大学物理a第六章习题选解()
大学物理a习题选解

第六章 真空中的静电场习题选解6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。
为使每个负电荷受力为零,Q 之值应为多大?解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为由12f f =,得3Q q =。
6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。
试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大?解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 Th 离子带90个单位正电荷,即它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:(2)α粒子的质量为:由牛顿第二定律得:6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。
求作用在第3个点电荷上的力。
解:由图可知,第3个电荷与其它各电荷等距,均为2r m =。
各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。
由库仑定律,作用于电荷3的力为题6-3 图题6-3 图力的方向沿第1电荷指向第3电荷,与x 轴成45角。
6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-⨯=,B 点放置点电荷C q 92108.4-⨯-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。
解:A 点电荷在C 点产生的场强为1E ,方向向下B 点电荷在C 点产生的场强为2E ,方向向右题6-4图根据场强叠加原理,C 点场强设E 与CB 夹角为θ,21tan E E =θ6-5 如图所示的电荷分布为电四极子,它由两个相同的电偶极子组成。
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理下册 第六章习题课选讲例题

We
2
4π 0
ln
R2 R1
Eb
max
2 π 0 R1
max 2 π 0 E b R1
W e π 0 E R ln
2 b 2 1
R2 R1
1) 0
l
-+ -+ -+ -+
_
_
R1
R2
_ _
dW e d R1
π 0 E R 1 ( 2 ln
点,则距球心 r 的 P 点(R1 < r < R2)电势为 (A)
Q1 4 π 0 r Q1 4 π 0 R1 Q2 4 π 0 R 2 Q2 4 π 0 R 2
(B)
Q1 4 π 0 r
Q2 4 π 0 r
(C)
(D) 4 π 0 R1 4 π 0 r
Q1
Q2
例 有一外表形状不规则的带电的空腔导体,比 较 A 、 两点的电场强度 E 和电势U ,应该是: () B
U d 1000 10
3
V m
1
10 V m
6
1
10 kV m
3
1
Байду номын сангаас
E E0 r
3 . 33 10 kV m
2
1
P ( r 1) 0 E 5 . 89 10
6
C m
2
-2
0 0 E 0 8 . 85 10
Q
S
D dS
q
可得
0 r RA
2 2
E1 0 E2 q / 4 π 0r E3 q / 4 π 0r
大学物理第六章 波动光学(3)

178第6章 波动光学(Ⅲ)——光的偏振一.基本要求1.理解光的偏振的概念,光的五种偏振态的获得和检测方法; 2.掌握马吕斯定律及其应用;3.掌握反射光和折射光的偏振,掌握布儒斯特定律及其应用; 4.了解光的双折射现象;5.了解偏振光的应用。
二.内容提要和学习指导(一)光的五种偏振状态:自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振光。
(二)线偏振光的获得和检验 1.线偏振光的获得:①利用晶体的选择性吸收,可以制造偏振片。
偏振片可用作起偏器,也可用作检偏器。
②利用反射和折射偏振。
布儒斯特定律:自然光在两种介质的界面发生反射和折射时,一般情况下,反射光和折射光都是部分偏振光,在反射光中,垂直入射面的光振动较强,在折射光中,平行入射面的光振动较强。
当自然光以布儒斯特角121tan b i n -=入射(或/2i γπ'+=,或反射光线垂直于折射光线)时,反射光是线偏振光,其光振动垂直于入射面,此时折射光仍然是部分偏振光。
