人教新课标版数学高一-必修2第二章章习题课

合集下载

高中数学必修一高一数学第二章(第课时)反函数公开课教案课件课时训练练习教案课件

高中数学必修一高一数学第二章(第课时)反函数公开课教案课件课时训练练习教案课件

课 题:2.4.1 反函数(一)教学目的:掌握反函数的概念和表示法,会求一个函数的反函数教学重点:反函数的定义和求法教学难点:反函数的定义和求法授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:反函数是数学中的一个很重要的概念,它是我们以后进一步研究具体函数类即五大类基本初等函数的一个不可缺少的重要组成部分 反函数是函数中的一个特殊现象,对反函数概念的讨论研究是对函数概念和函数性质在认识上的进一步深化和提高反函数概念的建立,关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识 本节是反函数的第一节课围绕如何理解反函数概念这个重难点展开由于函数是一种对应关系,这个概念本身不好理解,而反函数又是函数中的一种特殊现象,它是两个函数之间的关系所以弄清函数与其反函数的关系,是正确理解反函数概念必不可少的重要环节教学设计中,通过对具体例子的求解,不但使学生掌握求反函数的方法步骤,并有意识地阐明函数与反函数的关系深化了对概念的理解和掌握教学过程: 一、复习引入:我们知道,物体作匀速直线运动的位移s 是时间t 的函数,即s=vt,其中速度v 是常量,定义域t ≥0,值域s ≥0;反过来,也可以由位移s 和速度v (常量)确定物体作匀速直线运动的时间,即vs t =,这时,位移s 是自变量,时间t 是位移s 的函数,定义域s ≥0,值域t ≥0.又如,在函数62+=x y 中,x 是自变量,y 是x 的函数,定义域x ∈R ,值域y ∈R. 我们从函数62+=x y 中解出x ,就可以得到式子32-=y x . 这样,对于y 在R 中任何一个值,通过式子32-=y x ,x 在R 中都有唯一的值和它对应. 因此,它也确定了一个函数:y 为自变量,x 为y 的函数,定义域是y ∈R ,值域是x ∈R.综合上述,我们由函数s=vt 得出了函数vs t =;由函数62+=x y 得出了函数32-=y x ,不难看出,这两对函数中,每一对中两函数之间都存在着必然的联系:①它们的对应法则是互逆的;②它们的定义域和值域相反:即前者的值域是后者的定义域,而前者的定义域是后者的值域. 我们称这样的每一对函数是互为反函数.二、讲解新课:反函数的定义一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=开始的两个例子:s=vt 记为vt t f =)(,则它的反函数就可以写为vt t f =-)(1,同样62+=x y 记为62)(+=x x f ,则它的反函数为:32)(1-=-x x f . 探讨1:所有函数都有反函数吗?为什么?反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数,如2x y =,只有“一一映射”确定的函数才有反函数,2x y =,),0[+∞∈x 有反函数是x y =探讨2:互为反函数定义域、值域的关系从映射的定义可知,函数)(x f y =是定义域A 到值域C 的映射,而它的反函数)(1x f y -=是集合C 到集合A 的映射,因此,函数)(x f y =的定义域正好是它的反函数)(1x fy -=的值域;函数)(x f y =的值域正好是它的反函数)(1x fy -=的定义域x x f f x x f f ==--)]([,)]([11(如下表):探讨3:)(1x f y -=的反函数是?若函数)(x f y =有反函数)(1x f y -=,那么函数)(1x f y -=的反函数就是)(x f y =,这就是说,函数)(x f y =与)(1x fy -=互为反函数三、讲解例题:例1.求下列函数的反函数: ①)(13R x x y ∈-=; ②)(13R x x y ∈+=; ③)0(1≥+=x x y ; ④)1,(132≠∈-+=x R x x x y 且. 解:①由13-=x y 解得31+=y x ∴函数)(13R x x y ∈-=的反函数是)(31R x x y ∈+=, ②由)(13R x x y ∈+=解得x=31-y , ∴函数)(13R x x y ∈+=的反函数是)(13R x x y ∈-=③由y=x +1解得x=2)1(-y , ∵x ≥0,∴y ≥1. ∴函数)0(1≥+=x x y 的反函数是x=2)1(-y (x ≥1); ④由132-+=x x y 解得23-+=y y x ∵x χ{x ∈R|x ≠1},∴y ∈{y ∈R|y ≠2} ∴函数)1,(132≠∈-+=x R x x x y 且的反函数是)2,(23≠∈-+=x R x x x y 小结:⑴求反函数的一般步骤分三步,一解、二换、三注明 ⑵反函数的定义域由原来函数的值域得到,而不能由反函数的解析式得到 ⑶求反函数前先判断一下决定这个函数是否有反函数,即判断映射是否是一一映射例2.求函数23-=x y (R x ∈)的反函数,并画出原来的函数和它的反函数的图像解:由23-=x y 解得32+=y x∴函数)(23R x x y ∈-=的反函数是)(32R x x y ∈+=, 它们的图像为:例3求函数 211x y --=(-1<x<0)的反函数 解:∵ -1<x<0 ∴0<2x <1 ∴0<1 -2x < 1∴ 0 <21x -< 1 ∴0 < y <1 由:211x y --= 解得:22y y x --= (∵ -1< x < 0 ) ∴211x y --=(-1<x < 0)的反函数是:22x x y --=(0<x<1 )例4 已知)(x f = 2x -2x(x ≥2),求)(1x f -.解法1:⑴令y=2x -2x ,解此关于x 的方程得2442y x +±=, ∵x ≥2,∴2442y x ++=,即x=1+y +1--①, ⑵∵x ≥2,由①式知y +1≥1,∴y ≥0--②,⑶由①②得)(1x f -=1+x +1(x ≥0,x ∈R );解法2:⑴令y=2x -2x=2)1(-x -1,∴2)1(-x =1+y ,∵x ≥2,∴x-1≥1,∴x-1=y +1--①,即x=1+y +1,⑵∵x ≥2,由①式知y +1≥1,∴y ≥0,⑶∴函数)(x f = 2x -2x(x ≥2)的反函数是)(1x f -=1+x +1(x ≥0);说明:二次函数在指定区间上的反函数可以用求根公式反求x ,也可以用配方法求x ,但开方时必须注意原来函数的定义域.四、课堂练习:课本P63练习:已知函数)(x f y =,求它的反函数)(1x fy -= (1) 32+-=x y (x ∈R ) (2)x y 2-= (x ∈R ,且x ≠0) (3) 4x y = (x ≥0) (4)53+=x x y (x ∈R ,且x ≠35-) 五、小结 本节课学习了以下内容:反函数的定义及其注意点、求法步骤六、课后作业:课本第64习题2.4:1七、板书设计(略)八、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

