函数()f x ,设1()()()2f x f x f x +-=,2()()()2f x f x f x --=,则一定有( )A .1()f x ,2()fx 都是奇函数 B .1()f x ,2()fx 都是偶函数C .1()f x 是奇函数,2()fx 是偶函数 D .1()f x 是偶函数,2()fx 是奇函数4.边长为1的正三角形ABC 中,,D E 分别是,BC AC 的中点,则AD BE •=( ) A .38- B .38C .33D 335.双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线之间的夹角为060,且C 过点(1,1),则a =()A .32B .6 C .23 D 66。
某校校庆期间,大会秘书团计划从包括甲、乙两人在内的七名老师中随机选择4名参加志愿者服务工作,根据工作特点要求甲、乙两人中至少有1人参加,则甲、乙都被选中且列队服务时不相邻的概率为( )A .12B .13C .16D .147。
若函数()sin()f x x ωϕ=+(0,2πωϕ><)的图象过点(1,0),且图象的一条对称轴为2x =,则ω的最小值是( ) A .2π B .π C .2 D .48。
某几何体的三视图如图所示,正(主)视图是一个正方形,俯视图是一个正三角形和半圆,则该几何体的体积为( ) A .33π+B .233π+C .233π+D .2233π+9.二项式26()xx y ++的展开式中72x y 的项的系数为( )A .120B .80C .60D .5010.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等,已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为h ),其中:三棱锥的底面是正三角形(边长为a ),四棱锥的底面是有一个角为060的菱形(边长为b ),圆锥的体积为V ,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积总相等,那么,下列关系式正确的是( ) A.a h =,b h= B.a h =,b h=C.a =b = D.a =b = 11。
合肥一模理科数学含答案

35
合计
k0
2.706 3.841 5.024 6.635 7.879
19(本小题满分 12 分)
四棱锥 E ABCD 中, AD / / BC, AD AE 2BC 2AB 2, AB AD ,平面 EAD 平面
ABCD ,点 F 为 DE 的中点. (Ⅰ)求证: CF / / 平面 EAB ; (Ⅱ)若 CF AD ,求四棱锥 E-ABCD 的体积.
(A) (7+ 2 )
22
(C)
7
(9)若双曲线 C1 :
x2 2
y2 8
1与 C2
(B) (8+ 2 )
(D) (l+ 2 ) +6
渐近线相同,且双曲线 C2 的焦距为 4 5 ,则 b=
(A)2 (B)4 (C)6 (D)8
(10)函数 y= sin( x ) 在 x=2 处取得最大值,则正数∞的最小值为 6
:
x2 a2
y2 b2
1(a
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2016年合肥市第一次模拟考试 理科数学汇编

2016年淮南市高三数学一模理科试题一、选择题1. 复数2+i1-2i 的虚部是 ( )A .1 B.-1 C .-i D .I 【答案】A【考查方向】本题主要考查了复数的运算与复数的相关概念,常考复数的运算、复数的相关概念(模、共轭复数、纯虚数、实部、虚部及其几何意义。
【易错点】本题易在复数运算上出错和虚部概念出错。
【解题思路】直接由复数运算求出()()()()ii i i +++52122,再找到其虚部为1; 【解析】由i i =-+2122.已知集合U ( ) 【答案】B【解题思路】1A A ∉3,,2{}4的子集个数。
【解析】由由全集A ,故A 可以为{}{}4,2,1,2,13.下面的程序框图(如图所示)能判断任意输入的数x 的奇偶性:A 【答案】 D 选项。
4. 函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是 ( )A .2,-π3B .2,-π6C .4,-π6D .4,π3【答案】A【考查方向】本题主要考查了由三角函数的图象和性质求解析式,在近几年的各省高考题出现的频率较高,常与三角恒等变形公式,函数单调性、周期性、对称型、奇偶性等知识点交汇命题。
【易错点】1、本题易在对性质理解不到位没有办法求出w 的值 。
2、本题在求ϕ上应全最值点,也易忽略题目所给ϕ的范围。
【解题思路】1、由图可知ππππ=⇒=⎪⎭⎫ ⎝⎛--=T T 43312543,进出求出22==T w π; 2、把点⎪⎭⎫⎝⎛2,125π代入()x f 得Z k k ∈+=+⇒=⎪⎭⎫⎝⎛+,2265165sin ππϕπϕπ,即3,22,,23πϕπϕπππϕ-=⇒<<-∈+-=结合Z k k 。
故选A5. 经过抛物线y =14x 2的焦点和双曲线x 217-y28=1的右焦点的直线方程为( )A .x +48y -3=0B .x +80y -5=0C .x +3y -3=0D .x +5y -5=0【答案】D【考查方向】本题主要考查了圆锥曲线的一些基本概念(焦点)和求直线方程,圆锥曲线常考求方程、离心率的值或范围、中点弦,切线方程、面积计算和函数的最值问题 【易错点】本题易在抛物线方程是否标准上求焦点出错; 【解题思路】1、把抛物线方程化成标准型,再求出其焦点;2、再求出双曲线的右焦点,进而求出直线方程;【解析】把抛物线方程化成标准型为:y x 42=,故其焦点为()1,0P ,而双曲线的焦点为()0,5Q ,故所求直线方程为x +5y -5=0;故选D6.设3log 2a =,5log 2b =,2log 3c =,则( ) A.a c b >> B.b c a >> C. c a b >> D. c b a >> 【答案】C【考查方向】本题主要考查了函数值大小的比较,常见比较大小的方法有作差法、作商法、单调性法、中间值法、图象法等;【易错点】本题易在思路的寻找上迷失。
安徽省合肥市蜀山区2016届中考数学一模试卷(含答案)