③利用晶体的双折射。
一束光射入各向异性介质时,折射光分成两束。
其中一束光遵守折射定律,称为寻常光(o 光)。
另一束光不遵守折射定律,称为非常光(e 光)。
o 光和e 光均是线偏振光。
o 光的振动方向垂直于o 光的主平面,e 光的振动方向在e 光的主平面内。
光线沿光轴方向入射时,o 光和e 光的传播速度相同。
在晶体内,o 光的子波波面为球面波,e 光的子波波面为旋转椭球面,利用惠更斯原理作图,可确定o 光和e 光的传播方向。
利用晶体的双折射现象,可以制造偏振棱镜和波片。
2.线偏振光的检验:①利用偏振片:由马吕斯定律可得,线偏振光经过检偏器后,出射光强I 与入射光强0I 的关系为:α20cos I I =,其中α是入射线偏振光偏振方向和偏振片通光方向的夹角。
②利用反射和折射偏振。
③利用偏振棱镜。
(三)圆偏振光或椭圆偏振光的获得和检验:线偏振光经过四分之一波片后出射的为椭圆偏振光,当平面偏振光的振动方向与四分之一波片的光轴方向成450角时,出射的为圆偏振光。
大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。
3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41cos R x xdqdE dE x +==πεθR Oλ1λ2lxy z式中:θ为dq 到场点的连线与x 轴负向的夹角。
⎰+=23220)(4dq R x xE x πε232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ下面求直线段受到的电场力。
在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ 方向沿x 轴正方向。
大学物理学教程第二(马文蔚)练习册答案6第六章 机械波

解:
6-8 图示为平面简谐波在t=0时刻的波形图,此简谐波 的频率为250Hz,且此图中P点的运动方向向上,求: 第 (1)此波的波动方程;(2)距原点7.5m处质点的运 六 动方程与t=0时该点的振动速度。 y/m 章 解: P点的运动方向向上
习 题 分 析
6-8
波向负方向传播
0.10 0.05 O
6-9
六 章 习 题 分 析
解:
xP 0.2 m
O 0.04
P
0.2 0.4 0.6
x/m
2 0.2 y P 0.04cos[ (t ) ]m 5 0.08 2 2 3 0.04cos[ t ] m 5 2 2 x y 0.04cos[ (t ) ]m 5 0.08 2
第 六 章 习 题 分 析
6-7
y15 A cos 100 t 15 cm 2
y5 A cos 100 t 5 cm 2
解:
15 15.5
5 5.5
2 2 波源振动方程: y0 A cos t cm 2 T 2 x 波动方程:
6-11
6-11 平面简谐波的波动方程为:
第 六 章 习 题 分 析
求:(1)t=2.1s时波源及距波源0.10m两处的相位;(2)离 波源0.80m及0.30m两处的相位差。 解:(1)
y 0.08cos 4 t 2 x (SI 制)
t 2.1s, x 0处, 4 2.1 8.4
x t x y A cos[ (t ) ] A cos[ 2 π ( ) ] u T
) 14-3 已知一波动方程为 y 0.05sin(10 t 2 x)(SI , (1)求波长、频率、波速和周期; (2)说明 x 0 第 六 时方程的意义,并作图表示。
大学物理学(第三版上) 课后习题6答案详解

习题66.1选择题(1)一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A)它的动能转化为势能. (B)它的势能转化为动能.(C)它从相邻的一段质元获得能量其能量逐渐增大.(D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.[答案:D ](2) 某时刻驻波波形曲线如图所示,则a,b 两点位相差是(A)π (B)π/2 (C)5π/4 (D)0[答案:A](3) 设声波在媒质中的传播速度为u,声源的频率为v s .若声源S不动,而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动,则位于S、R连线中点的质点P的振动频率为 (A)s v (B)s Bv uV u + (C)s B v V u u + (D) s Bv V u u-[答案:A]6.2填空题(1)频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距____m 。