新高考数学人教版必修2课件第2章 习题课 与圆有关的最值问题

新高考数学人教版必修2课件第2章 习题课 与圆有关的最值问题

内容索引
一、与距离有关的最值问题 二、与面积相关的最值问题 三、利用数学式的几何意义解圆的最值问题
随堂演练
课时对点练
一、与距离有关的最值问题
1.圆外一点到圆上任意一点距离的最小值= d-r ,最大 值= d+r .
2.直线与圆相离,圆上任意一点到直线距离的最小值= d-r ,最大值= d+r .
解析 圆C:x2+y2-2y=0的圆心为C(0,1),半径r=1, 由圆的性质可知,四边形的面积S=2S△PBC, 又四边形PACB的最小面积是2, 则 S△PBC 的最小值为 S=1=12r|PB|min=12|PB|min, 则|PB|min=2,因为|PB|= |PC|2-r2= |PC|2-1,
解析 设点A(3,1),易知圆心C(2,2),半径r=2. 当弦过点A(3,1)且与CA垂直时为最短弦, |CA|= 2-32+2-12= 2. ∴半弦长= r2-|CA|2= 4-2= 2. ∴最短弦长为 2 2.
二、与面积相关的最值问题
例2 已知点O(0,0),A(0,2),点M是圆(x-3)2+(y+1)2=4上的动点,则
√C. (-∞,- 3]∪[ 3,+∞) D. [- 3, 3]
解析 将yx看作圆上动点(x,y)与原点 O(0,0)连线的斜率, 如图,可得 k≥ 3或 k≤- 3.
1234
4.已知圆C1:x2+y2+4x-4y=0,动点P在圆C2:x2+y2-4x-12=0上, 则△PC1C2面积的最大值为_4___5_. 解析 因为C1(-2,2),r1=2,C2(2,0),r2=4, 所以|C1C2|= -2-22+22=2 5, 当 PC2⊥C1C2 时,△PC1C2 的面积最大,其最大值为12×2 5×4=4 5.

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时
栏目 导引
第二章 基本初等函数(Ⅰ)
因为 t=-x2+2x=-(x-1)2+1≤1, 所以 y=23t(t≤1),所以 y≥23. 所以这个函数的值域为y|y≥23, 所以原函数的值域为y|y≥23.
栏目 导引
第二章 基本初等函数(Ⅰ)
函数 y=af(x)(a>0,a≠1)的单调性的处理方法 (1)关于指数型函数 y=af(x)(a>0,且 a≠1)的单调性由两点决定, 一是底数 a>1 还是 0<a<1;二是 f(x)的单调性,它由两个函数
栏目 导引
第二章 基本初等函数(Ⅰ)
3.函数 y=121-x的单调递增区间为(
)
A.(-∞,+∞)
B.(0,+∞)
C.(1,+∞)
D.(0,1)
解析:选 A.定义域为 R.设 u=1-x,则 y=12u.
因为 u=1-x 在 R 上为减函数,
又因为 y=12u在(-∞,+∞)上为减函数,
栏目 导引
第二章 基本初等函数(Ⅰ)
(2)重视数学语言的规范和准确 对于函数的单调性、奇偶性的表述要注意语言的规范性、准确 性.如本例中证明函数 f(x)在 R 上是单调增函数,必须严格按 照增函数的定义证明,同时要特别注意与 0 的比较.
栏目 导引
第二章 基本初等函数(Ⅰ)
1.下列判断正确的是( A.2.52.5>2.53 C.π2<π 2
栏目 导引
第二章 基本初等函数(Ⅰ)
比较幂值大小的三种类型及处理方法源自栏目 导引第二章 基本初等函数(Ⅰ)
1.试比较下列各组数的大小: (1)20.3,12-0.4,80.2; (2)1.30.3,0.82,-343.
栏目 导引
第二章 基本初等函数(Ⅰ)