2016年安徽省合肥市蜀山区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣的相反数是()A.2006 B.﹣2006 C.D.﹣2.下列运算正确的是()A.=B.4x2y﹣x2y=4 C.a3•a4=a12D.(a2b)3=a6b33.一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1 C.﹣2≤x<1 D.﹣2≤x≤14.化简﹣1结果正确的是()A.B.C.D.5.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm26.下列说法正确的是()A.一组数据:4、1、3、1、2的中位数是3B.了解一批节能灯的使用寿命,适合用普查的方式C.“明天降雨的概率为”,表示明天有半天都在降雨D.甲、乙两人在相同条件下各射击20次,他们的成绩平均数相同,方差分别是S甲2=0.4.S乙2=0.6,则甲的射击成绩较稳定7.将直尺和直角三角板按如图方式摆放,已知∠2=66°,则∠1的大小是()A.24°B.34°C.44°D.66°(第7题) (第8题) (第9题)8.小亮和小明周六到距学校24km的滨湖湿地公园春游,小亮8:00从学校出发,骑自行车去湿地公园,小明8:30从学校出发,乘车沿相同路线去滨湖湿地公园,在同一直角坐标系中,小亮和小明的行进路程S(km)与时间t(时)的函数图象如图所示.根据图象得到结论,其中错误的是()A.小亮骑自行车的平均速度是12km/h;B.;C.小明在距学校12km处追上小亮;D.9:30小明与小亮相距4km9.如图,在圆心角为45°的扇形内有一正方形CDEF,其中点C、D在半径OA上,点F在半径OB上,点E在上,则扇形与正方形的面积比是()A.π:8 B.5π:8 C.π:4 D.π:410.如图,一次函数y=﹣x+3的图象上有两点A、B,A点的横坐标为3,B点的横坐标为a(0<a<6且a≠3),过点A、B分别作x轴的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1,S2,则S1,S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定(第10题) (第13题)二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:16a﹣a3=.12.现在网购越来越多地成为人们的一种消费方式,在2015年的“双11”促销活动中,天猫全天交易额约912亿元,将912亿元用科学记数法表示为元.13.小明观看了阿尔法狗下围棋后,设计了一款电子跳蚤游戏,如图所示的正△ABC边长为12cm,如果电子跳蚤开始在BC边的点P0处,且BP0=4cm.此时第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步P2从跳到BC边的P3(第3次落点)处,且BP3=BP2;…:电子跳蚤按照上述规则已知跳下去,第n次落点为P n(n为正整数),则点P2015与点P2016之间的距离是.14.若关于x的一元二次方程(x﹣1)(x﹣2)=m有实数根x1、x2,且x1<x2,有下列结论:①x1=1,x2=2;②m>﹣;③二次函数y=(x﹣1)(x﹣2)﹣m的图象对称轴为直线x=1.5;④二次函数y=(x﹣1)(x﹣2)+m的图象与y轴交点的一定在(0,2)的上方.其中一定正确的有(只填正确答案的序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣12﹣|﹣2|﹣(﹣2)0+4sin45°.16.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(1,2),B(3,4),C(2,9).(1)画出△ABC关于y轴对称的△A1B1C1.(2)画出△A1B1C1向右平移8个单位后得到的△A2B2C2.(3)直接写出△ABC上点M(x,y)在上述变换过程中得到△A2B2C2上的对应点M2的坐标.四、(本大题共2小题,每小题8分,满分16分)17.2013年初,某市开始实施“旧物循环计划”,为旧物品二次利用提供了公益平台,到2013年底,全年回收旧物3万件,随着宣传力度的加大,2015年全年回收旧物试已经达6.75万件,若每年回收旧物的增长率相同.(1)求每年回收旧物的增长率;(2)按着这样的增长速度,请预测2016年全年回收旧物能超过10万件吗?18.如图,在合肥市轨道交通建设中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现选参照物C,测得C在点A的东北方向上,在点B的北偏西60°方向上,B、C两点间距离为800m.请你求出这段地铁AB的长度.(结果精确到1m,参考数据:≈1.414,≈1.732)五、(本大题共2小题,每小题10分,满分20分)19.如图,点A、B、C在同一条直线上,点P在以BC为直径的⊙O上,连结PA、PB、PC,AB=BP=.(1)求证:AP是⊙O的切线;(2)如果⊙O的直径是4cm,求PC的长度.20.为了了解某校九年级学生数学质量检测成绩情况,检测教师随机抽取该校九年级上学期期末数学考试部分学生成绩(得分为整数,满分为150分)分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图21.如图,四边形ABCD中,∠A=∠ABC=90°,AD=10cm,BC=30cm,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.参考答案一、选择题1.解:﹣的相反数是.故选C.2.解:∵≠,∴选项A不正确;∵4x2y﹣x2y=3x2y,∴选项B不正确;∵a3•a4=a7,∴选项C不正确;∵(a2b)3=a6b3,∴选项D正确.故选:D.3.解:该不等式组的解集是:﹣2≤x<1.故选C.4.解:﹣1=﹣1=﹣=.故选C.5.解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,故选C.6.解:A、一组数据:4、1、3、1、2的中位数是2,错误;B.了解一批节能灯的使用寿命,适合用抽查的方式,错误;C.“明天降雨的概率为”,表示明天有可能降雨,错误;D、甲、乙两人在相同条件下各射击20次,他们的成绩平均数相同,方差分别是S甲2=0.4.S乙2=0.6,则甲的射击成绩较稳定,正确;故选D7.解:∵AB∥CD,∴∠2=∠3,∵∠1+∠3=90°,∠2=66°,∴∠1=90°﹣66°=24°,故选A.8.解:A、根据函数图象小亮去滨湖湿地公园所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,小明到滨湖湿地公园对应的时间t=9.5,小亮到滨湖湿地公园对应的时间t=10,10﹣9.5=0.5(小时),∴小明比小亮提前0.5小时到达滨湖湿地公园,故正确;C、由图象可知,当t=9时,小明追上小亮,此时小亮离开学校的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴小明在距学校12km出追上小亮,故正确;D、由图象可知,当t=9.5时,小明的路程为24km,小亮的路程为12×(9.5﹣8)=18km,此时小明与小亮相距24﹣18=6km,故错误;故选:D.9.