初一奥数竞赛绝对值

合集下载

七年级数学竞赛题:绝对值

七年级数学竞赛题:绝对值

七年级数学竞赛题:绝对值绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根可以有进一步的理解;绝对值又是初中代数中的一个基本概念,在求代数式的值、代数式的化简、解方程与解不等式时,常常遇到含有绝对值符号的问题,理解、掌握绝对值概念应注意以下几个方面: 1.去绝对值符号法则2.绝对值的几何意义从数轴上看,a 即表示数a 的点到原点的距离,即a 代表的是一个长度,故a 表示一个非负数.3.绝对值常用的性质例1 已知a =5,b =3,且b a -=b -a ,那么a +b= .(“祖冲之杯”邀请赛试题)解题思路 由已知求出a 、b 的值,但要注意条件b a -=b -a 的制约,这是解本例的关键.例2 如果0<p <15,那么代数式p x -+15-x +15--p x 在p≤x ≤15的最小值是( ).(湖北省黄冈市竞赛题)(A)30 (B)0 (C)15 (D)一个与P 有关的代数式解题思路设法脱去绝对值符号是解绝对值有关问题的基本思路,就本例而言,应结合已知条件判断每一个绝对值符号内代数式值的正负性.例3 已知11-x +22-x +33-x +…+20022002-x +20032003-x =0, 求代数式2003200232122222x x x x x +---- 的值.解题思路 运用绝对值、非负数的概念与性质,先求出x 1、x 2、x 3…x 2002、x 2003的值,注意21+n -2n 的化简规律.例4 设a 、b 、c 是非零有理数,求a a +b b +c a +ab ab +ac ac +bc bc +abcabc 的值. (“希望杯”邀请赛试题)解题思路 根据a 、b 、c 的符号的所有可能情况讨论,化去绝对值符号,这是解本例的关键. 例5若a 、b 、c 为整数,且19ba -+99ac -=1,试求a c -+b a -+c b -的值.(北京市“迎春杯”竞赛题) 解题思路 1写成两个整数的和的形式有几种可能?l 写成两个非负整数的和的形式又有几种可能?这是解本例的突破口.1.若m 、n 为有理数,那么,下列判断中: (1)若∣m ∣=n ,则一定有m=n ;(2)若∣m ∣>n ,则一定有∣m ∣>∣n ∣; (3)若∣m ∣<∣n ∣,则一定有m<n ;(4)若∣m ∣=n ,则一定有m 2=(-n)2。

初一奥数专题五绝对值

初一奥数专题五绝对值

专题五 绝对值1.(第15届希望杯竞赛题)已知a=|-2004|+15,则a 是( )A .合数B .质数C .偶数D .负数2.(北京市迎春杯竞赛题)已知|a|=1,|b|=2,|c|=3,且a>b>c ,那么a+b-c=3.(第16届希望杯竞赛题)如果|a|=3,|b|=5,那么|a+b|-|a-b|的绝对值等于4.(2004年重庆市竞赛题)计算:|-|+|-|-|-|=3121413141215.(希望杯竞赛题)若|a+b+1|与(a-b+1)2互为相反数,则a 与b 的大小关系是A .a>bB .a=bC .a<bD .a b6.(希望杯竞赛题)如果|m-3|+(n+2)2=0,则方程3mx+1=x+n 的解是7.(希望杯竞赛题)|x+1|+|x-1|的最小值是A.2 B.0 C.1 D.-18.(第13届江苏省竞赛题)|x+1|+|x-2|+|x-3|的最小值是多少?9.(希望杯竞赛题)设a,b,c为整数,且|a-b|+|c-a|=1,求|c-a|+|a-b|+|b-c|的值10.(2004年广西竞赛题)已知a<b<0<c,化简式子:|a-b|+|a+b|-|c-a|+2|b-c|得11.(第16届北京市迎春杯竞赛题)已知|x|=5,|y|=1,那么||x-y|-|x+y||= 12.(2004年上海南汇竞赛题)a的相反数是最大的负整数,b的绝对值是最小的正整数,则a+b=13.(第18届北京市迎春杯竞赛题)代数式|x+11|+|x-12|+|x+13|的最小值为14.(第17届希望杯竞赛题)已知a,b,c 都是整数,m=|a+b|+|b-c|+|a-c|,那么( )A .m 一定是奇数B .m 一定是偶数C .仅当a,b,c 同奇或同偶时,m 是偶数D .m 的奇偶性不能确定15.已知a,b,c 都是有理数,且满足++=1,求的值a a ||b b ||cc ||||abc abc 作业:1.已知2|3a-2b|+(4b-12)2=0,求a 2b-1-(a 3+a b +4)41212.求y=|x-1|+|x-2|的最小值3.已知a,b 是整数,且满足|a-b|+|ab|=2,求ab 的值。