高中教材图片

高中教材图片

∙新课标高一数学必修1 封面目录∙2009-08-31新课标高一数学必修1 第一章集合与函数的概念∙2009-08-31新课标高一数学必修1 1.1.1 集合的含义与表示∙2009-08-31新课标高一数学必修1 1.1.2 集合间的基本关系∙2009-08-31新课标高一数学必修1 1.1.3 集合的基本运算∙2009-08-31新课标高一数学必修1 1.2.1 函数的概念∙2009-08-31新课标高一数学必修1 1.2.2 函数的表示法∙2009-08-31新课标高一数学必修1 1.3.1 单调性与最大最小值∙2009-08-31新课标高一数学必修1 1.3.2 奇偶性∙2009-08-31新课标高一数学必修1 第一章习题1.3∙2009-08-31新课标高一数学必修1 第一章小结∙2009-08-31新课标高一数学必修1 第一章复习参考题∙2009-08-31新课标高一数学必修1 第二章基本初等函数(1)∙2009-08-31新课标高一数学必修1 2.1.1 指数与指数幂的运算∙2009-08-31新课标高一数学必修1 2.1.2 指数函数及其性质∙2009-08-31新课标高一数学必修1 第二章习题2.1∙2009-08-31新课标高一数学必修1 2.2.1 对数与对数运算∙2009-08-31新课标高一数学必修1 2.2.2 对数函数及其性质∙2009-08-31新课标高一数学必修1 第二章习题2.2∙2009-08-31新课标高一数学必修1 2.3 幂函数∙2009-08-31新课标高一数学必修1 第二章习题2.3∙2009-08-31新课标高一数学必修1 第二章小结∙2009-08-31新课标高一数学必修1 第二章复习参考题∙2009-08-31新课标高一数学必修1 第三章函数的应用∙2009-08-31新课标高一数学必修1 3.1.1 方程的根与函数的零点∙2009-08-31新课标高一数学必修1 3.1.2 用二分法求方程的近似解∙2009-08-31新课标高一数学必修1 第三章习题3.1∙2009-08-31新课标高一数学必修1 3.2.1 几类不同增长的函数模型∙2009-08-31新课标高一数学必修1 3.2.2 函数模型的应用实例∙2009-08-31新课标高一数学必修1 第三章习题3.2∙2009-08-31新课标高一数学必修1 第三章小结∙2009-08-31新课标高一数学必修1 第三章复习参考题∙2009-08-31新课标高一数学必修1 后记新课标实验教材数学必修2文章列表∙2012-11-16新课标高一数学必修2 封面目录∙2012-11-16新课标高一数学必修2 第一章空间几何体∙2012-11-16高一数学必修2 1.1.1 柱、锥、台、球的结构特征∙2012-11-16新课标高一数学必修2 1.1.2 简单组合体的结构特征∙2012-11-16新课标高一数学必修2 第一章习题1.1∙2012-11-16新课标高一数学必修2 1.2.1 中心投影与平行投影∙2012-11-16高一数学必修2 1.2.2 空间几何体的三视图∙2012-11-16新课标高一数学必修2 1.2.3 空间几何体的直观图∙2012-11-16新课标高一数学必修2 第一章习题1.2∙2012-11-16高一数学必修2 1.3.1 柱体、锥体、台体的表面积与体积∙2012-11-16新课标高一数学必修2 第一章习题1.3∙2012-11-16新课标高一数学必修2 第一章小结∙2012-11-16新课标高一数学必修2 第一章复习参考题∙2012-11-16高一数学必修2 第二章点、直线、平面之间的位置关系∙2012-11-16新课标高一数学必修2 2.1.1 平面∙2012-11-16高一数学必修2 2.1.2 空间中直线与直线之间的位置关系∙2012-11-16新课标高一数学必修2 2.1.4 平面与平面之间的位置关系∙2012-11-16高一数学必修2 2.1.3 空间中直线与平面之间的位置关系∙2012-11-16新课标高一数学必修2 第二章习题2.1∙2012-11-16新课标高一数学必修2 2.2.1 直线与平面平行的判定∙2012-11-16新课标高一数学必修2 2.2.2 平面与平面平行的判定∙2012-11-16新课标高一数学必修2 2.2.3 直线与平面平行的性质∙2012-11-16新课标高一数学必修2 2.2.4 平面与平面平行的性质∙2012-11-16新课标高一数学必修2 第二章习题2.2∙2012-11-16新课标高一数学必修2 2.3.1 直线与平面垂直的判定∙2012-11-16新课标高一数学必修2 2.3.2 平面与平面垂直的判定∙2012-11-16新课标高一数学必修2 2.3.3 直线与平面垂直的性质∙2012-11-16新课标高一数学必修2 2.3.4 平面与平面垂直的性质∙2012-11-16新课标高一数学必修2 第二章习题2.3∙2012-11-16新课标高一数学必修2 第二章小结∙2012-11-16新课标高一数学必修2 第二章复习参考题∙2012-11-16新课标高一数学必修2 第三章直线与方程∙2012-11-16新课标高一数学必修2 3.1.1 倾斜角与斜率∙2012-11-16高一数学必修2 3.1.2 两条直线平行与垂直的判定∙2012-11-16新课标高一数学必修2 第三章习题3.1∙2012-11-16新课标高一数学必修2 3.2.1 直线的点斜式方程∙2012-11-16新课标高一数学必修2 3.2.2 直线的两点式方程∙2012-11-16新课标高一数学必修2 3.2.3 直线的一般式方程∙2012-11-16新课标高一数学必修2 第三章习题3.2∙2012-11-16新课标高一数学必修2 3.3.1 两条直线的交点坐标∙新课标高一数学必修2 3.3.2 两点间的距离∙2012-11-16新课标高一数学必修2 3.3.3 点到直线的距离∙2012-11-16高一数学必修2 3.3.4 两条平行直线间的距离∙2012-11-16新课标高一数学必修2 第三章习题3.3∙2012-11-16新课标高一数学必修2 第三章小结∙2012-11-16新课标高一数学必修2 第三章复习参考题∙2012-11-16新课标高一数学必修2 第四章圆与方程∙2012-11-16新课标高一数学必修2 4.1.1 圆的标准方程∙2012-11-16新课标高一数学必修2 4.1.2 圆的一般方程∙2012-11-16新课标高一数学必修2 第四章习题4.1∙2012-11-16新课标高一数学必修2 4.2.1 直线与圆的位置关系∙2012-11-16新课标高一数学必修2 4.2.2 圆与圆的位置关系∙2012-11-16新课标高一数学必修2 4.2.3 直线与圆的方程的应用∙2012-11-16新课标高一数学必修2 第四章习题4.2∙2012-11-16新课标高一数学必修2 4.3.1 空间直角坐标系∙2012-11-16新课标高一数学必修2 4.3.2 空间两点间的距离公式∙2012-11-16新课标高一数学必修2 习题4.3∙2012-11-16新课标高一数学必修2 第四章小结∙2012-11-16新课标高一数学必修2 第四章复习参考题新课标实验教材数学必修3文章列表∙2009-09-02新课标高二数学必修3 封面目录∙2009-09-02新课标高二数学必修3 第一章算法初步∙2009-09-02新课标高二数学必修3 1.1.1 算法的概念∙2009-09-02高二数学必修3 1.1.2 程序框图与算法的基本逻辑结构∙2009-09-02新课标高二数学必修3 习题1.1∙2009-09-02高二数学必修3 1.2.1 输入语句、输出语句和赋值语句∙2009-09-02新课标高二数学必修3 1.2.2 条件语句∙2009-09-02新课标高二数学必修3 1.2.3 循环语句∙2009-09-02新课标高二数学必修3 习题1.2∙2009-09-02新课标高二数学必修3 1.3 算法案例∙2009-09-02新课标高二数学必修3 习题1.3∙2009-09-02新课标高二数学必修3 第一章小结∙2009-09-02新课标高二数学必修3 第一章复习参考题∙2009-09-02新课标高二数学必修3 第二章统计∙2009-09-02新课标高二数学必修3 2.1.1 简单随机抽样∙2009-09-02新课标高二数学必修3 2.1.2 系统抽样∙2009-09-02新课标高二数学必修3 2.1.3 分层抽样∙2009-09-02新课标高二数学必修3 习题2.1∙2009-09-02高二数学必修3 2.2.1 用样本的频率分布估计总体分布∙2009-09-02数学必修3 2.2.2 用样本的数字特征估计总体的数字特征∙2009-09-02新课标高二数学必修3 习题2.2∙2009-09-02高二数学必修3 2.3.1 变量之间的相关关系∙2009-09-02新课标高二数学必修3 2.3.2 两个变量的相关性∙2009-09-02新课标高二数学必修3 习题2.3∙2009-09-02新课标高二数学必修3 第二章小结∙2009-09-02新课标高二数学必修3 第二章复习参考题∙2009-09-02新课标高二数学必修3 第二章附表∙2009-09-02新课标高二数学必修3 第三章概率∙2009-09-02新课标高二数学必修3 3.1.1 随机事件概率∙2009-09-02新课标高二数学必修3 3.1.2 