解:连接OE,设正方形的边长为a,则正方形CDEF的面积是a2,在Rt△OEF中,a2+(2a)2=r2,即r=a,扇形与正方形的面积比=:a2=:a2=5π:8.故选B.10.解:把x=3代入y=﹣x+3,得y=﹣×3+3=,即A(3,),则S1=××3=,S2=a×(﹣a+3)=﹣(a﹣3)2+,又0<a<6且a≠3,所以S2<=S1,即S1>S2,故选A.二、填空题(本大题共4小题,每小题5分,满分20分)11.解:16a﹣a3=a(16﹣a2)=a(4﹣a)(4+a).故答案为:a(4﹣a)(4+a).12.解:将912亿用科学记数法表示为9.12×1010.故答案为:9.12×1010.13.解:因为BP0=4,根据题意,CP0=12﹣4=8,第一步从P0到P1,CP1=CP0=8;AP1=12﹣8=4,第二步从P1到P2,AP2=AP1=4;BP2=12﹣4=8,第三步从P2到P3,BP3=BP2=8;CP3=12﹣8=4,第四步从P3到P4,CP4=CP3=4;AP4=12﹣4=8,第五步从P4到P5,AP5=AP4=8;BP5=12﹣8=4,第六步从P5到P6,BP6=BP5=4;由此可知,P6点与P0点重合,又因为2015÷6=335…5,2016÷6=336,所以P2015点与P5点重合,则点P2015与B点之间的距离为BP5=4,P2016点与P0点重合,则点P2016与B点之间的距离为BP0=4,又∵∠B=60°,故△BP0P5是等边三角形,即P2015P2016=P5P0=4cm,故答案为:4cm.14.解:当m=0时,x1=1,x2=2,所以①错误;方程整理为x2﹣3x+2﹣m=0,△=(﹣3)2﹣4(2﹣m)0,解得m>﹣,所以②正确;二次函数为y=x2﹣3x+2﹣m,所抛物线的对称轴为直线x=﹣﹣1.5,所以③正确;当x=0时,y=x2﹣3x+2+m=2+m,即抛物线与y轴的交点为(0,2+m),而m>﹣,所以二次函数y=(x﹣1)(x﹣2)+m的图象与y轴交点的一定在(0,)的上方,所以④错误.故答案为②③.三、(本大题共2小题,每小题8分,满分16分)15.解:原式=﹣1﹣2﹣1+4×=0.16.解:(1)如图所示:(2)如图所示:(3)对应点M2的坐标(x+8,y).四、(本大题共2小题,每小题8分,满分16分)17.解:(1)设年平均增长率为x,根据题意得3(1+x)2=6.75.解得x1=0.5,x2=﹣2.5(舍去),答:平均增长率为50%.(2)6.75×(1+50%)2=10.125万元>10万元.∴2016年全年回收旧物能超过10万件.18.解:作CD⊥AB于D,由题意得,∠CAD=45°,∠CBD=30°,∴BD=BC•cos∠CBD=800×=400≈693,CD=BC=400,∴AD=CD=400,∴AB=AD+BD=1093米.答:这段地铁AB的长度约为1093米.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)如图所示:连接OP,∵AB=BP=BC,BC为直径,∴AB=BP=BO,∴∠BAP=∠BPA,∠BPO=∠BOP,∴∠BAP+∠BPA+∠BPO+∠BOP=180°,∴∠BPA+∠BPO=90°,∵点P在⊙O上,∴AP是⊙O的切线;(2)∵BC为直径,∴BC=4cm,∠BPC=90°,∵BP=BC,∴BP=2,在Rt△BPC中,由勾股定理得:PC===2,∴PC的长度为2cm.20.(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED(AAS),∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)解:分三种情况:①BC=BD=30cm时,由勾股定理得,AB===20(cm),∴四边形BDFC的面积=30×20=600(cm2);②BC=CD=30时,过点C作CG⊥AF于G,如图所示:则四边形AGCB是矩形,∴AG=BC=30,∴DG=AG﹣AD=30﹣10=20,由勾股定理得,CG===10,∴四边形BDFC的面积=30×10=3300;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=20,矛盾,此时不成立;综上所述,四边形BDFC的面积是600cm2或300cm2.。
安徽省示范高中高三数学第一次联考试题 理(扫描版)

安徽省示范高中2016届高三数学第一次联考试题理(扫描版)2016届安徽省示范高中高三第一次联考理数参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】因为错误!未找到引用源。
,错误!未找到引用源。
,所以错误!未找到引用源。
.2.A 【解析】错误!未找到引用源。
,因为复数在第一象限,所以错误!未找到引用源。
,解得错误!未找到引用源。
,故选A.3.B 【解析】全称命题的否定,要把量词任意改为存在,且否定结论,故非错误!未找到引用源。
为:存在错误!未找到引用源。
,错误!未找到引用源。
.4. C 【解析】根据题意,三角形F1F2P是以F1F2为斜边的直角三角形,设|F2P|=m,|F1P|=2m,则由双曲线定义可得m=2a,所以错误!未找到引用源。
,即错误!未找到引用源。
,则错误!未找到引用源。
,故一条渐近线方程是错误!未找到引用源。
.5.D 【解析】由题意知错误!未找到引用源。
,所以错误!未找到引用源。
,故选D.6.A 【解析】二项式错误!未找到引用源。
的通项公式为错误!未找到引用源。
,其中错误!未找到引用源。
,所以错误!未找到引用源。
,解得错误!未找到引用源。
.7.B【解析】可行域为错误!未找到引用源。
及其内部,三个顶点分别为错误!未找到引用源。
,当错误!未找到引用源。
过点错误!未找到引用源。
时取得最小值,此时错误!未找到引用源。
.8. C 【解析】由三视图的俯视图、正视图和侧视图可还原的空间几何体一个四棱锥M-ABCD,如图所示,由勾股定理计算CD=5,即知底面是边长为5的正方形ABCD,补形为三棱柱,则所求的几何体的体积:错误!未找到引用源。
×3×4×5-错误!未找到引用源。
=20.9.C 【解析】由流程图可知,错误!未找到引用源。
,只要错误!未找到引用源。
,就再一次进入循环体循环,直到首次出现错误!未找到引用源。
合肥市2016届高三第一次教学质量检测数学理答案.pdf