初一奥数 绝对值

初一奥数    绝对值

初一奥数竞赛第2讲绝对值例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.例3已知x<-3,化简:|3+|2-|1+x|||.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.例8 化简:|3x+1|+|2x-1|.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|; ( 2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式: (2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,求T的最小值6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B 点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能答案解析:例1解 (1)不对.当a,b同号或其中一个为0时成立.( 2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.6)不对.当a+b>0时成立.例2解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x例4解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.例7解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得 2y=2002, y=1001,所以例8分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9分析首先用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时, y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时, y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时, y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时, y =(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.。

七年级上学期数学奥赛绝对值有关的问题

七年级上学期数学奥赛绝对值有关的问题

绝对值有关的问题一、知识要点绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。

二、知识运用典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于()A.-3a B. 2c-a C.2a-2b D. b例2、(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例3、(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++例4、化简|x+1|+|x-3|三、知识运用课堂训练 1、已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号2、已知b b a b a 2=-++,在数轴上给出关于a 、b 的四种情况如图1-4所示,则成立的是 .(写出所有正确的序号)3、父亲是儿子现在年龄时,儿子已经10岁,当儿子是父亲现在年龄时,父亲将82岁,问父子相差几岁?课后训练 等级1、若x 是有理数,分式21--x 的值为正整数,则x 的个数为_________________个 2、如图,数轴上线段MO (O 为原点)的七等分点A ,B ,C ,D ,E ,F 中,只有两点对应的数是整数,点M 对应的数10->m ,那么m 可以取的不同值有 个,m 的最小值是 .3、若b c b a -<<<<0,则=++-b c b a ( ).A.b a +B.c a --C.c a +D.c a -4、已知23++-x x 的最小值为a ,23+--x x 的最大值为b ,则b a +=_____________。

绝对值的奥数题及答案3则

绝对值的奥数题及答案3则

绝对值的奥数题及答案3则以下是网友分享的关于绝对值的奥数题及答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。

