数据结构-实验五讲义(1)-二叉树的基本操作
数据结构-实验五-二叉树的操作

数据结构实验报告实验五二叉树的操作班级:12卓越6班学号:***********名:***任课教师:***计算机与信息工程学院2014年5月13 日实验五二叉树的操作一、实验目的1.进一步掌握指针变量、动态变量的含义;2.掌握二叉树的结构特征,以及各种存储结构的特点及适用范围;3.掌握用指针类型描述、访问和处理二叉树的运算。
二、实验要求1.按实验内容编写实验的程序,主程序以菜单形式运行。
2.上机调试运行本程序。
3.保存和打印出程序的运行结果,并结合程序进行分析。
4.提交源程序和运行结果。
三、实验内容1.创建以二叉链表作存储结构的二叉树;2.按中序遍历二叉树;3.按层次遍历二叉树;4.计算二叉树的单枝结点数;5.交换二叉树的左右子树。
解://声明类BiTree及定义结构BiNode,文件名为bitree.h#ifndef BITREE_H#define BITREE_H//int num;template <class T>struct BiNode //二叉树的结点结构{T data;BiNode<T> *lchild, *rchild;};template <class T>class BiTree{public:BiTree( ); //构造函数,初始化一棵二叉树,其前序序列由键盘输入~BiTree(void); //析构函数,释放二叉链表中各结点的存储空间BiNode<T>* Getroot(); //获得指向根结点的指针void PreOrder(BiNode<T> *root); //前序遍历二叉树void InOrder(BiNode<T> *root); //中序遍历二叉树void PostOrder(BiNode<T> *root); //后序遍历二叉树void LeverOrder(BiNode<T> *root); //层序遍历二叉树int depth(BiNode<T> *root); //求二叉树的深度void nodenum(BiNode<T> *root); //求二叉树的结点个数void leafnum(BiNode<T> *root); //求二叉树的叶子结点个数void empty( ); //判断二叉树是否为空int printnum( ); // 输出(全部、叶子或单分支)结点数void sbnodenum(BiNode<T> *root); //求二叉树的单分支结点个数void exchangetree(BiNode<T> *root); //交换二叉树的左右子树private:BiNode<T> *root; //指向根结点的头指针BiNode<T> *p;BiNode<T> *Creat( ); //有参构造函数调用void Release(BiNode<T> *root); //析构函数调用int num;};#endif//定义类中的成员函数,文件名为bitree.cpp#include<iostream>#include<string>#include"bietree.h"using namespace std;/**前置条件:二叉树不存在*输入:无*功能:构造一棵二叉树*输出:无*后置条件:产生一棵二叉树*/template<class T>BiTree<T>::BiTree( ){this->num=0;this->root = Creat( );}/**前置条件:二叉树已存在*输入:无*功能:释放二叉链表中各结点的存储空间*输出:无*后置条件:二叉树不存在*/template<class T>BiTree<T>::~BiTree(void){Release(root);}*前置条件:二叉树已存在*输入:无*功能:获取指向二叉树根结点的指针*输出:指向二叉树根结点的指针*后置条件:二叉树不变*/template<class T>BiNode<T>* BiTree<T>::Getroot( ){return root;}/**前置条件:二叉树已存在*输入:无*功能:前序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template<class T>void BiTree<T>::PreOrder(BiNode<T> *root) {if(root==NULL) return;else{cout<<root->data<<" ";PreOrder(root->lchild);PreOrder(root->rchild);}}*前置条件:二叉树已存在*输入:无*功能:中序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template <class T>void BiTree<T>::InOrder (BiNode<T> *root){if (root==NULL) return; //递归调用的结束条件else{InOrder(root->lchild); //中序递归遍历root的左子树cout<<root->data<<" "; //访问根结点的数据域InOrder(root->rchild); //中序递归遍历root的右子树}}/**前置条件:二叉树已存在*输入:无*功能:后序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template <class T>void BiTree<T>::PostOrder(BiNode<T> *root){if (root==NULL) return; //递归调用的结束条件else{PostOrder(root->lchild); //后序递归遍历root的左子树PostOrder(root->rchild); //后序递归遍历root的右子树cout<<root->data<<" "; //访问根结点的数据域}}/**前置条件:二叉树已存在*输入:无*功能:层序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template <class T>void BiTree<T>::LeverOrder(BiNode<T> *root){const int MaxSize = 100;int front = 0;int rear = 0; //采用顺序队列,并假定不会发生上溢BiNode<T>* Q[MaxSize];BiNode<T>* q;if (root==NULL) return;else{Q[rear++] = root;while (front != rear){q = Q[front++];cout<<q->data<<" ";if (q->lchild != NULL) Q[rear++] = q->lchild;if (q->rchild != NULL) Q[rear++] = q->rchild;}}}/**前置条件:空二叉树*输入:数据ch;*功能:初始化一棵二叉树,构造函数调用*输出:无*后置条件:产生一棵二叉树*/template <class T>BiNode<T>* BiTree<T>::Creat( ){BiNode<T>* root;T ch;cout<<"请输入创建一棵二叉树的结点数据"<<endl;cin>>ch;if (ch=="#") root = NULL;else{root = new BiNode<T>; //生成一个结点root->data=ch;root->lchild = Creat( ); //递归建立左子树root->rchild = Creat( ); //递归建立右子树}return root;}/**前置条件:二叉树已经存在*输入:无*功能:释放二叉树的存储空间,析构函数调用*输出:无*后置条件:二叉树不存在*/template<class T>void BiTree<T>::Release(BiNode<T>* root){if (root != NULL){Release(root->lchild); //释放左子树Release(root->rchild); //释放右子树delete root;}}/**前置条件:二叉树已经存在*输入:无*功能:求二叉树的深度*输出:二叉树的深度*后置条件:二叉树不变*/template<class T>int BiTree<T>::depth(BiNode<T> *root){int n,m;if(root==NULL) return 0;else{n=depth(root->lchild); //左子树的深度m=depth(root->rchild); //右子树的深度if (n>m)return n+1;elsereturn m+1;}}/**前置条件:二叉树已经存在*输入:无*功能:求二叉树的结点个数*输出:二叉树的结点个数*后置条件:二叉树不变*/template<class T>void BiTree<T>::nodenum(BiNode<T> *root){if(root==NULL) return;else{num++;nodenum(root->lchild); //左子树的结点个数nodenum(root->rchild); //右子树的结点个数}}*前置条件:二叉树已经存在*输入:无*功能:求二叉树2 的叶子结点个数*输出:二叉树的叶子结点个数*后置条件:二叉树不变*/template<class T>void BiTree<T>::leafnum(BiNode<T> *root){if(root==NULL) return;else{if(!