概率的意义∙2009-09-02新课标高二数学必修3 3.1.3 概率的基本性质∙2009-09-02新课标高二数学必修3 习题3.1∙2009-09-02新课标高二数学必修3 3.2.1 古典概型∙2009-09-02新课标高二数学必修3 习题3.2∙2009-09-02新课标高二数学必修3 3.2.2 随机数的产生∙2009-09-02新课标高二数学必修3 3.3.1 几何概型∙2009-09-02新课标高二数学必修3 3.3.2 均匀随机数的产生∙2009-09-02新课标高二数学必修3 习题3.3∙2009-09-02新课标高二数学必修3 第三章小结∙2009-09-02新课标高二数学必修3 第三章复习参考题新课标高二数学必修3 后记新课标实验教材数学必修4文章列表∙2009-09-02新课标高二数学必修4 封面目录∙2009-09-02新课标高二数学必修4 第一章三角函数∙2009-09-02新课标高二数学必修4 1.1.1 任意角∙2009-09-02新课标高二数学必修4 1.1.2 弧度制∙2009-09-02新课标高二数学必修4 习题1.1∙2009-09-02新课标高二数学必修4 1.2.1 任意角的三角函数∙2009-09-02新课标高二数学必修4 1.2.2 同角三角函数的基本关系∙2009-09-02新课标高二数学必修4 习题1.2∙2009-09-02新课标高二数学必修4 1.3 三角函数的诱导公式∙2009-09-02新课标高二数学必修4 习题1.3∙2009-09-02新课标高二数学必修4 1.4.1 正弦函数、余弦函数的图像∙2009-09-02新课标高二数学必修4 1.4.3 正切函数的性质与图像∙2009-09-02新课标高二数学必修4 1.4.2 正弦函数、余弦函数的性质∙2009-09-02新课标高二数学必修4 习题1.4∙2009-09-02新课标高二数学必修4 1.5 函数y=Asin(ωx+ψ)∙2009-09-02新课标高二数学必修4 习题1.5∙2009-09-02新课标高二数学必修4 1.6 三角函数模型的简单应用∙2009-09-02新课标高二数学必修4 习题1.6∙2009-09-02新课标高二数学必修4 第一章小结∙2009-09-02新课标高二数学必修4 第一章复习参考题∙2009-09-02新课标高二数学必修4 第二章平面向量∙2009-09-02新课标高二数学必修4 2.1.1 向量的物理背景与概念∙2009-09-02新课标高二数学必修4 2.1.2 向量的几何表示∙2009-09-02新课标高二数学必修4 2.1.3 相等向量与共线向量∙2009-09-02新课标高二数学必修4 习题2.1∙2009-09-02新课标高二数学必修4 2.2.1 向量的加法运算及其几何意义∙2009-09-02新课标高二数学必修4 2.2.2 向量减法运算及其几何意义∙2009-09-02新课标高二数学必修4 2.2.3 向量数乘运算及其几何意义∙2009-09-02新课标高二数学必修4 习题2.2∙2009-09-02新课标高二数学必修4 2.3.1 平面向量基本定理∙2009-09-02新课标高二数学必修4 2.3.2 平面向量的正交分解及坐标表示∙2009-09-02新课标高二数学必修4 2.3.3 平面向量的坐标运算∙2009-09-02新课标高二数学必修4 2.3.4 平面向量共线的坐标表示∙2009-09-02新课标高二数学必修4 习题2.3∙2009-09-02新课标高二数学必修4 2.4.1 平面向量数量积的物理背景及其含义∙2009-09-02数学必修4 2.4.2 平面向量数量积的坐标表示、模、夹角∙2009-09-02新课标高二数学必修4 第二章习题2.4∙2009-09-02新课标高二数学必修4 2.5.1 平面几何中的向量方法∙2009-09-02新课标高二数学必修4 2.5.2 向量在物理中的应用举例∙2009-09-02新课标高二数学必修4 习题2.5∙新课标高二数学必修4 第二章小结∙2009-09-02新课标高二数学必修4 第二章复习参考题∙2009-09-02新课标高二数学必修4 第三章三角恒等变换∙2009-09-02新课标高二数学必修4 3.1.1 两角差的余弦公式∙2009-09-02高二数学必修4 4 3.1.2 两角和与差的正弦、余弦、正切公式∙2009-09-02高二数学必修4 3.1.3 二倍角的正弦、余弦、正切公式∙2009-09-02新课标高二数学必修4 习题3.1∙2009-09-02新课标高二数学必修4 简单的三角恒等变换∙2009-09-02新课标高二数学必修4 习题3.2∙2009-09-02新课标高二数学必修4 第三章小结∙2009-09-02新课标高二数学必修4 第三章复习参考题∙2009-09-02高二数学电子课本:高二数学必修4 后记新课标实验教材数学必修5文章列表∙2009-09-02新课标高三数学必修5 封面目录∙2009-09-02新课标高三数学必修5 第一章解三角形∙2009-09-02新课标高三数学必修5 1.1.1 正弦定理∙2009-09-02新课标高三数学必修5 1.1.2 余弦定理∙2009-09-02新课标高三数学必修5 习题1.1∙2009-09-02新课标高三数学必修5 1.2 应用举例∙2009-09-02新课标高三数学必修5 习题1.2∙2009-09-02新课标高三数学必修5 1.3 实习作业∙2009-09-02新课标高三数学必修5 第一章小结∙2009-09-02新课标高三数学必修5 第一章复习参考题∙2009-09-02新课标高三数学必修5 第二章数列∙2009-09-02新课标高三数学必修5 2.1 数列的概念与简单表示法∙2009-09-02新课标高三数学必修5 习题2.1∙2009-09-02新课标高三数学必修5 2.2 等差数列∙2009-09-02新课标高三数学必修5 习题2.2∙2009-09-02新课标高三数学必修52.3 等差数列的前n项和∙2009-09-02新课标高三数学必修5 习题2.3∙2009-09-02新课标高三数学必修5 2.4 等比数列∙2009-09-02新课标高三数学必修5 习题2.4∙2009-09-02新课标高三数学必修5 2.5 等比数列的前n项和∙2009-09-02新课标高三数学必修5 习题2.5∙2009-09-02新课标高三数学必修5 第二章小结∙2009-09-02新课标高三数学必修5 第二章复习参考题∙2009-09-02新课标高三数学必修5 第三章不等式∙2009-09-02新课标高三数学必修5 3.1 不等关系与不等式∙2009-09-02新课标高三数学必修5 习题3.1∙2009-09-02新课标高三数学必修5 3.2 一元二次不等式及其解法∙2009-09-02新课标高三数学必修5 习题3.2∙2009-09-02新课标高三数学必修5 3.3.1 二元一次不等式(组)与平面区域∙2009-09-02新课标高三数学必修5 3.3.2 简单的线性规划问题∙2009-09-02新课标高三数学必修5 习题3.3∙2009-09-02新课标高三数学必修5 3.4 基本不等式∙2009-09-02新课标高三数学必修5 习题3.4∙2009-09-02新课标高三数学必修5 第三章小结∙2009-09-02新课标高三数学必修5 第三章复习参考题∙2009-09-02新课标高三数学必修5 后记新课标实验教材数学选修1-1文章列表标题形式∙2012-11-22高中数学选修1-1 扉页∙2012-11-22高中数学选修1-1 版权∙2012-11-22高中数学选修1-1 编写人员∙2012-11-22高中数学选修1-1 本册导引∙2012-11-22高中数学选修1-1 本书部分数学符号∙2012-11-22高中数学选修1-1 第二章圆锥曲线与方程∙2012-11-22高中数学选修1-1 2.1 椭圆--1∙2012-11-22高中数学选修1-1 2.1 椭圆--2∙2012-11-22高中数学选修1-1 为什么截口曲线是椭圆--1∙2012-11-22高中数学选修1-1 为什么截口曲线是椭圆--2∙2012-11-22高中数学选修1-1 为什么截口曲线是椭圆--3∙2012-11-22高中数学选修1-1 用《几何画板》探究点的轨迹:椭圆∙2012-11-22高中数学选修1-1 2.2 双曲线--1∙2012-11-22高中数学选修1-1 2.2 双曲线--2∙2012-11-22高中数学选修1-1 2.2 双曲线--3∙2012-11-22高中数学选修1-1 2.2 双曲线--4∙2012-11-22高中数学选修1-1 2.3 抛物线--1∙2012-11-22高中数学选修1-1 2.3 抛物线--2∙2012-11-22高中数学选修1-1 2.3 抛物线--3∙2012-11-22高中数学选修1-1 圆锥曲线的光学性质及其应用∙2012-11-22高中数学选修1-1 第二章小结∙2012-11-22高中数学选修1-1 第二章复习参考题∙2012-11-22高中数学选修1-1 第三章导数及其应用∙2012-11-22高中数学选修1-1 3.2 导数的计算--1∙2012-11-22高中数学选修1-1 3.2 导数的计算--2∙2012-11-22高中数学选修1-1 3.1 变化率与导数--1∙2012-11-22高中数学选修1-1 3.1 变化率与导数--2∙2012-11-22高中数学选修1-1 3.1 