高三数学(理)试题答案㊀第1页(共6页)合肥市2016年高三第一次教学质量检测数学试题(理)参考答案及评分标准一㊁选择题:每小题5分,满60分.题号123456789101112答案DDDACCABCABC二㊁填空题:每小题5分,满20分.(13){0,3}㊀㊀㊀㊀(14)4㊀㊀㊀(15)-2㊀㊀㊀㊀(16)三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)解:(Ⅰ)由知,则是以为首项,公比为的等比数列.5分(Ⅱ)由(Ⅰ)知是首项为,公比为的等比数列,,7分㊀①则②①-②得:=12分高三数学(理)试题答案㊀第2页(共6页)(18)解:(Ⅰ)有效无效合计使用方案A组9624120使用方案B 组72880合计16832200 2分使用方案A 组有效的频率为;使用方案B 组有效的频率为5分(Ⅱ)<3.841所以,不能在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关.12分(19)解:证明:(Ⅰ)取A E 中点G ,连G F ㊁G B .EDBCFA G 点F 为D E 中点GF ʊA D ,且G F=又A D ʊBC ,AD =2B C ,G F ʊB C ,且G F =.四边形C F G B 为平行四边形,则C F ʊB G .而平面E A B ,B G平面E A B,C F ʊ平面E A B ,5分(Ⅱ)C F ʅA D ㊀A D ʅB G ,而A B ʅA D ,A D ʅ平面E AB ,A D ʅE A .又平面E A D ʅ平面A B C D ,平面E A D ɘ平面A B C D =A D ,高三数学(理)试题答案㊀第3页(共6页)E A ʅ平面A B C D ,以A 为坐标原点,分别以A B ㊁A D ㊁A E为轴建立空间直角坐标系,则B (1,0,0),C (1,1,0),D (0,2,0),F (0,1,1).设平面B C F法向量为,知,即,不妨令,可得设平面C D F法向量为,同理可求得,7分.11分由于二面角D -C F -B 为钝二面角,则二面角D -C F -B的余弦值为.12分(20)解:(Ⅰ)知A ㊁B,设点P坐标为切线:,联立,由抛物线与直线相切,解得,即:,同理,:联立的方程,可解得,即点P的坐标为6分(Ⅱ)设M ,且ɤɤ由得高三数学(理)试题答案㊀第4页(共6页)即,解得,则,即为定值1. 12分(21)解:(Ⅰ),则,===﹥﹥>在上单调递增5分(Ⅱ)由知由(Ⅰ)知在上单调递增,且,可知当时,,则有唯一零点,设此零点为,易知时>0,单调递增;时<0,单调递减,知,其中令,则,高三数学(理)试题答案㊀第5页(共6页)易知f (x )>0在(-1,+ɕ)上恒成立,ʑG ᶄ(x )>0,G (x )在(-1,+ɕ)上单调递增,且①㊀当0<<4时,>,由在上单调递增知>0,则>,由在时单调递增,,在上均恒成立,则F (e -4-1)=l n e -4-a ㊃f (e -4-1)+4=-a ㊃f (e -4-1)<0ʑʑ在上有零点,与条件不符;②㊀当=4时,=,由的单调性知=0,则=,此时,有一个零点,与条件不符;③当>4时,<,由的单调性知<0,则<,此时,没有零点;综上所述,当无零点时,正数的取值范围是12分(22)解:(Ⅰ)ȵA B 为圆O 的直径,ʑA C ʅB D ,而B C =C D .ʑA B =A D ,而øD B A=,ʑ为等边三角形.连B E .由A B 为圆O 的直径.ʑA D ʅB E ʑE 为A D 中点.5分高三数学(理)试题答案㊀第6页(共6页)(Ⅱ)连C O ,易知C O ʊA D ,ȵC F 为圆O 的切线ʑC F ʅC O ,ʑC F ʅA D ,又B E ʅA D ,ʑB E ʊC F ,且C F=,由C F=知,ʑ.10分(23)解:(Ⅰ)由知直角坐标方程为,及(>-3)5分(Ⅱ)将代入曲线C的直角坐标方程得,化简得.曲线C与直线仅有唯一公共点,解得.10分(24)证明:(Ⅰ),等号在时取得,即的最大值为1.5分(Ⅱ),因为,所以,>6,所以,不存在这样的a ,b .使得A +B =6. 10分。
2016年安徽省“合肥十校”联考中考一模数学

2016年安徽省“合肥十校”联考中考一模数学一、选择题(本大题共10小题,每小题4分.满分40分,每小题只有一个选项符合题意)1. 64的算术平方根是( )A.4B.±4C.8D.±8=8,∴64的算术平方根是8.答案:C.2.下列各式正确的是( )A.-22=4B.20=0=±2D.=解析:根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.A、-22=-4,故本选项错误;B、20=1,故本选项错误;=,故本选项错误;C2D、=,故本选项正确.答案:D.3.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为( )A.1.0×109美元B.1.0×1010美元C.1.0×1011美元D.1.0×1012美元解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.100 000 000 000=1.0×1011.答案:C.4.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是( )A.B.C.D.解析:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面,即.答案:A.5.下列因式分解错误的是( )A.2a-2b=2(a-b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)解析:根据公式法分解因式的特点判断,然后利用排除法求解.A、2a-2b=2(a-b),正确;B、x2-9=(x+3)(x-3),正确;C、a2+4a-4不能因式分解,错误;D、-x2-x+2=-(x-1)(x+2),正确.答案:C.6.如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=( )A.64°B.63°C.60°D.54°解析:∵AB∥CD,∠1=63°,∴∠BEN=∠1=63°.∵EN平分∠BEF,∴∠BEF=2∠BEN=126°,∴∠2=180°-∠BEF=180°-126°=54°.答案:D.7.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,则a n+a n+1=( )A.n2+nB.n2+n+1C.n2+2nD.n2+2n+1解析:∵a1+a2=4,a2+a3=9,a3+a4=16,…∴a n+a n+1=(n+1)2=n2+2n+1. 答案:D.8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧¼AMB上一点,则∠APB的度数为( )A.45°B.30°C.75°D.60°解析:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=12OC=12OA,∴∠OAD=30°,又OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.答案:D.9.