[答案:0.5m ](2)一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是____,波长是____,频率是____,波的传播速度是____。
[答案:0.02;2.5;100;250/m m Hz m s ](3) 设入射波的表达式为])(2cos[1πλνπ++=xt A y ,波在x =0处反射,反射点为一固定端,则反射波的表达式为________________,驻波的表达式为____________________,入射波和反射波合成的驻波的波腹所在处的坐标为____________________。
[答案:)(2cos 2λνπxt A y -= ;2cos(2)cos(2)22x A t ππππνλ++ (21)4x k λ=-]6.3产生机械波的条件是什么?两列波叠加产生干涉现象必须满足什么条件?满足什么条件的两列波才能叠加后形成驻波?在什么情况下会出现半波损失?答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质。
(完整版)大学物理学(课后答案)第5-6章

第5章 机械振动一、选择题5-1 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A-,且向x 轴的正方向运动,代表这个简谐振动的旋转矢量图为[ ]分析与解 图中旋转矢量投影点的运动方向指向Ox 轴正向,同时矢端在x 轴投影点的位移为2A-,满足题意,因而选(D)。
5-2 作简谐振动的物体,振幅为A ,由平衡位置向x 轴正方向运动,则物体由平衡位置运动到32Ax =处时,所需的最短时间为周期的几分之几[ ] (A) 1 /2 (B) 1/4 (C) 1/6 (D) 1/12分析与解 设1t 时刻物体由平衡位置向x 轴正方向运动,2t 时刻物体第一次运动到32A x =处,可通过旋转矢量图,如图5-2所示,并根据公式2t T ϕπ∆∆=得31226t T T T ϕπππ∆∆===,,因而选(C)。
5-3 两个同周期简谐振动曲线如图5-3(a)所示,1x 的相位比2x 的相位[ ] O O OO A Axxx(A) (B)(D)(C)A /2-A /2 A /2 -A /2A Aωωωωx习题5-1图习题5-2图(A) 落后2π (B) 超前2π(C) 落后π (D) 超前π分析与解 可通过振动曲线作出相应的旋转矢量图(b ),正确答案为(B )。
5-4 一弹簧振子作简谐振动,总能量为E ,若振幅增加为原来的2倍,振子的质量增加为原来的4倍,则它的总能量为[ ](A) 2E (B) 4E (C) E (D) 16E 分析与解 因为简谐振动的总能量2p k 12E E E kA =+=,因而当振幅增加为原来的2倍时,能量变为原来的4倍,因而答案选(B)。
5-5 两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个简谐振动的相位差为[ ](A) 60 (B) 90 (C) 120 (D) 180分析与解 答案(C )。
由旋转矢量图可知两个简谐振动的相位差为120时,合成后的简谐运动的振幅仍为A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 真空中的静电场习题选解6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。
为使每个负电荷受力为零,Q 之值应为多大?解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为由12f f =,得3Q q =。
6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。
试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大?解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 Th 离子带90个单位正电荷,即 它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:(2)α粒子的质量为: 由牛顿第二定律得:6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。
求作用在第3个点电荷上的力。
解:由图可知,第3个电荷与其它各电荷等距,均为2r =。