变化率与导数--3∙2012-11-22高中数学选修1-1 3.1 变化率与导数--3∙2012-11-22高中数学选修1-1 牛顿法──用导数方法求方程的近似解∙2012-11-22高中数学选修1-1 3.3 导数在研究函数中的应用--1∙2012-11-22高中数学选修1-1 3.3 导数在研究函数中的应用--2∙2012-11-22高中数学选修1-1 3.3 导数在研究函数中的应用--3∙2012-11-22高中数学选修1-1 3.3 导数在研究函数中的应用--4∙2012-11-22高中数学选修1-1 图形技术与函数性质∙2012-11-22高中数学选修1-1 3.4 生活中的优化问题举例--1∙2012-11-22高中数学选修1-1 3.4 生活中的优化问题举例--2∙2012-11-22高中数学选修1-1 实习作业走进微积分∙2012-11-22高中数学选修1-1 第三章小结∙2012-11-22高中数学选修1-1 复习参考题高中数学选修1-1 后记新课标实验教材数学选修1-2文章列表∙2009-09-03高中数学选修1-2 扉页∙2009-09-03高中数学选修1-2 编写人员∙2009-09-03高中数学选修1-2 本册导引∙2009-09-03高中数学选修1-2 本书部分数学符号∙2009-09-03高中数学选修1-2 第一章统计案例∙2009-09-03高中数学选修1-2 1.1 回归分析的基本思想及其初步应用∙2009-09-03高中数学选修1-2 1.2 独立性检验的基本思想及其初步应用∙2009-09-03高中数学选修1-2 实习作业∙2009-09-03高中数学选修1-2 小结∙2009-09-03高中数学选修1-2 复习参考题∙2009-09-03高中数学选修1-2 第二章推理与证明∙2009-09-03高中数学选修1-2 2.1 合情推理与演绎证明--5∙2009-09-03高中数学选修1-2 2.1 合情推理与演绎证明--4∙2009-09-03高中数学选修1-2 2.1 合情推理与演绎证明--3∙2009-09-03高中数学选修1-2 2.1 合情推理与演绎证明--2∙2009-09-03高中数学选修1-2 2.1 合情推理与演绎证明--1∙2009-09-03高中数学选修1-2 2.2 直接证明与间接证明--4∙2009-09-03高中数学选修1-2 2.2 直接证明与间接证明--3∙2009-09-03高中数学选修1-2 2.2 直接证明与间接证明--2∙2009-09-03高中数学选修1-2 2.2 直接证明与间接证明--1∙2009-09-03高中数学选修1-2 阅读与思考科学发现中的推理∙2009-09-03高中数学选修1-2 小结∙2009-09-03高中数学选修1-2 复习参考题∙2009-09-03高中数学选修1-2 第三章数系的扩充与复数的引入∙2009-09-03高中数学选修1-2 3.1 数系的扩充和复数的概念--2∙2009-09-03高中数学选修1-2 3.1 数系的扩充和复数的概念--1∙2009-09-03高中数学选修1-2 3.2 复数代数形式的四则运算--2∙2009-09-03高中数学选修1-2 3.2 复数代数形式的四则运算--1∙2009-09-03高中数学选修1-2 小结∙2009-09-03高中数学选修1-2 复习参考题∙2009-09-03高中数学选修1-2 第四章框图∙2009-09-03高中数学选修1-2 4.1 流程图--3∙2009-09-03高中数学选修1-2 4.1 流程图--2∙2009-09-03高中数学选修1-2 4.1 流程图--1∙2009-09-03高中数学选修1-2 4.2 结构图--2∙2009-09-03高中数学选修1-2 4.2 结构图--1∙2009-09-03高中数学选修1-2 信息技术应用用Word2002绘制流程图∙2009-09-03高中数学选修1-2 小结∙2009-09-03高中数学选修1-2 复习参考题∙2009-09-03高中数学选修1-2 后记新课标实验教材数学选修2-1文章列表∙2009-09-03高中数学选修2-1 封面∙2009-09-03高中数学选修2-1 扉页∙2009-09-03高中数学选修2-1 版权页∙2009-09-03高中数学选修2-1 编写人员∙2009-09-03高中数学选修2-1 本册导引∙2009-09-03高中数学选修2-1 本书部分数学符号∙2009-09-03高中数学选修2-1 目录∙2009-09-03高中数学选修2-1 第一章常用逻辑用语∙2009-09-03高中数学选修2-1 1.1 命题及其关系--3∙2009-09-03高中数学选修2-1 1.1 命题及其关系--2∙2009-09-03高中数学选修2-1 1.1 命题及其关系--1∙2009-09-03高中数学选修2-1 1.2 充分条件与必要条件--2∙2009-09-03高中数学选修2-1 1.2 充分条件与必要条件--1∙2009-09-03高中数学选修2-1 1.3 简单的逻辑联结词--3∙2009-09-03高中数学选修2-1 1.3 简单的逻辑联结词--2∙2009-09-03高中数学选修2-1 1.3 简单的逻辑联结词--1∙2009-09-03高中数学选修2-1 1.4 全称量词与存在量词--3∙2009-09-03高中数学选修2-1 1.4 全称量词与存在量词--2∙2009-09-03高中数学选修2-1 1.4 全称量词与存在量词--1∙2009-09-03高中数学选修2-1 小结∙2009-09-03高中数学选修2-1 复习参考题∙2009-09-03高中数学选修2-1 第二章圆锥曲线与方程∙2009-09-03高中数学选修2-1 2.1 曲线与方程--2∙2009-09-03高中数学选修2-1 2.1 曲线与方程--1∙2009-09-03高中数学选修2-1 2.2 椭圆--2∙2009-09-03高中数学选修2-1 2.2 椭圆--1∙2009-09-03高中数学选修2-1 为什么截口曲线是椭圆--3∙2009-09-03高中数学选修2-1 为什么截口曲线是椭圆--2∙2009-09-03高中数学选修2-1 为什么截口曲线是椭圆--1∙2009-09-03高中数学选修2-1 用《几何画板》探究点的轨迹:椭圆∙2009-09-03高中数学选修2-1 2.3 双曲线--4∙2009-09-03高中数学选修2-1 2.3 双曲线--3∙2009-09-03高中数学选修2-1 2.3 双曲线--2∙2009-09-03高中数学选修2-1 2.3 双曲线--1∙2009-09-03高中数学选修2-1 探究与发现∙2009-09-03高中数学选修2-1 2.4 抛物线--4∙2009-09-03高中数学选修2-1 2.4 抛物线--3∙2009-09-03高中数学选修2-1 2.4 抛物线--2∙2009-09-03高中数学选修2-1 2.4 抛物线--1∙2009-09-03高中数学选修2-1 探究与发现∙高中数学选修2-1 阅读与思考∙2009-09-03高中数学选修2-1 小结∙2009-09-03高中数学选修2-1 复习参考题∙2009-09-03高中数学选修2-1 第三章空间向量与立体几何课标实验教材数学选修2-2文章列表标题形式∙2009-09-03高中数学选修2-2 封面∙2009-09-03高中数学选修2-2 扉页∙2009-09-03高中数学选修2-2 版权页∙2009-09-03高中数学选修2-2 编写人员∙2009-09-03高中数学选修2-2 本册导引∙2009-09-03高中数学选修2-2 本书部分数学符号∙2009-09-03高中数学选修2-2 目录∙2009-09-03高中数学选修2-2 第一章导数及其应用∙2009-09-03高中数学选修2-2 1.1 变化率与导数--3∙2009-09-03高中数学选修2-2 1.1 变化率与导数--2∙2009-09-03高中数学选修2-2 1.1 变化率与导数--1∙2009-09-03高中数学选修2-2 1.2 导数的计算--4∙2009-09-03高中数学选修2-2 1.2 导数的计算--3∙2009-09-03高中数学选修2-2 1.2 导数的计算--2∙2009-09-03高中数学选修2-2 1.2 导数的计算--1∙2009-09-03高中数学选修2-2 1.3 导数在研究函数中的应用--4∙2009-09-03高中数学选修2-2 1.3 导数在研究函数中的应用--3∙2009-09-03高中数学选修2-2 1.3 导数在研究函数中的应用--2∙2009-09-03高中数学选修2-2 1.3 导数在研究函数中的应用--1∙2009-09-03高中数学选修2-2 1.4 生活中的优化问题举例--2∙2009-09-03高中数学选修2-2 1.4 生活中的优化问题举例--1∙2009-09-03高中数学选修2-2 1.5 定积分的概念--5∙2009-09-03高中数学选修2-2 1.5 定积分的概念--4∙2009-09-03高中数学选修2-2 1.5 定积分的概念--3∙2009-09-03高中数学选修2-2 1.5 定积分的概念--2∙2009-09-03高中数学选修2-2 1.5 定积分的概念--1∙2009-09-03高中数学选修2-2 1.6 微积分基本定理--2∙2009-09-03高中数学选修2-2 1.6 微积分基本定理--1∙2009-09-03高中数学选修2-2 