已知二次函数y=a(x-2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1-2|>|x2-2|,则下列表达式正确的是( )A.y1+y2>0B.y1-y2>0C.a(y1-y2)>0D.a(y1+y2)>0解析:①a>0时,二次函数图象开口向上,∵|x1-2|>|x2-2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1-y2)>0,②a<0时,二次函数图象开口向下,∵|x1-2|>|x2-2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1-y2)>0,综上所述,表达式正确的是a(y1-y2)>0.答案:C.10.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是( )A.BF=EFB.DE=EFC.∠EFC=45°D.∠BEF=∠CBE解析:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=12BC=BF,A不合题意;∵DE=12AB,EF=12BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE,D不合题意.答案:B.二、填空题(每小题5分,共20分)的整数部分是 .解析:∵16<17<25,∴4<5,∴17的整数部分是4.答案:4.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是 .解析:该班此次成绩达到合格的同学占全班人数的百分比是50450×100%=92%.答案:92%.13.在平面直角坐标系的第一象限内,边长为l的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线4yx=(x>0)与此正方形的边有交点,则a的取值范围是 .解析:∵A点的坐标为(a,a). ∴C(a-1,a-1),当C在双曲线4yx=时,则411aa-=-,解得a=3;当A在双曲线4yx=时,则4aa=,解得a=2,∴a的取值范围是2≤a≤3.答案:2≤a≤3.14.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则下列判断:①当AP=BP时,AB′∥CP;②当AP=BP时,∠B′PC=2∠B′AC③当CP⊥AB时,AP=175;④B′A长度的最小值是1.其中正确的判断是 (填入正确结论的序号) 解析:①∵在△ABC中,∠ACB=90°,AP=BP,∴AP=BP=CP,∴∠B=∠BPC=12(180°-∠APB′),由折叠的性质可得:CP=B′P,∠CPB′=∠BPC=12(180°-∠APB′),∴AP=B′P,∴∠AB′P=′B′AP=12(180°-∠APB′),∴∠AB′P=∠CPB′,∴AB′∥CP;故①正确;②∵AP=BP,∴PA=PB′=PC=PB,∴点A,B′,C,B在以P为圆心,PA长为半径的圆上,∵由折叠的性质可得:BC=B′C,∴»¼BC B C=',∴∠B′PC=2∠B′AC;故②正确;③当CP⊥AB时,∠APC=∠ACB,∵∠PAC=∠CAB,∴△ACP∽△ABC,∴AP AC AC AB=,∵在Rt△ABC中,由勾股定理可知:4AC=,∴2165ACAPAB==;故③错误;④由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A 、B ′、C 三点在一条直线上时,AB ′有最小值, ∴AB ′=AC-B ′C=4-3=1.故④正确.∴正确的有①②④.答案:①②④.三、本题共2小题.每小题8分,满分16分15.先化简,再求242x x x x⎛⎫ ⎪⎝⎭--÷值:其中x 2+2x-1=0. 解析:先根据分式混合运算的法则把原式进行化简,再求出x2+2x=1代入进行计算即可. 答案:原式()()()()22222222x x x x x x x x x x +-+--=÷=-g =x(x+2)=x 2+2x. 当x 2+2x-1=0时,x 2+2x=1,原式=1.16.解不等式组()2533224x x x +≥⎧⎪⎨--⎪⎩<,并把解集在数轴上表示出来.解析:先求出不等式组中每一个不等式的解集,然后把不等式的解集表示在数轴上,再表示出它们的公共部分即可.答案:()2533224x x x +≥⋯⎧⎪⎨--⋯⎪⎩①<②, 解①得:x ≥-1,解②得:x <2.不等式组的解集是:-1≤x <2.四、本大题共2小题.每小题8分,满分16分17.如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),△ABC 绕原点逆时针旋转90°,得到△A 1B 1C 1,△A 1B 1C 1向右平移6个单位,再向上平移2个单位得到△A 2B 2C 2.(1)画出△A1B1C1和△A2B2C2.解析:(1)直接利用旋转的性质结合平移的性质分别得出符合题意的图形.答案:(1)如图所示:△A1B1C1和△A2B2C2,即为所求.(2)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P1、P2的坐标.解析:(2)△ABC绕原点逆时针旋转90°,得到△A1B1C1,则对应点横坐标变为原纵坐标的相反数,纵坐标变为原来的横坐标,再利用平移的性质得出对应点位置.答案:(2)由题意可得:P1(-b,a),P2(-b+6,a+2).18.如图,一条城际铁路从A市到B市需要经过C市,A市位于C市西南方向,与C市相距40在千米,B市恰好位于A市的正东方向和C市的南偏东60°方向处.因打造城市经济新格局需要,将从A市到B市之间铺设一条笔直的铁路,求新铺设的铁路AB的长度.(结果保留根号)解析:过C 作CP ⊥AB 于P ,在直角三角形ACP 中,利用锐角三角函数定义求出AP 与PC 的长,在直角三角形BCP 中,利用锐角三角函数定义求出PB 的长,由AP+PB 求出AB 的长即可. 答案:过C 作CP ⊥AB 于P ,∵在Rt △ACP 中,AC=40千米,∠ACP=45°,sin ∠ACP AP AC =,cos ∠ACP CP AC=,∴AP=AC ·sin45°240=⨯=(千米),CP=AC ·cos45°240=⨯=千米), ∵在Rt △BCP 中,∠BCP=60°,tan ∠BCP BP CP=,∴BP=CP ·tan60°=千米),则AB=AP+PB=(千米.五、本大题共2小题,每小题10分.满分20分19.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率.解析:(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可.答案:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=-2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%.