《绝对值奥数习题范文一》第二讲:绝对值例1 已知x 0, y >z >x ,那么x +z +y +z -x -y 的值()(A )是正数(B )是负数(C )是零(D )不能确定符号第9届(1998年)初一培训题例2 若x =220012002,则x +x -+x -2+x -+x -4+x -5=第13届(2002年)初一培训题例3 数-a14是()2003(A )正数(B )负数(C )非正数(D )零第14届(2003年)初一培训题例4 使代数式3x -x 4x的值为正整数的x 值是()(A )正数(B )负数(C )零(D )不存在第12届(2001年)初一培训题例5 已知a , b , c 都是负数,并且x -a +y -b +z -c =0,则xyz 是()(A )负数(B )非负数(C )正数(D )非正数第11届(2000年)初一第2试例6 已知a 第16届(2005年)初一培训题例7 已知x =1999,则4x 2-5x +9-4x 2+2x +2+3x +7=a a -1+-2等于()例8 如果2a +b =0,则b b(A )2 (B )3 (C )4 (D )5第13届(2002年)初一第1试200220022002⎛a ⎫例9 如果a +b -c >0, a -b +c >0, -a +b +c >0,则⎪a ⎪⎝⎭于()⎛b ⎫⎪- b ⎪⎝⎭⎛c ⎫⎪+ c ⎪⎝⎭等(A )1 (B )-1 (C )0 (D )3第13届(2002年)初一培训题例10 If a 、b 、c ,d are rational numbers,a -b ≤9,c -d ≤16and a -b -c +d =25, b -a -d -c =第14届(2003年)初一第2试例11 若m 是方程2000-x =2000+x 的解,则m -等于()(A )m -2001 (B )-m -2001 (C )m +2001 (D )-m +2001例12 如果m -+(n +2) 2=0,则方程3mx +1=x +n 的解是第12届(2001年)初一培训题例13 化简y =2x -+x -2+x +x +3例14 不等式(x +x )(1-x ) 第13届(2002年)初一培训题例15 x ++x -的最小值是()(A )2 (B )0 (C )1 (D )-1第12届(2001年)初一培训题例16 已知x ≤1, y ≤,且μ=x +y +y ++2y -x -4,则μ的最大值与最小值的和等于第12届(2001年)初一培训题例17 彼此不等的有理数a , b , c 在数轴上的对应点分别为A 、B 、C, 如果a -b +b -c =a -c ,那么A 、B 、C 的位置关系是第12届(2001年)初一培训题例18 某公共汽车运营线路AB 段上有A 、B 、C 、D 四个汽车站,如图2-4所示,现在要在AB 段上修建一个加油站M ,为了使加油站选址合理,要求A 、B 、C 、D 四个汽车站到加油站M 的路程总和最小,试分析加油站M 在何处选址最好?第12届(2001年)初一培训题习题1. 若x 是有理数且x 3=-x ,则一定有()(A )x >0 (B )x 第12届(2001年)初一培训题2. a 是非零有理数,则()(A )a ≥a (B )a 2≥a (C )1≥a (D )a 2≥-a a3第12届(2001年)初一培训题3. 数轴上的点A 、B 、C 分别对应数:0,-1, x ,C 与A 的距离大于C 与B 的距离,则( )1(A )x >0 (B )x >-1 (C )x 2第14届(2003年)初一培训题4. 是代数式x -x x的值为正整数的x 值是()(A )正数(B )负数(C )非零的数(D )不存在的第13届(2002年)初一培训题5. 如图2-5,直线上有三个不同的点 A 、B 、C 且AB ≠BC ,那么,到A 、B 、C 三点距离的和最小的点()(A )是B 点(B )是线段AC 的中点(C )是线段AC 外一点(D )有无穷多个点第13届(2001年)初一第2试6. If x ≤3,y ≤1,z ≤4,and x -2y +z =9,then x 2y 4z 6=第11届(2000年)初一第2试7. 若ab ≠0,则a b+不能等于-2,0,1,2这四个数中的()a b(A )-2 (B )0 (C )1 (D )2第13届(2002年)初一培训题8. 已知x ++(y +2x ) 2=0,则x y =第13届(2002年)初一培训题9. 已知a 是有理数,则a -+a -的最小值是10. 设x ,y ,a 都是整数,x =1-a ,y =2+2a -a 2,则a =第13届(2002年)初一培训题11. 如图2-6,若数a 的绝对值是数b 的绝对值的3倍,则数轴的原点在点或点(“A ”, “B ”, “C ”, 或“D ”).323212. 已知a =1999,则3a -3a +4a +1-3a -3a +3a -2001=第11届(2000年)初一培训题13. 有理数a ,b ,c 在数轴上的位置如图2-7,则m =a +b +b --a -c --c -2b -3=14. 有理数a ,b ,c 均不为0,且a +b +c =0,设x = x 19-99x +2000之值。