(root->lchild) && !(root->rchild)) //判断是否为叶子结点num++;leafnum(root->lchild); //左子树中的叶子结点个数leafnum(root->rchild); //右子树中的叶子结点个数}}/*将全局变量num初始化为0*/template<class T>void BiTree<T>::empty( ){num=0;}输出全局变量num的值*/template<class T>int BiTree<T>::printnum( ){return num;}/**前置条件:二叉树已经存在*输入:无*功能:求二叉树的单分支结点个数*输出:二叉树的单分支结点个数*后置条件:二叉树不变*/template<class T>void BiTree<T>::sbnodenum(BiNode<T> *root){if(root==NULL) return;else{if((!(root->lchild) && (root->rchild))||((root->lchild) && !(root->rchild))) //判断是否为叶子结点num++;sbnodenum(root->lchild); //左子树中的叶子结点个数sbnodenum(root->rchild); //右子树中的叶子结点个数}}/**前置条件:二叉树已经存在*输入:无*功能:交换二叉树的左右子树*输出:无*后置条件:二叉树左右子树交换*/template<class T>void BiTree<T>::exchangetree(BiNode<T> *root){if(root==NULL) return;else{if((root->rchild)&&(root->lchild)) //判断左右叶子结点都存在{ p=root->lchild;root->lchild=root->rchild;root->rchild=p;}exchangetree(root->lchild); //左子树中的叶子结点个数exchangetree(root->rchild); //右子树中的叶子结点个数}}/* BiNode<T> * Q[20];BiNode<T> *q;int front=-1;int rear=-1;int n=0;int m=0;Q[++rear]=root;if(root==NULL)cout<<0;else{while(front!=rear){q=Q[++front];if(q->lchild==NULL && q->rchild!=NULL)m++;if(q->lchild!=NULL && q->rchild==NULL)n++;if(q->lchild!=NULL) Q[++rear]=q->lchild;if(q->rchild!=NULL) Q[++rear]=q->rchild;}}cout<<"单分支节点的个数为:"<<m+n<<endl;*///二叉树的主函数,文件名为bitreemain.cpp#include<iostream>#include<string>#include"bietree.cpp"using namespace std;void main(){BiTree<string> bt; //创建一棵树BiNode<string>* root = bt.Getroot( ); //获取指向根结点的指针int s=-1;while(s!=0){cout<<"1.前序遍历"<<endl;cout<<"2.中序遍历"<<endl;cout<<"3.后序遍历"<<endl;cout<<"4.层序遍历"<<endl;cout<<"5.树的深度"<<endl;cout<<"6.叶子节点个数"<<endl;cout<<"7.单分支结点个数"<<endl;cout<<"8.左右子树交换后的结果"<<endl;cout<<"0.退出"<<endl;cin>>s;switch(s){ case 1:bt.PreOrder(root);cout<<endl;break;case 2:bt.InOrder(root);cout<<endl;break;case 3:bt.PostOrder(root);cout<<endl;break;case 4:bt.LeverOrder(root);cout<<endl;break;case 5:cout<<"树的深度为:"<<bt.depth(root)<<endl;break;case 6:bt.empty();bt.leafnum(root);cout<<"叶子结点个数为:"<<bt.printnum()<<endl;break;case 7:bt.empty();bt.sbnodenum(root);cout<<"单分支结点个数为:"<<bt.printnum()<<endl;break;case 8:bt.empty();bt.exchangetree(root);cout<<"左右子树交换后的结果:";bt.PreOrder(root);cout<<endl;break;case 0:exit(0);}}}。