(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?解析:(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.答案:(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31-12.6)÷0.611160≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.20.某童装专卖店,为了吸引顾客,在“六一”儿童节当天举办了甲、乙两种品牌童装有奖酬宾活动,凡购物满100元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同.摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.解析:(1)让所求的情况数除以总情况数即为所求的概率.答案:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=23. (2)如果一个顾客当天在本店购物满100元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的童装?并说明理由.解析:(2)算出相应的平均收益,比较大小即可.答案:(2)∵两红的概率16P =,两白的概率16P =,一红一白的概率23P =, ∴甲品牌童装获礼金券的平均收益是:15301216361525⨯+⨯+⨯=元. 乙品牌童装获礼金券的平均收益是:30151216363020⨯+⨯+⨯=元. ∴我选择甲品牌童装.六、本大题满分12分 21.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE+∠CBE=90°,连接BF.(1)求证:△CAE ∽△CBF.解析:(1)首先由△ABC 和△CEF 均为等腰直角三角形可得AC :BC=CE :CF ,∠ACE=∠BCF ;然后根据相似三角形判定的方法,推得△CAE ∽△CBF 即可.答案:(1)∵△ABC 和△CEF 均为等腰直角三角形,∴AC CE BC CF==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF ,∴△CAE ∽△CBF.(2)若BE=1,AE=2,求CE 的长.解析:(2)首先根据△CAE ∽△CBF ,判断出∠CAE=∠△CBF ,再根据∠CAE+∠CBE=90°,判断出∠EBF=90°;然后在Rt △BEF 中,根据勾股定理,求出EF 的长度,再根据CE 、EF 的关系,求出CE 的长是多少即可.答案:(2)∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,AE AC BF BC==,又∵AE AC BF BC==AE=2∴2BF=BF = 又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴2222231EF BE BF =+=+=,∴EF =∵CE 2=2EF 2=6,∴CE =七、本大题满分12分22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m 件)与时间(第x 天)满足一次函数关系,部分数据如下表:②该产品90天内每天的销售价格与时间(第x 天)的关系如下表:(1)求m 关于x 的一次函数表达式.解析:(1)根据待定系数法解出一次函数解析式即可.答案:(1)∵m 与x 成一次函数,∴设m=kx+b ,将x=1,m=198,x=3,m=194代入,得:1983194k b k b +⎧⎨+⎩==, 解得:2200k b -⎧⎨⎩==.所以m 关于x 的一次函数表达式为m=-2x+200.(2)设销售该产品每天利润为y 元,请写出y 关于x 的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】解析:(2)设利润为y 元,则当1≤x <50时,y=-2x 2+160x+4000;当50≤x ≤90时,y=-120x+12000,分别求出各段上的最大值,比较即可得到结论.答案:(2)设销售该产品每天利润为y 元,y 关于x 的函数表达式为: 2(216040001501201200050))9(0y x x x y x x ⎧-++≤⎨-+≤≤⎩=<=, 当1≤x <50时,y=-2x 2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y 有最大值,最大值是7200;当50≤x ≤90时,y=-120x+12000,∵-120<0,∴y 随x 增大而减小,即当x=50时,y 的值最大,最大值是6000;综上所述,当x=40时,y 的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元.(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果. 解析:(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.答案:(3)在该产品销售的过程中,共有46天销售利润不低于5400元.八、本大题满分14分23.如图,在钝角△ABC中,点D是BC的中点,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,M、N分别为AB、AC的中点,连接DM、DN、DE、DF、EM、EF、FN.求证:(1)△EMD≌△DNF.解析:(1)首先根据D是BC中点,N是AC中点N,可得DN是△ABC的中位线,判断出DN=1 2AC;然后判断出EM=12AB,再通过证明四边形AMDN是平行四边形,可得∠AMD=∠AND,进而可证明∠EMD=∠DNF,由全等三角形的判定方法即可证明△EMD≌△DNF. 答案:(1)∵D是BC中点,M是AB中点,N是AC中点,∴DM、DN都是△ABC的中位线,∴DM∥AC,且DM=12 AC;DN∥AB,且DN=12 AB;∵△ABE是等腰直角三角形,M是AB的中点,∴EM平分∠AEB,EM=12 AB,∴EM=DN,同理:DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF ,在△EMD 和△DNF 中,EM DN EMD DNF MD NF ⎧⎪∠∠⎨⎪⎩===,∴△EMD ≌△DNF.(2)△EMD ∽△EAF.解析:(2)首先计算出EM :EA 的值,DM 和AF 的数量关系以及证明∠EMD=∠EAF ,再根据相似三角形判定的方法,判断出△EMD ∽△∠EAF.