初一奥数 第七讲 绝对值的计算

初一奥数 第七讲 绝对值的计算

第八节 绝对值(绝对值的运算)【知识要点】1.常用公式:222a a a ==;b a ab ⋅=;)0(≠=b bab a b a b a +≤+; ba b a b a +≤-≤-2.设n a a a a ,,,321是数轴上依次排列的点表示的有理数.当n 为偶数时,若2na ≤≤x 12+na ,则na x a x a x a x -+-+-+- 321的值最小当n 为奇数时,若x=21+n a ,则na x a x a x a x -+-+-+- 321的值最小【典型例题】一:求最值问题例1、(1)工作流水线上顺次排列5个工作台A,B,C,D,E ,已知工具箱应放在何处,才能使工作台上操作机器的人取工具所走的路程最短?(2)如果工作台由5个改为6个,那么工具箱应如何安置能使6个操作机姓名: 日期:器的人取工具所走的路程之和最短?(3)如果工作台由5个改为n 个,那么工具箱应如何安置能使 n 个操作机器的人取工具所走的路程之和最短?例2、求20072006321-+-+-+-+-x x x x x 的最小值.例3、已知:1+=a a ,ax x 2=,求211++--x x 的最大值与最小值.二:化简代入求值例4、a 与b 互为相反数,且b a -=36,那么12+++-ab a bab a 的值为多少?例5、有理数p n m ,,满足023=+m m ,1+=n n ,p •1=p ,求代数式1312++++--m m p m n 的值?例6、已知:200720065=x , 求1110987654321-+-+-+-+-+-+-+-+-+-+-+x x x x x x x x x x x x 的值。

例7、若,,a b c 均为整数,且19191a b c a -+-=,试求c a a b b c -+-+-的值。

例8、已知a,b,c,d 是有理数,19≤-b a ,7≤-d c 且 d c b a +--=26,求c d a b ---的值。

七年级奥数竞赛——绝对值

七年级奥数竞赛——绝对值

七年级奥数竞赛——绝对值1、绝对值的定义:一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数。

符号表示:|a|={a,a>0 0,a=0−a,a<0或者|a|={a,a≥0−a,a<0或者|a|={a,a>0−a,a≤0辨析:如果一个数的绝对值是它本身,则这个数是;如果一个数的绝对值是它的相反数,则这个数是 .2、绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

显然,任何数的绝对值都是非负数,即|a|≥0.想一想:有理数a,b,c的大小关系如图所示,则下列式子中一定成立的是()A. a+b+c>0B. |a+b|<cC. |a−c|=|a|+cD. |b−c|>|c−a|3、化简含有绝对值是式子,关键是去绝对值符号。