1.7 定积分的简单应用--3∙2009-09-03高中数学选修2-2 1.7 定积分的简单应用--2∙2009-09-03高中数学选修2-2 1.7 定积分的简单应用--1∙2009-09-03高中数学选修2-2 小结∙2009-09-03高中数学选修2-2 复习参考题∙2009-09-03高中数学选修2-2 第二章推理与证明∙2009-09-03高中数学选修2-2 2.1 合情推理与演绎推理--5∙2009-09-03高中数学选修2-2 2.1 合情推理与演绎推理--4∙2009-09-03高中数学选修2-2 2.1 合情推理与演绎推理--3∙2009-09-03高中数学选修2-2 2.1 合情推理与演绎推理--2∙2009-09-03高中数学选修2-2 2.1 合情推理与演绎推理--1∙2009-09-03高中数学选修2-2 2.2 直接证明与间接证明--3课标实验教材数学选修2-3文章列表标题形式∙2009-09-03高中数学选修2-3 封面∙2009-09-03高中数学选修2-3 扉页∙2009-09-03高中数学选修2-3 版权页∙2009-09-03高中数学选修2-3 编写人员∙2009-09-03高中数学选修2-3 本册导引∙2009-09-03高中数学选修2-3 本书部分数学符号∙2009-09-03高中数学选修2-3 目录∙2009-09-03高中数学选修2-3 第一章计数原理∙2009-09-03高中数学选修2-3 1.1 分类加法计数原理与分步乘法计数原理--3∙2009-09-03高中数学选修2-3 1.1 分类加法计数原理与分步乘法计数原理--2∙2009-09-03高中数学选修2-3 1.1 分类加法计数原理与分步乘法计数原理--1∙2009-09-03高中数学选修2-3 探究与发现子集的个数有多少∙2009-09-03高中数学选修2-3 1.2 排列与组合--4∙2009-09-03高中数学选修2-3 1.2 排列与组合--3∙2009-09-03高中数学选修2-3 1.2 排列与组合--2∙2009-09-03高中数学选修2-3 1.2 排列与组合--1∙2009-09-03高中数学选修2-3 探究与发现组合数的两个性质--2∙2009-09-03高中数学选修2-3 探究与发现组合数的两个性质--1∙2009-09-03高中数学选修2-3 1.3 二项式定理--2∙2009-09-03高中数学选修2-3 1.3 二项式定理--1∙2009-09-03高中数学选修2-3 “杨辉三角”中的一些秘密∙2009-09-03高中数学选修2-3 小结∙2009-09-03高中数学选修2-3 复习参考题∙2009-09-03高中数学选修2-3 第二章随机变量及其分布∙2009-09-03高中数学选修2-3 2.1 离散型随机变量及其分布列--3∙2009-09-03高中数学选修2-3 2.1 离散型随机变量及其分布列--2∙2009-09-03高中数学选修2-3 2.1 离散型随机变量及其分布列--1∙2009-09-03高中数学选修2-3 2.2 二项分布及其应用--2∙2009-09-03高中数学选修2-3 2.2 二项分布及其应用--1∙2009-09-03高中数学选修2-3 这样的买彩票方式可行吗∙2009-09-03高中数学选修2-3 服从二项分布的随机变量取何值时概率最大∙2009-09-03高中数学选修2-3 2.3 离散型随机变量的均值与方差--3∙2009-09-03高中数学选修2-3 2.3 离散型随机变量的均值与方差--2∙2009-09-03高中数学选修2-3 2.3 离散型随机变量的均值与方差--1∙2009-09-03高中数学选修2-3 2.4 正态分布--2∙2009-09-03高中数学选修2-3 2.4 正态分布--1∙2009-09-03高中数学选修2-3 μ,σ对正态分布的影响∙2009-09-03高中数学选修2-3 小结∙2009-09-03高中数学选修2-3 复习参考题∙2009-09-03高中数学选修2-3 第三章统计案例新课标实验教材数学选修3-1文章列表标题形式∙2009-09-03高中数学选修3-1 封面∙2009-09-03高中数学选修3-1 扉页∙2009-09-03高中数学选修3-1 版权页∙2009-09-03高中数学选修3-1 编写人员∙2009-09-03高中数学选修3-1 目录∙2009-09-03高中数学选修3-1 引言∙2009-09-03高中数学选修3-1 第一讲早期的算术与几何∙2009-09-03高中数学选修3-1 一古埃及的数学∙2009-09-03高中数学选修3-1 二两河流域的数学∙2009-09-03高中数学选修3-1 三丰富多彩的记数制度--2∙2009-09-03高中数学选修3-1 三丰富多彩的记数制度--1∙2009-09-03高中数学选修3-1 第二讲古希腊数学∙2009-09-03高中数学选修3-1 一希腊数学的先行者∙2009-09-03高中数学选修3-1 二毕达哥拉斯学派∙2009-09-03高中数学选修3-1 三欧几里得与《原本》--2∙2009-09-03高中数学选修3-1 三欧几里得与《原本》--1∙2009-09-03高中数学选修3-1 四数学之神──阿基米德∙2009-09-03高中数学选修3-1 第三讲中国古代数学瑰宝∙2009-09-03高中数学选修3-1 一《周髀算经》与赵爽弦图∙2009-09-03高中数学选修3-1 二《九章算术》--2∙2009-09-03高中数学选修3-1 二《九章算术》--1∙2009-09-03高中数学选修3-1 三大衍求一术∙2009-09-03高中数学选修3-1 四中国古代数学家--2∙2009-09-03高中数学选修3-1 四中国古代数学家--1∙2009-09-03高中数学选修3-1 第四讲平面解析几何的产生∙2009-09-03高中数学选修3-1 一坐标思想的早期萌芽∙2009-09-03高中数学选修3-1 二笛卡儿坐标系∙2009-09-03高中数学选修3-1 三费马的解析几何思想∙2009-09-03高中数学选修3-1 四解析几何的进一步发展∙2009-09-03高中数学选修3-1 第五讲微积分的诞生∙2009-09-03高中数学选修3-1 一微积分产生的历史背景∙2009-09-03高中数学选修3-1 二科学巨人牛顿的工作∙2009-09-03高中数学选修3-1 三莱布尼茨的“微积分”--2∙2009-09-03高中数学选修3-1 三莱布尼茨的“微积分”--1∙2009-09-03高中数学选修3-1 第六讲近代数学两巨星∙2009-09-03高中数学选修3-1 一分析的化身──欧拉--2∙2009-09-03高中数学选修3-1 一分析的化身──欧拉--1∙2009-09-03高中数学选修3-1 二数学王子──高斯--2∙2009-09-03高中数学选修3-1 二数学王子──高斯--1新课标实验教材数学选修3-3文章列表标题形式∙2009-09-04高中数学选修3-3 封面∙2009-09-04高中数学选修3-3 扉页∙2009-09-04高中数学选修3-3 版权页∙2009-09-04高中数学选修3-3 编写人员∙2009-09-04高中数学选修3-3 主编寄语∙2009-09-04高中数学选修3-3 引言∙2009-09-04高中数学选修3-3 第一讲从欧氏几何看球面∙2009-09-04高中数学选修3-3 一平面与球面的位置关系∙2009-09-04高中数学选修3-3 二直线与球面的位置关系和球幂定理∙2009-09-04高中数学选修3-3 三球面的对称性∙2009-09-04高中数学选修3-3 第二讲球面上的距离和角∙2009-09-04高中数学选修3-3 一球面上的距离∙2009-09-04高中数学选修3-3 二球面上的角∙2009-09-04高中数学选修3-3 思考题∙2009-09-04高中数学选修3-3 第三讲球面上的基本图形∙2009-09-04高中数学选修3-3 一极与赤道∙2009-09-04高中数学选修3-3 二球面二角形∙2009-09-04高中数学选修3-3 三球面三角形∙2009-09-04高中数学选修3-3 思考题∙2009-09-04高中数学选修3-3 第四讲球面三角形∙2009-09-04高中数学选修3-3 一球面三角形三边之间的关系∙2009-09-04高中数学选修3-3 二、球面“等腰”三角形∙2009-09-04高中数学选修3-3 三球面三角形的周长∙2009-09-04高中数学选修3-3 四球面三角形的内角和∙2009-09-04高中数学选修3-3 思考题∙2009-09-04高中数学选修3-3 二简单多面体的欧拉公式∙2009-09-04高中数学选修3-3 用球面多边形的内角和公式证明欧拉公式∙2009-09-04高中数学选修3-3 思考题∙2009-09-04高中数学选修3-3 第七讲球面三角形的边角关系∙2009-09-04高中数学选修3-3 一球面上的正弦定理和余弦定理∙2009-09-04高中数学选修3-3 二用向量方法证明球面上的余弦定理∙2009-09-04高中数学选修3-3 三从球面上的正弦定理看球面与平面∙2009-09-04高中数学选修3-3 球面上余弦定理的应用∙2009-09-04高中数学选修3-3 思考题新课标实验教材数学选修3-4文章列表标题形式∙2009-09-04高中数学选修3-4 封面∙2009-09-04高中数学选修3-4 扉页。