答案:(2)∵三角形ABE 是等腰直角三角形,M 是AB 的中点,∴EM 平分∠AEB ,EM ⊥AB ,∴EM=MA ,∠EMA=90°,∠AEM=∠EAM=45°,∴452EM sin EA =︒=, ∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM ∥AC ,且DM=12AC ; ∵△ACF 是等腰直角三角形,N 是AC 的中点,∴FN=12AC ,∠FNA=90°,∠FAN=∠AFN=45°, 又∵DM=12AC , ∴DM=FN=2FA , ∵∠EMD=∠EMA+∠AMD=90°+∠AMD ,∠EAF=360°-∠EAM-∠FAN-∠BAC ,=360°-45°-45°-(180°-∠AMD)=90°+∠AMD ,∴∠EMD=∠EAF ,在△EMD 和△∠EAF 中,2EM DM EA FA EMD EAF ⎧⎪⎨⎪∠∠⎩===,∴△EMD ∽△∠EAF.(3)DE ⊥DF.解析:(3)由(2)可知△EMD ∽△EAF ,即可判断出∠MED=∠AEF ,然后根据∠MED+∠AED=45°,判断出∠DEF=45°,再根据DE=DF ,判断出∠DFE=45°,∠EDF=90°,即可判断出DE ⊥DF. 答案:(3)∵△EMD ∽△∠EAF ,∴∠MED=∠AEF ,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵△EMD ≌△DNF ,∴DE=DF ,∴∠DFE=45°,∴∠EDF=180°-45°-45°=90°,∴DE ⊥DF.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
安徽省合肥市第一中学2016-2017学年高二上学期第一次月考数学(理)答案

合肥一中2016-2017学年第一学期高二年级段一考试数学(理)试卷参考答案一、选择题:1-5:BCADC 6-10:BCDBC11-12:AB 二、填空题:13.216a 14.15.②④16.4+三、解答题:17.(满分10分)23V π=;12S π=18.(满分12分)证明(1)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC ,∵EF ⊄平面BCHG ,BC ⊂平面BCHG ,∴EF ∥平面BCHG .∵A 1G 与EB 平行且相等,∴四边形A 1EBG 是平行四边形,∴A 1E ∥GB .∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG ,∴A 1E ∥平面BCHG .∵A 1E ∩EF =E ,∴平面EFA 1∥平面BCHG .(2)∵GH ∥BC ,GH BC <,∴BG 与CH 必相交,设交点为P ,则由P BG ∈,BG ⊂平面11BAA B ,得P ∈平面11BAA B .同理P ∈平面11CAA C .又平面11BAA B ∩平面11CAA C =1AA ,∴P ∈直线1AA .∴BG 、CH 、1AA 三线共点.19.(满分12分)解析:(1).连BD 交AC 于F ,F 为BD 中点,连EF 又在三角形PBD 中,E 为PD 的中点所以:PB //EF因为EF ⊆平面AEC ,PB ⊄平面AEC所以//PB 平面AEC .(2).∵AB //CD∴异面直线BP 与CD 所成角的平面角为45ABP ∠=︒∴1AB AP ==所以:111111223212E ACD P ACD V V --==⨯⨯⨯=20.(满分12分)解(1).又PA ⊥面ABCD ,∴PA ⊥BC ,又BC ⊥AB ,∴BC ⊥面PAB .∴PB ⊥BC .(2)在平面PCD 内,过E 作EG ∥CD 交PD 于G ,连接AG ,在AB 上取点F ,使AF =EG ,∵EG ∥CD ∥AF ,EG =AF ,∴四边形FEGA 为平行四边形,∴FE ∥AG .又AG ⊂平面PAD ,FE ⊄平面PAD ,∴EF ∥平面PAD .∴F 即为所求的点.∵PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+PA 2.设PA =x 则PC =2a 2+x 2,由PB ·BC =BE ·PC 得:a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即PA =a ,∴PC =3a .又CE =a 2-(63a )2=33a ,∴PE PC =23,∴GE CD =PE PC =23,即GE =23CD =23a ,∴AF =23a .即AF =23AB .21.(满分12分)解析:(1)证明:∵点E ,F 分别是边CA ,CB 的中点,∴AB ∥EF .∵CD EF ⊥.∴EF DO ⊥,EF PO ⊥.∵DO ⊂平面POA ,PO ⊂平面POA ,DO PO O = ,∴EF ⊥平面POD .∴AB ⊥平面POA .(2)连接BO ,∴23CD =,3DO PO ==.在R t△BHO 中,227BO BD DO =+=,在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥.∵PO EF ⊥,EF BO O = ,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面ABFE .梯形BFED 的面积为()1332S EF AB DO =+⋅=,∴四棱锥P BFED -的体积11333333V S PO =⋅=⨯⨯=.22.(满分12分)解:(1)PAB P D ,////C m AB CD CD PCD AB PCD⋂=⊂⇒ 设面面直线且面面//AB m ⇒直线ABCD m ABCD AB 面直线面//⇒⊂ .所以,ABCD D P PAB 的公共交线平行底面与面面C .(2)设CD 的中点为M ,连接OM 、PM ,因为OC OD =,所以OM CD ⊥,设OD r =,则32OM r =又OP ⊥平面OCD ,所以OP CD⊥又OP OM O = ,所以CD ⊥平面OPM过O 作OH PM ⊥,垂足为H ,则CD OH⊥又OH PM H = ,所以OH ⊥平面PCD所以OP 在平面PCD 内的射影为PH所以OPH ∠为轴OP 与平面PCD 所成的角的平面角.又母线与底面所成的角为45︒,即45ODP ∠=︒,所以OP OD r ==在直角POM ∆中,tan 2OPM ∠=,而OPM OPH ∠=∠,所以轴OP 与平面PCD 所成的角的正切值为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥市2016年高三第一次教学质量检测
数学试题(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟,祝各位考生考试顺利!