而要去绝对值符号,关键是看绝对值符号内的数a的正负性,即a>0,a<0,还是a=0. 如果已知条件没有给出a的的正负性,那么就应该对a的正负进行分类讨论。

当a>0时,|a|a =;当a<0时,|a|a= .例1 计算:(1)|13−12|+|14−13|−|14−12|=;(2) 已知|a|=1,|b|=2,|c|=3,且a>b>c, 那么a+b−c= .练习1(1)|12004−12003|+|12003−12002|+|12002−12001|+|12001−12004||=;(2)已知|a|=3,|b|=5,那么|a+b|−|a−b|的绝对值等于 .(3)已知a的相反数是最大的负整数,b的绝对值是最小的正整数,则a+b= .(4)设a,b,c 分别是一个三位数的百位、十位和个位数字,并且a≤b≤c, 则|a−b|+|b−c|+|c−a|可能取得的最大值是 .例2 若x<−2, 则y=|1−|1+x||等于()A. 2+xB. −2−xC. xD. −x练习2:若0<a<1,−2<b<−1, 则|a−1|a−1−|b+2|b+2+|a+b|a+b的值是()A. 0B. -1C. -2D. -3练习3:已知x=|a|a +|b|b+|c|c+|abc|abc,且a,b,c都不等于0,则x的所有可能值有 .练习3‘:已知a,b,c都不等于0,a+b+c=0, x=|a|a +|b|b+|c|c+|abc|abc,那么x的所有可能值有 .练习4:已知三个数a,b,c的积为负数,和为正数,且x=|a|a +|b|b+|c|c+|ab|ab+|ac|ac+|bc|bc,则ax3+bx2+cx+1的值为 .例3 (1) 如果|m−3|+(n+2)2=0,那么方程3mx+1=x+n的解是 . (2) 已知a,b,c是整数,且|a−b|+|c−a|=1, 则|c−a|+|a−b|+|b−c|= . 练习5:(1)若|a+b+1|与(a−b+1)2互为相反数,则a与b的大小关系是 . (2)求满足|a−b|+ab=1的非负整数对(a, b)的值.(3)已知|ab−2|+|a−2|=0, 求1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2006)(b+2006)的值.例4 (1)已知y=|x+1|+|x−1|,则y的最小值是()A. 2B. 0C. 1D. -1变式:已知y=|2x+1|+|x−1|,则y的最小值是(2) y=|x+1|+|x−2|+|x−3|的最小值是, 此时x= .一般化:设a≤b≤c,则y=|x−a|+|x−b|+|x−c|在x= 时取到最小值 .练习6:已知y=|x−b|+|x−20|+|x−b−20|, 其中0<b<20, b≤x≤20, 那么y的最小值为 .练习7:已知(|x+1|+|x−2|)(|y−2|+|y+1|)(|z−3|+|z+1|)=36,求x+2y+ 3z的最大值和最小值.【参考答案】1、辨析:正数和0 负数和02、想一想:C3、1 ;-1例1(1)0(2)2或0练习1(1)32005002(2)6(3)2或0(4)16例2 B练习2:D练习3:±4、0练习4:1例3(1)−38(2) 2练习5(1)a<b(2)(1,0), (0,1), (1,1)(3)20072008例4(1)A变式:1.5(2) 4, 2一般化:b;c-a练习6:20练习7:最大值是15,最小值是-6。