高中数学必修2第二章点直线平面之间的位置关系211平面及其表示法(含习题课)PPT课件

高中数学必修2第二章点直线平面之间的位置关系211平面及其表示法(含习题课)PPT课件

1,2,3(1)(2)
21
补充练习金太:阳教育网
l 1、A为直线 l上的点,又点A不在平面
与 的公共点最多有 _______1个.
品质来自专业 信赖源于诚信
内,则
2、四条直线过同一点,过每两条直线作一个平
面,则可以作_____1_或___4_或___6个不同的平面 .
22
金太阳教育网
品质来自专业 信赖源于诚信
2
金实太阳教例育网引入
品质来自专业 信赖源于诚信
观察活动室里的地面,它呈现出怎样的形象?
3
一.平面金太的阳教育概网 念:
品质来自专业 信赖源于诚信
光滑的桌面、平静的湖面等都是我们
熟悉的平面形象,数学中的平面概念是现
实平面加以抽象的结果。
二.平面的特征:
平面没有大小、厚薄和宽窄,平面在空 间是无限延伸的。
文字语金言太阳:教育网 公理1.如果一条直线上两点品信质赖在来源自于专诚一业信 个平面内,那么这条直线在此平
面内(即这条直线上的所有的点
23
点、线金、太阳面教之育网间的位置关系及语言表达
品质来自专业
信赖源于诚信
文字语言表达 图形语言表达 符号语言表达
点A在直线a上 点A不在直线a上
A
a
A
a
A∈a A∈a
点A在平面α上 点A不在平面α上 直线a在平面α内
α
A
α
α
A
a a
A∈α A∈ α

a b∩α=A
直线a在平面α外 α
A α
a∩α=φ 或 a∥α24
B A
B
CαA
C
公理2.过不在同一直线上的三点,有且只有一个平面.

人教版高中数学必修1数学第二章课后习题(共10页)Word版

人教版高中数学必修1数学第二章课后习题(共10页)Word版

新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。

人教A版高中同步学案数学选择性必修第一册精品课件 第二章 习题课 直线与圆、圆与圆位置关系的综合应用

人教A版高中同步学案数学选择性必修第一册精品课件 第二章 习题课 直线与圆、圆与圆位置关系的综合应用

所以圆的方程为( + 3)2 + 2 = 9或( − 3)2 + 2 = 9.
(2)若圆与圆的切点在第一象限,过原点的两条直线与圆分别交于,两点,且
两直线互相垂直,求证:直线过定点,并求出该定点坐标.
证明由题意知圆: ( − 3)2 + 2 = 9,设所在直线方程为 = ( ≠ 0),( , ),
+ ||为定值2.
规律方法 直线与圆的实际应用问题求解流程
变式训练3如图,为了保护河上古桥,规划建一座新桥
,同时设立一个圆形保护区.经测量,点位于点正北方
向60 m处,点位于点正东方向170 m处(为河岸).
规划要求:新桥与河岸垂直,保护区的边界为以
(在线段上)为圆心与相切的圆.建立如图所示的
|| = × − = ,故最小半径为 ,所以以线段为直径的圆的面积的最
小值为,故B正确;
四边形的面积 = || ⋅ || = || = || − ,|| = ,故
= × − = ,故C正确;
||
的距离为

由圆的性质,切线长|| =


= ,而 − < < + ,故A错误;
|| − =
|| − ,
∴当||最小时,||有最小值,又|| = ,则|| = ,故B错误;
∵四边形的面积为|||| = ||,
度),与相交于点.过点继续建造直线木桥与小岛边缘相
切,与中轴线交于点,点与点也以木桥直线相连.
(1)当|| = 1千米时,求木桥的长度(单位:千米).
解以为原点,所在直线为轴,建立平面直角坐标系如图
(单位:千米).
圆的方程为( − 2)2 + ( − 2)2 = 1,(1,0),设直线的方程