各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。
由库仑定律,作用于电荷3的力为题6-3 图题6-3 图力的方向沿第1电荷指向第3电荷,与x 轴成45角。
6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-⨯=,B 点放置点电荷C q 92108.4-⨯-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。
解:A 点电荷在C 点产生的场强为1E ,方向向下B 点电荷在C 点产生的场强为2E ,方向向右题6-4图根据场强叠加原理,C 点场强 设E 与CB 夹角为θ,21tan E E =θ6-5 如图所示的电荷分布为电四极子,它由两个相同的电偶极子组成。
证明在电四极子轴线的延长线上,离中心为r (e r r >>)的P 点处的电场强度为4043r QE πε=,式中22e qr Q =,称为这种电荷分布的电四极矩。
题6-5图解:由于各电荷在P 点产生的电场方向都在x 轴上,根据场强叠加原理由于e r r >>,式中2e r 可略去 又电四极矩 22e qr Q =故 4043r QE P πε=题6-5图6-6 如图所示,一根很长的绝缘棒,均匀 带电,单位长度上的电荷量为λ,试求距棒的一端垂直距离为d 的P 点处的电场强度。
解:建立如图所示坐标,在棒上任取一线 元dx 在P 点产生的场强为dE题6-6图场强dE 可分解成沿x 轴、y 轴的分量题6-6图P 点场强 dE E E y x02242πελ=+= 方向与Y 轴夹角为ϕ arctan45xyE E ϕ== 6-7 一根带电细棒长为l 2,沿x 轴放置,其一端在原点,电荷线密度Ax =λ(A 为正的常数)。
求x 轴上,l b x 2+=处的电场强度。
解:在坐标为x 处取线元dx ,带电量为Axdx dq =,该线元在P 点的场强为dE ,方向沿x 轴正方向整个带电细棒在P 点产生的电场为 题6-7图场强E 方向沿x 轴正方向6-8 如图所示,一根绝缘细胶棒弯成半径 为R 的半圆形。
其上一半均匀带电荷q +,另一 半均匀带电荷q -。
求圆心O 处的场强。
解:以圆心为原点建立如图所示Oxy 坐标,题6-8图在胶棒带正电部分任取一线元dl ,与OA 夹角为θ,线元带电荷量dl Rqdq π2=,在O 点产生电场强度把场强dE 分解成沿x 轴和y 轴的分量题6-8图同理,胶棒带负电部分在O 点的场强E '沿x 轴方向的分量'x E 与x E 大小相等,方向相同;沿y 轴方向的分量'y E 与y E 大小相等,方向相反,互相抵消,故点场强为2022RqE E x επ== 方向沿x 轴正向。
6-9 一无限大均匀带电平面,电荷面密度为σ,在平面上开一个半径为R 的圆洞,求在这个圆洞轴线上距洞心r 处一点P 的场强。
解:开了一个圆洞的无限大均匀带电 平面,相当于一个无限大均匀带电平面又 加了一块带异号电荷,面密度σ相同的圆 盘。
距洞心r 处P 点的场强式中+E 为无限大均匀带电平面在P 点产生的场强 题6-9图方向垂直于平面向外-E 为半径为R 的均匀带负电圆盘在其轴线上距中心为r 处的P 产生的场强。
在圆盘上取半径为r ',宽为r d '的细圆环,在P 点产生场强0(12σε=方向垂直圆盘向里故 21220)(2r R rE E E P +=-=-+εσ 方向垂直平面向外6-10 如图所示,一条长为l 2的均匀带电直线,所带电量为q ,求带电直线延长线上任一点P 的场强。
解:在坐标为r 处取线元,带电量 该线元在带电直线延长线上距原点为x 的P 点产生的场强为题6-10图 题6-10图整个带电直线在P 点的场强6-11 用场强叠加原理,求证无限大均匀带平面外任一点的场强大小为02εσ=E (提示:把无限大平面分成一个个圆环或一条条细长线,然后进行积分)。
解:(1)建如图()a xyz 坐标,以板上任一点O 为圆心,取半径为r ,宽度为dr 的环形面积元,带电量为:rdr dq πσ2=。
由圆环电荷在其轴线上任一点)(x OP P =的场强公式方向沿x 轴正方向。
P 点总场强题6-11()a 图(0σ>,E 的方向沿x 轴正方向) (2)建如图()b 所示的三维坐标,在与z 轴相距为y 处取一细长线元,沿y 轴方向单位长度带电荷为dy σ,由长直带电直线场强公式,线元在x 轴距原点O 为a 的点P 的场强题6-11()b 图由于对称性,dE 的y 轴分量总和为零所以 ⎰⎰==θcos dE dE E x因为0σ>,所以E 的方向沿x 轴正方向。