二叉树的基本操作

二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
二叉树的存储结构及基本操作

二叉树的存储结构及基本操作二叉树是一种常见的数据结构,广泛应用于计算机科学领域。
二叉树具有其独特的存储结构和基本操作,下面将详细介绍。
一、二叉树的存储结构二叉树的存储结构通常有两种形式:顺序存储和链式存储。
1. 顺序存储顺序存储是将二叉树中的所有元素按照一定的顺序存储在一段连续的内存单元中,通常采用数组来表示。
对于任意一个节点i,其左孩子节点的位置为2*i+1,右孩子节点的位置为2*i+2。
这种存储方式的优点是访问速度快,但需要预先确定节点总数,且不易于插入和删除操作。
2. 链式存储链式存储是采用指针的方式将二叉树的节点链接起来。
每个节点包含数据元素以及指向左孩子节点和右孩子节点的指针。
链式存储方式的优点是易于插入和删除操作,但访问速度较慢。
二、二叉树的基本操作1. 创建二叉树创建二叉树的过程就是将数据元素按照一定的顺序插入到二叉树中。
对于顺序存储的二叉树,需要预先分配内存空间;对于链式存储的二叉树,可以直接创建节点对象并链接起来。
2. 遍历二叉树遍历二叉树是指按照某种规律访问二叉树中的所有节点,通常有前序遍历、中序遍历和后序遍历三种方式。
前序遍历的顺序是根节点-左孩子节点-右孩子节点;中序遍历的顺序是左孩子节点-根节点-右孩子节点;后序遍历的顺序是左孩子节点-右孩子节点-根节点。
对于顺序存储的二叉树,可以采用循环结构实现遍历;对于链式存储的二叉树,需要使用指针逐个访问节点。
3. 查找元素在二叉树中查找元素,需要根据一定的规则搜索所有节点,直到找到目标元素或搜索范围为空。
对于顺序存储的二叉树,可以采用线性查找算法;对于链式存储的二叉树,可以采用深度优先搜索或广度优先搜索算法。
4. 插入元素在二叉树中插入元素需要遵循一定的规则,保证二叉树的性质。
对于顺序存储的二叉树,插入操作需要移动大量元素;对于链式存储的二叉树,插入操作相对简单,只需修改指针即可。
5. 删除元素在二叉树中删除元素同样需要遵循一定的规则,保证二叉树的性质。
数据结构-实验二 二叉树操作

实验二二叉树操作
(一)实验内容
二叉树的建立和遍历。
(二)实验目的
1.进一步掌握指针变量的使用。
2.掌握二叉树的结构特征以及各种存储结构的特点及使用范围。
3.掌握用指针类型描述、访问和处理二叉树的运算。
4.掌握栈或队列的使用。
(三)实验题目
本实验要求实现以下功能:
1.按前序次序建立一棵二叉树,以‘#’表示空。
2.中序、后序遍历该二叉树,输出遍历序列。
3.求出该二叉树的深度并输出,或求出该二叉树的叶子数目并输出。
4.试以栈为辅助存储结构实现二叉树的前序非递归算法或以队列为辅
助存储结构实现二叉树的层次遍历算法。
(四)实验仪器设备
1.学生每个一台PC机
2.已安装环境。
c语言二叉树的基本操作

c语言二叉树的基本操作一、概念二叉树是一种数据结构,它由节点组成,每个节点都有0个或2个子节点,左子节点的关键字小于或等于该节点的关键字,右子节点的关键字大于该节点的关键字。
二、基本操作1、创建二叉树(1)结构体定义typedef struct node{int data; // 数据struct node *left; // 左子节点struct node *right; // 右子节点}Node, *pNode;(2)创建节点return p;}// 创建根节点*pTree = create_node(arr[0]);// 寻找合适的位置插入节点while (p != NULL){q = p;if (arr[i] < p->data)p = p->left;elsep = p->right;}2、遍历二叉树遍历二叉树有三种方法,分别是前序遍历、中序遍历和后序遍历。