新人教版新高考高中数学必修第二册全套导学案课后练习题

新人教版新高考高中数学必修第二册全套导学案课后练习题

平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课 直线、平面平行与垂直
【课时目标】 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用.
a 、
b 、
c 表示直线,α、β、γ表示平面. 位置关系 判定定理(符号语言) 性质定理(符号语言) 直线与平面平行 a ∥b 且________⇒a ∥α a ∥α,________________⇒a ∥b 平面与平面平行
a ∥α,
b ∥α,且________________
⇒α∥β
α∥β,________________⇒a ∥b
直线与平面垂直 l ⊥a ,l ⊥b ,且________________
⇒l ⊥α a ⊥α,b ⊥α⇒________ 平面与平面垂直
a ⊥α, ⇒α⊥β
α⊥β,α∩β=a ,____________
⇒b ⊥β
一、选择题
1.不同直线M 、n 和不同平面α、β.给出下列命题: ①
⎭⎪⎬⎪⎫α∥βm ⊂α⇒M ∥β; ② ⎭⎪⎬⎪
⎫m ∥n m ∥β⇒n ∥β; ③ ⎭⎪⎬⎪⎫m ⊂αn ⊂β⇒M ,n 异面; ④
⎭⎪⎬⎪
⎫α⊥βm ∥α⇒M ⊥β. 其中假命题的个数为( )
A .0
B .1
C .2
D .3
2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( )
A .4
B .1
C .2
D .3
3.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α⇒a ⊥b ;②a ⊥α,a ⊥b ⇒b ∥α; ③a ∥α,a ⊥b ⇒b ⊥α.
A .1
B .2
C .3
D .0
4.过平面外一点P:①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是()
A.1 B.2 C.3 D.4
5.如图所示,正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,则动点P的轨迹是()
A.线段B1C
B.线段BC1
C.BB1的中点与CC1的中点连成的线段
D.BC的中点与B1C1的中点连成的线段
6.已知三条相交于一点的线段PA、PB、PC两两垂直,点P在平面ABC外,PH⊥面ABC于H,则垂足H是△ABC的()
A.外心B.内心C.垂心D.重心
二、填空题
7.三棱锥D-ABC的三个侧面分别与底面全等,且AB=AC=3,BC=2,则二面角A-BC-D的大小为________.
8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.
9.如图所示,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是________.(填序号)
三、解答题
10.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M 是EA的中点,求证:
(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA.
11.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.
(1)证明:平面AB1C⊥平面A1BC1;
(2)设D是A1C1上的点且A1B∥平面B1CD,求A1D
DC1的值.
能力提升
12.四棱锥P—ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图:
(1)根据图中的信息,在四棱锥P—ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):
①一对互相垂直的异面直线________;
②一对互相垂直的平面________;
③一对互相垂直的直线和平面________;
(2)四棱锥P—ABCD的表面积为________.
13.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)求四面体B-DEF的体积.
转化思想是证明线面平行与垂直的主要思路,其关系为
即利用线线平行(垂直),证明线面平行(垂直)或证明面面平行(垂直);反过来,又利用面面平行(垂直),证明线面平行(垂直)或证明线线平行(垂直),甚至平行与垂直之间的转化.这样,来来往往,就如同运用“四渡赤水”的战略战术,达到了出奇制胜的目的.
习题课直线、平面平行与垂直答案
知识梳理
a⊄α,b⊂αa⊂β,α∩β=b a⊂β,b⊂β,a∩b=Pα∩γ=a,β∩γ=b a⊂α,b⊂α,a∩b=P a∥b a⊂βb⊥a,b⊂α
作业设计
1.D[命题①正确,面面平行的性质;命题②不正确,也可能n⊂β;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.] 2.C[(2)和(4)对.]
3.A[①正确.]
4.B[①④正确.]
5.A[
连接AC,AB1,B1C,
∵BD⊥AC,AC⊥DD1,
BD∩DD1=D,
∴AC⊥面BDD1,∴AC⊥BD1,
同理可证BD1⊥B1C,
∴BD1⊥面AB1C.
∴P∈B1C时,始终AP⊥BD1,选A.]
6.C[
如图所示,由已知可得PA⊥面PBC,PA⊥BC,又PH⊥BC,
∴BC⊥面APH,BC⊥AH.
同理证得CH⊥AB,∴H为垂心.]
7.90°
解析
由题意画出图形,数据如图,取BC的中点E,
连接AE、DE,易知∠AED为二面角A—BC—D的平面角.
可求得AE=DE=2,由此得AE2+DE2=AD2.
故∠AED=90°.
8.36
解析正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.
9.①④
10.证明(1)如图所示,
取EC的中点F,连接DF,∵EC⊥平面ABC,
∴EC ⊥BC ,又由已知得DF ∥BC ,∴DF ⊥EC .
在Rt △EFD 和Rt △DBA 中, ∵EF =1
2EC =BD ,
FD =BC =AB , ∴Rt △EFD ≌Rt △DBA , 故ED =DA .
(2)取CA 的中点N ,连接MN 、BN ,则MN 綊1
2EC ,
∴MN ∥BD ,∴N 在平面BDM 内,
∵EC ⊥平面ABC ,∴EC ⊥BN .又CA ⊥BN , ∴BN ⊥平面ECA ,BN ⊂平面MNBD , ∴平面MNBD ⊥平面ECA . 即平面BDM ⊥平面ECA . (3)∵BD 綊12EC ,MN 綊1
2EC ,
∴BD 綊MN ,
∴MNBD 为平行四边形, ∴DM ∥BN ,∵BN ⊥平面ECA , ∴DM ⊥平面ECA ,又DM ⊂平面DEA , ∴平面DEA ⊥平面ECA .
11.(1)证明 因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.
又B1C⊥A1B,且A1B∩BC1=B,
所以B1C⊥平面A1BC1.又B1C⊂平面AB1C,所以平面AB1C⊥平面A1BC1.
(2)解设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.
因为A1B∥平面B1CD,所以A1B∥DE.
又E是BC1的中点,所以D为A1C1的中点,
即A1D
DC1
=1.
12.(1)①PA⊥BC(或PA⊥CD或AB⊥PD)②平面PAB⊥平面ABCD(或平面PAD⊥平面ABCD或平面PAB⊥平面PAD或平面PCD⊥平面PAD或平面PBC⊥平面PAB)③PA⊥平面ABCD(或AB⊥平面PAD或CD⊥平面PAD或AD⊥平面PAB或BC⊥平面PAB)
(2)2a2+2a2
解析(2)依题意:正方形的面积是a2,
S△PAB=S△PAD=1
2a 2.
又PB=PD=2a,∴S△PBC=S△PCD=2
2a
2.
所以四棱锥P—ABCD的表面积是S=2a2+2a2.
13.
(1)证明如图,设AC与BD交于点G,则G为AC的中点.连接EG,GH,由于H 为BC的中点,
故GH綊1
2AB.
又EF綊1
2AB,∴EF綊GH.∴四边形EFHG为平行四边形.∴EG∥FH.而EG⊂平面EDB,FH⊄平面EDB,
∴FH∥平面EDB.
(2)证明由四边形ABCD为正方形,得AB⊥BC.
又EF∥AB,∴EF⊥BC.
而EF⊥FB,∴EF⊥平面BFC.
∴EF⊥FH.∴AB⊥FH.
又BF=FC,H为BC的中点,∴FH⊥BC.
∴FH⊥平面ABCD.∴FH⊥AC.
又FH∥EG,∴AC⊥EG.又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB.
(3)解∵EF⊥FB,∠BFC=90°∴BF⊥平面CDEF.
∴BF为四面体B-DEF的高.
又BC=AB=2,∴BF=FC=2.
V B-DEF=1

1
2×1×2×2=
1
3
.。

相关文档
最新文档