6-12 如图所示,半径为R 的带电细圆环,线电荷密度θλλcos 0=,0λ为常数,θ为半径R 与x 轴夹角,求圆环中心O 处的电场强度。
解:在带电圆环上任取一线元θRd dl =,带电量为θθλλRd dl dq cos 0==,线元与原点O 的连线与x 轴夹角为θ,在O 点的场强d E 大小为题6-12图d E 沿x 轴和y 轴的分量整个带电圆环在O 点的场强E 沿x 轴和y 轴的分量 故 004x E Rλε==-E i i E 的方向沿x 轴负方向。
6-13 如图所示,两条平行的无限长均匀带电直线,相距为d ,线电荷密度分别为λ+和λ-,求:(1)两线构成的平面的中垂面上的场强分布; (2)两直线单位长度的相互作用力。
解:(1)在两线构成平面的中垂直面上任取一点P 距两线构成平面为y ,到两线P 点的场强为题6-13图由于对称性,两线在P 点的场强沿y 轴方向的分量,方向相反,大小相等,相互抵消题6-13图2202()4dd y λπε=+ 方向沿x 轴正方向(2)两直线相距为d ,带正电直线在带负电直线处的场强为dE 02πελ=+。
由qE F =,带负电直线单位长度的电荷受电场力dE F 022πελλ==+-,方向指向带正电直线。
同理,带正电直线单位长度受电场力dF 022πελ=+,方向指向带负电直线。
故有+-=-F F ,两带电直线相互吸引。
6-14 如图所示,长为l 、线电荷密度为λ的两根相同的均匀带电细塑料棒,沿同一直线放置,两棒近端相距为l ,求两棒间的静电相互作用力。
题6-14图解:(1)建立如图所示x 坐标,在左棒中坐标为x 处取线元dx ,带电量dx dq λ=,线元dx 在坐标r 处的场强左棒在坐标r 处点的场强题6-14图(2)在右棒中坐标为r 处取线元dr ,带电量dr dq λ=,该线元受电场力 右棒受总电场力为F 的方向沿x 轴正方向。
两棒间的静电力大小相等,方向相反,互为斥力。
6-15 用细的不导电的塑料棒弯成半径为cm 50的圆弧,棒两端点间的空隙为cm 2,棒上均匀分布着C 91012.3-⨯的正电荷,求圆心处场强的大小和方向。
解:有微小间隙的带正电圆弧棒,等效于一个相同半径的带正电圆环加个弧长等于间隙的带负电小圆弧棒。
由场强叠加原理,圆心O 场强对于均匀带正电的圆环,由于对称性在圆心O 的电场强度为零,0=圆环E 。
上一带负电小圆弧棒相对于圆心O 可近似题6-15图看成一个点电荷,电量为:圆心处场强100.714AB E E V m -==-⋅,方向指向空隙。
6-16 如图所示,一点电荷q 处于边长为的正方形平面中垂线上,q 与平面中心O 点相距/2a ,求通过正方形平面的电场强度通量e ψ。
解:以点电荷所在处为中心,以图中正方形为一面作一边长为a 的正方体,由高斯定理知:通过正方体表面的电通量为题6-16图则通过该正方形平面的电通量为6εq。
6-17 设匀强电场的场强为E ,E 与半径为R 的半球面的轴线平行。
试计算通过此半球面的电场强度通量。
解:方法一:在半球面上取宽为dl 的环状面积元,通过面元dS 的电场强度通量 通过整个半球面的电场强度通量题6-17图方法二:通过半球面的电场强度通量与垂直通过大圆面S 的电场强度通量相等。
通过S 面的电场强度通量:故通过半球面的电场强度通量亦为E R 2π。
6-18 在量子模型中,中性氢原子具有如下的电荷分布:一个大小为e +的电荷被密度为()02a /r Ce r --=ρ的负电荷所包围,0α是“玻尔半径”,1000.5310m α-=⨯,C 是为了使电荷总量等于e -所需要的常量。
试问在半径为0α的球内净电荷是多少?距核0α远处的电场强度多大?解:由()02a /r Ce r --=ρ,可得 由 ⎰⎰⎰∞-∞-∞-=⨯==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=030302030020203022*******00a a dx x e a a r d a r e a dr r e x a /r a /r原式成为 e aC -=⨯-4430π所以 30a e C π=q要求半径为0a 的球内的静电荷。
应先求半径0a 的球内的负电荷q '球内净电荷为 190.677 1.0810q e q e C -'=+==⨯∑由高斯定律 02004q d a E πε⋅==∑⎰⎰E S6-19 在半径分别为1R ,2R 的两个同心球面上,分别均匀带电为1Q 和2Q ,求空间的场强分布,并作出r E -关系曲线。
解:电荷在球面上对称分布,两球面电荷产生的电场也是球对称分布,场强方向沿径向向外。