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在复平面内,复数12i
+(其中i 是虚数单位,满足21)i =-对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.sin18sin 78cos162cos78⋅-⋅ 等于( )
A. B.12- D.12
3.一次数学考试后,某老师从自己带的两个班级中各抽取5人,记录他们的考试成绩,得到如右图所示的茎叶图,已知甲班5名同学成绩的平均数为81,乙班5名同学的中位数为73,则x y -的值为( )
A.2
B.2-
C.3
D.3-
4.“1x ≥”是“12x x
+≥”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件
5.执行如下程序框图,则输出结果为( )
A.2
B.3
C.4
D.5
6.已知,,l m n 为三条不同直线,,,αβγ为三个不同平面,则下列判断正确的是( )
A .若//,//m n αα,则//m n B.若,//,m n αβαβ⊥⊥,则m n ⊥
C.若,//,//l m m αβαβ= ,则//m l
D.若,,,m n l m l n αβαγ==⊥⊥ ,则l α⊥
7.ABC ∆的三内角,,A B C 所对的边分别是,,a b c ,若7cos ,2,3,8
A c a b =
-==则a 等于( ) A.2 B.
52 C .3 D.72
8.若双曲线221:128x y C -=与双曲线22
222:1(0,0)x y C a b a b
-=>>的渐近线相同,
且双曲线2C 的焦距为则b 等于( ) A .2 B.4 C.6 D.8
9.某几何体的三视图如图所示,则该几何体的体积为( )
A.476
B.152
C.233
D.8 10.某企业的4名职工参加职业技能考核,每名职工均可从4个备选考核项目中任意抽取一个参加考核,则恰有一个项目未被抽中的概率为( )
A.916
B.2764
C.81256
D.716 11.在1(1)
n k k x =+∑的展开式中含2x 项系数与含10x 项系数相等,则正整数n 的取值为( )
A.12
B.13
C.14
D.15
12.函数22()3,()2x f x x x a g x x =-++=-,若[()]0f g x ≥对[0,1]x ∈恒成立,则实数a 的取值范围是( )
A.[,)e -+∞
B.[ln 2,)-+∞
C.[2,)-+∞
D.1(,0]
2-
第Ⅱ卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第13题至第21题为必考题,每个考生都必须作答,第22题至第24题为选考题,考生根据要求作答.
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置上.
13.已知集合2
{0,1,3},{|30}A B x x x ==-=,则A B = 14.已知实数,x y 满足26002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则目标函数z x y =-的最大值是
15.已知等边ABC ∆的边长为2,若3,BC BE AD DC == ,则BD AE ⋅=
16.存在实数ϕ,使得圆面224x y +≤恰好覆盖函数sin()y x k
πϕ=+图象的最高点或最低点共三个,则正数k 的取值范围是
三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17(本小题满分12分)
在数列{}n a 中,*1111,,.22n n n a a a n N n ++=
=∈ (Ⅰ)求证:数列n a n ⎧⎫⎨⎬⎩⎭
为等比数列; (Ⅱ)求数列{}n a 的前n 项和.
18(本小题满分12分)
某医院对治疗支气管肺炎的两种方案,A B 进行比较研究,将志愿者分为两组,分别采用方案
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:2
2()n ad bc K -=,其中n a b c d =+++
19(本小题满分12分) 四棱锥E ABCD -中,//,222,AD BC AD AE BC AB AB AD ====⊥,平面EAD ⊥平面
ABCD ,点F 为DE 的中点.
(Ⅰ)求证://CF 平面EAB ;
(Ⅱ)若CF AD ⊥,求二面角D CF B --的余弦值.
20(本小题满分12分)
设,A B 为抛物线2y x =上相异两点,其纵坐标分别为1,2-,分别以,A B 为切点作抛物线的切线12,l l ,设12,l l 相交于点P .
(Ⅰ)求点P 的坐标;
(Ⅱ)M 为,A B 间抛物线段上任意一点,设PM PA PB λμ=+ ,是否为定值,如果为定值,求出该定值,如果不是定值,请说明理由.
21(本小题满分12分)
已知函数2
()4
x x f x e =-,其中 2.71828e = 是自然对数的底数. (Ⅰ)设()(1)'()g x x f x =+(其中'()f x 为()f x 的导函数),判断()g x 在(1,)-+∞上的单调性;
(Ⅱ)若()ln(1)()4F x x af x =+-+无零点,试确定正数a 的取值范围.
请考生在第22题,23题,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.
22(本小题满分10分)选修4-1:几何证明选讲
已知AB 是圆O 的直径,点C 在圆O 上(异于点,)A B ,连接BC 并延长至点
D ,使得BC CD =,连接DA 交圆O 于点
E ,过点C 作圆O 的切线交AD 于
点F .
(Ⅰ)若60DBA ∠= ,求证:点E 为AD 的中点;
(Ⅱ)若12
CF R =,其中R 为圆C 的半径,求DBA ∠
23(本小题满分10分)选修4-4:坐标系与参数方程
已知直线112:(2
x t l t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的非负半轴为极轴且两坐标系中具有相同的长度单位,建立极坐标系,曲线C 的极坐标方程
为2sin (3)a a ρθ-=>-
(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;
(Ⅱ)若曲线C 与直线l 有唯一公共点,求实数a 的值.
24(本小题满分10分)选修4-5:不等式选讲
已知0,0a b >>,
记A B a b ==+.
(Ⅰ)
B -的最大值;
(Ⅱ)若4,ab =是否存在,a b ,使得6?A B +=并说明理由.。