初一奥数竞赛绝对值

初一奥数竞赛绝对值

初一奥数竞赛第2讲绝对值例1 a,b为实数,以下各式对吗?假设不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)假设|a|=b,那么a=b;(5)假设|a|<|b|,那么a<b;(6)若a>b,那么|a|>|b|.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.例3已知x<-3,化简:|3+|2-|1+x|||.例5假设|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.例8 化简:|3x+1|+|2x-1|.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该知足的条件及此常数的值.练习二1.x是什么实数时,以劣等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|; ( 2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简以下各式: (2)|x+5|+|x-7|+|x+10|.3.假设a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,关于知足p≤x≤15的x来讲,求T的最小值6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点别离为A,B,C,若是|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左侧;(3)在A,C点之间;(4)以上三种情形都有可能答案解析:例1解 (1)不对.当a,b同号或其中一个为0时成立.( 2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.6)不对.当a+b>0时成立.例2解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.依照有理数加减运算的符号法那么,有b-a<0,a+c<0,c-b<0.再依照绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x例4解因为 abc≠0,因此a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情形加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很经常使用.例5解因为|x-y|≥0,因此y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.因此x+y的值为-1或-5.例6解 a,b,c均为整数,那么a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,因此只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.不管①或②都有|b-c|=1且|a-b|+|c-a|=1,因此|c-a|+|a-b|+|b-c|=2.例7解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,因此必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得 2y=2002, y=1001,因此例8分析此题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.假设别离去掉每一个绝对值符号,那么是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.那个地址咱们为三个部份(如图1-2所示),即如此咱们就能够够分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这种题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,如此就将数轴分成几个部份,依照变数字母的这些取值范围分类讨论化简,这种方式又称为“零点分段法”.例9分析第一用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时, y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,因此y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时, y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,因此-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时, y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,因此0≤-3x+3≤6,y的最大值是6.(4)当x≥1时, y =(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,因此1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10分析此题也可用“零点分段法”讨论计算,但比较麻烦.假设能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得加倍简捷便利.解设a,b,c,d,x在数轴上的对应点别离为A,B,C,D,X,那么|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|别离表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,确实是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,因此A,B,C,D的排列应如图1-3所示:因此当X在B,C之间时,距离和最小,那个最小值为AD+BC,即(d-a)+(c-b).例11分析与解要使原式对任何数x恒为常数,那么去掉绝对值符号,化简归并时,必需使含x的项相加为零,即x的系数之和为零.故此题只有2x-5x+3x=0一种情形.因此必需有|4-5x|=4-5x且|1-3x|=3x-1.故x应知足的条件是现在原式=2x+(4-5x)-(1-3x)+4=7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一奥数竞赛第2讲绝对值
例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?
(1)|a+b|=|a|+|b|;
(2)|ab|=|a||b|;(3)|a-b|=|b-a|;
(4)若|a|=b,则a=b;
(5)若|a|<|b|,则a<b;
(6)若a>b,则|a|>|b|.
例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.
例3已知x<-3,化简:|3+|2-|1+x|||.
例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.
例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.
例8 化简:|3x+1|+|2x-1|.
例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.
例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.
例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.
练习二
1.x是什么实数时,下列等式成立:
(1)|(x-2)+(x-4)|=|x-2|+|x-4|; ( 2)|(7x+6)(3x-5)|=(7x+6)(3x-5).
2.化简下列各式: (2)|x+5|+|x-7|+|x+10|.
3.若a+b<0,化简|a+b-1|-|3-a-b|.
4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.
5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,求T的最小值6.已知a<b,求|x-a|+|x-b|的最小值.
7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B 点应为( ).
(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能
答案解析:
例1解 (1)不对.当a,b同号或其中一个为0时成立.( 2)对.(3)对.(4)不对.当a≥0时成立.
(5)不对.当b>0时成立.6)不对.当a+b>0时成立.
例2解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.
再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.
于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.
例3分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.
解原式=|3+|2+(1+x)||(因为1+x<0)
=|3+|3+x||
=|3-(3+x)|(因为3+x<0)
=|-x|=-x
例4解因为 abc≠0,所以a≠0,b≠0,c≠0.
(1)当a,b,c均大于零时,原式=3;
(2)当a,b,c均小于零时,原式=-3;
(3)当a,b,c中有两个大于零,一个小于零时,原式=1;
(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.
说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.
例5解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.
(1)当y=2时,x+y=-1;
(2)当y=-2时,x+y=-5.
所以x+y的值为-1或-5.
例6解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是
|a-b|19=0且|c-a|99=1,①

|a-b|19=1且|c-a|99=0.②
由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有
|b-c|=1且|a-b|+|c-a|=1,
所以
|c-a|+|a-b|+|b-c|=2.
例7解依相反数的意义有|x-y+3|=-|x+y-1999|.
因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即
由①有x-y=-3,由②有x+y=1999.②-①得 2y=2002, y=1001,
所以
例8分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们
为三个部分(如图1-2所示),即
这样我们就可以分类讨论化简了.
原式=-(3x+1)-(2x-1)=5x;
原式=(3x+1)-(2x-1)=x+2;
原式=(3x+1)+(2x-1)=5x.

说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分
段法”.
例9分析首先用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时, y=-(2x+6)-(x-1)+4(x+1)=x-1,
由于x≤-3,所以y=x-1≤-4,y的最大值是-4.
(2)当-3≤x≤-1时, y=(2x+6)-(x-1)+4(x+1)=5x+11,
由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.
(3)当-1≤x≤1时, y=(2x+6)-(x-1)-4(x+1)=-3x+3,
由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.
(4)当x≥1时, y =(2x+6)+(x-1)-4(x+1)=-x+1,
由于x≥1,所以1-x≤0,y的最大值是0.
综上可知,当x=-1时,y取得最大值为6.
例10分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.
解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.
因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:
所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).
例11分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有
|4-5x|=4-5x且|1-3x|=3x-1.
故x应满足的条件是
此时原式=2x+(4-5x)-(1-3x)+4=7.。

相关文档
最新文档