(1)前序遍历void pre_order(pNode pTree){if (pTree != NULL){printf("%d ", pTree->data);pre_order(pTree->left);pre_order(pTree->right);}}3、查找节点找到关键字为data的节点,返回指向该节点的指针。
pNode search_node(pNode pTree, int data){if (pTree == NULL)return NULL;4、计算深度计算二叉树的深度,即为根节点到叶子节点的最长路径所包含的节点个数。
return left_depth > right_depth ? left_depth + 1 : right_depth + 1; }5、计算叶子节点数return leaf_count(pTree->left) + leaf_count(pTree->right);}6、删除节点删除节点分为两种情况:(1)被删除节点为叶子节点直接将其父节点指向该节点的指针设置为NULL即可。
数据结构与算法实验——二叉树基本操作

二叉树基本操作实验报告实验名称二叉树基本操作实验目的1.熟悉二叉树结点的结构和二叉树的基本操作;2.掌握二叉树每种操作的具体实现;3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法;4.在二叉树基本操作的基础上掌握对二叉树的一些其它操作的具体实现方法;5.掌握构造哈夫曼树以及哈夫曼编码的方法。
实验内容编制一个演示二叉树创建、遍历、计算等操作的程序。
问题描述用数据结构相关知识,实现二叉树的定义和操作。
该程序包括二叉树结构类型以及对二叉树操作的具体的函数定义(包括:初始化二叉树、清空二叉树、检查二叉树是否为空、遍历二叉树(先序、后序、中序、层次)、求二叉树的深度、求二叉树所有节点数)。
问题分析该实验是基于C语言和数据结构知识基础的对二叉树的基本操作的检验,无需设计复杂的算法,程序语句也相对简单。
因此,我直接按要求定义了对二叉树操作的具体函数,并于主函数中实现对应的功能调用,其中,功能选择靠switch语句实现。
实验步骤1.需求分析本演示程序用VC++编写,完成二叉树的生成、遍历、计算等基本操作。
①输入的形式和输入值的范围:以字符(其中‘#’表示虚节点)的形式输入,以创建二叉树;在输入二叉树节点前,必须先确定该序列能正确创建二叉树。
②输出的形式:在所有三种操作中都显示操作是否正确以及操作后二叉树的内容。
③程序所能达到的功能:完成二叉树的生成、遍历(包括先序、后序、中序、层次四种方式)、计算等基本操作。
④测试数据:创建操作中依次输入a,b,d,#,g,#,#,#,c,e,#,#,f,#,#生成一个二叉树。
2.概要设计1)为了实现上述程序功能,需要定义二叉树的抽象数据类型:ADT BitTree {数据对象:由一个根节点和两个互不相交的左右子树构成数据关系:结点具有相同的数据类型及层次结构基本操作:Void BinTreeInit(BitTree *T)初始条件:无操作结果:初始化一棵二叉树Void BinTreeCreat(BitTree *T)初始条件:二叉树T已存在操作结果:按先序次序创建一棵二叉树2)本程序包含7个函数:①主函数main() ②初始化二叉树函数BinTreeInit() ③建立一棵二叉树函数BinTreeCreat() ④先序遍历函数PreOrderTraverse() ⑤中序遍历函数InOrderTraverse()⑥后序遍历函数PostOrderTraverse()⑦层次遍历函数LevelOrderTraverse()⑧求二叉树深度函数Countlevel()⑨检验空树函数BinTreeEmpty()⑩求节点数函数 Countnode()函数说明#include<stdio.h>#include<stdlib.h>typedef char Datatype;typedef struct NodeType{Datatype data;struct NodeType *lchild;struct NodeType *rchild;}BiTNode;typedef BiTNode * BinTree;//初始化二叉树。
实验五:二叉树的定义及基本操作

实验五:二叉树的定义及基本操作(必做:基本2学时,扩展4学时)一、实验目的:.熟练掌握二叉树的二叉链表存储结构.掌握二叉树的非线性和递归性特点.熟练掌握二叉树的递归遍历操作的实现方法,掌握二叉树的非递归遍历操作的实现.掌握线索二叉树的定义和基本操作.加深对二叉树结构和性质的理解,逐步培养解决实际问题的编程能力二、实验内容:(一)基本实验内容:.定义二叉树的链式存储结构;.实现二叉树的基本操作:建空树、销毁二叉树、生成二叉树(先序,中序或后序)、判二叉树是否为空、求二叉树的深度、求二叉树的根等基本算法;.实现二叉树的递归(先序、中序或后序)遍历算法;1.问题描述:利用二叉树的链式存储结构,设计一组输入数据(假定为一组整数或一组字符),能够对二叉树进行如下操作:.创建一棵空二叉树;.对一棵存在的二叉树进行销毁;.根据输入某种遍历次序输入二叉树中结点的值,依序建立二叉树;.判断某棵二叉树是否为空;.求二叉树的深度;.求二叉树的根结点,若为空二叉树,则返回一特殊值;.二叉树的遍历,即按某种方式访问二叉树中的所有结点,并使每个结点恰好被访问一次;.编写主程序,实现对各不同的算法调用;其他算法的描述省略,参见实现要求说明。
2.实现要求:.“构造空二叉树算法”操作结果:构造一个空二叉树T;.“销毁二叉树算法”初始条件:二叉树T存在;操作结果:销毁二叉树T;.“创建二叉树算法”初始条件:可以根据先序、中序和后序输入二叉树中结点的值(可为字符型或整型);操作结果:以选择的某种次序建立二叉树T;.“判二叉树是否为空算法”初始条件:二叉树T存在;操作结果:若T为空二叉树,则返回TRUE,否则FALSE;.“求二叉树的深度算法”初始条件:二叉树T存在;操作结果:返回T的深度;.“求二叉树的根算法”初始条件:二叉树T存在;操作结果:返回T的根;.“先序递归遍历算法”初始条件:二叉树T存在,Visit是对结点操作的应用函数;操作结果:先序递归遍历T,对每个结点调用函数Visit一次且仅一次;.“中序递归遍历算法”初始条件:二叉树T存在,Visit是对结点操作的应用函数;操作结果:中序递归遍历T,对每个结点调用函数Visit一次且仅一次;.“后序递归遍历算法”初始条件:二叉树T存在,Visit是对结点操作的应用函数;操作结果:后序递归遍历T,对每个结点调用函数Visit一次且仅一次;(二)扩展实验内容:利用二叉树的链式存储结构,设计一组输入数据(假定为一组整数或一组字符),能够对二叉树进行如下操作:.求某一个结点的双亲结点,求某一个结点的左孩子(或右孩子)结点;求某一个结点的左兄弟(或右兄弟)算法;.利用栈,实现二叉树的非递归(先序、中序或后序)遍历算法;.利用队列,实现层序递归遍历二叉树;.定义线索二叉树的链式存储结构,建立线索二叉树,实现线索二叉树的插入和删除操作;1.问题描述:.求二叉树中某个指定结点的父结点,当指定结点为根时,返回一特殊值;.求二叉树中某个指定结点的左孩子结点,当指定结点没有左孩子时,返回一特殊值;.求二叉树中某个指定结点的右孩子结点,当指定结点没有右孩子时,返回一特殊值;.实现中序非递归遍历二叉树算法一定采用二叉链表存储结构,并且仿照递归算法执行过程中递归工作栈的状态变化状况直接实现栈的操作,写出相应的非递归算法;中序和后序类似;.编写主程序,实现对各不同的算法调用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5:二叉树的基本操作(6学时)
一、实验目的
1.理解二叉树的基本概念和特点
2.掌握二叉树的链式存储结构
3.掌握二叉树的基本操作
4.掌握二叉树遍历操作
5.掌握哈夫曼树的构造算法和基本操作
二、实验内容
1. 实现二叉树的如下操作,二叉树如下图所示。
(采用二叉链存储结构实现)
(1)输出二叉树b;
(2)输出C节点的左、右孩子节点值;
(3)输出二叉树的深度;
(4)输出二叉树b的节点个数;
(5)输出二叉树b的叶子节点个数。
A
B C
D
G
E F
b
具体效果如下:
三、实验要求
1.独立完成实验程序的编写与调试;
2.实验完成后填写实验报告,学习委员按学号从小到大的顺序提交。
四、思考题
1.思考二叉树先序遍历、中序遍历、后序遍历的递归和非递归算法的实现方法。
方法说明:
(1)CreateBTNode(*b,*str):根据二叉树括号表示法字符串str生成对应的二叉链存储结
构,后者的根节点为*b。
(2)FindNode(BTNode *b,ElemType x):在二叉树b中寻找data域值为x的节点,并返回指
向该节点的指针。
(3)LchildNode(BTNode *p):求二叉树中节点*p的左孩子节点。
(4)RchildNode(BTNode *p):求二叉树中节点*p的右孩子节点。
(5)BTNodeDepth(BTNode *b):求二叉树b的高度,若二叉树为空,则其高度为0;否则,
其高度等于左子树与右子树的高度中的最大高度加1。
(6)DispBTNode(BTNode *b):以括号表示法输出一棵二叉树。
(7)Nodes(BTNode *b):求二叉树b的节点个数
(8)LeafNodes(BTNode *b):求二叉树b的叶子节点个数
(9)DestroyBTNode(BTNode *&b):销毁二叉树b。