一次函数系数与图像关系
一次函数-一次函数的概念、图像、与基本性质(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
关于学生小组讨论部分,我发现学生们在讨论一次函数在实际生活中的应用时,能够提出一些有创意的想法。但在分享成果时,部分学生的表达能力仍有待提高。为了提高学生的表达能力,我计划在今后的课堂中增加一些口语表达训练,如小组代表发言、角色扮演等。
最后,在总结回顾环节,学生对一次函数的知识点有了更深刻的理解。但在课后反馈中,仍有部分学生表示对某些知识点存在疑问。针对这个问题,我将在课后加强个别辅导,关注学生的掌握情况,并及时解答他们的疑问。
(4)空间想象能力的培养:对于一次函数图像的想象和绘制,学生可能缺乏空间想象力。
突破方法:借助教学软件、实物模型等辅助工具,帮助学生建立一次函数图像的空间概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数的概念、图像与基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人一起跑步,一个人跑得快,一个人跑得慢,他们的距离是如何变化的?”这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、图像和基本性质。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
一次函数的图像待定系数法

本文介绍一次函数的图像待定系数法,包括常见一次函数的形式、解决一次 函数图像待定系数的方法以及案例分析。
常见一次函数的形式
一般形式
y = ax + b
点斜式
y - y1 = m(x - x1)
斜率截距形式
y = mx + c
两点式
(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)
解决一次函数图像待定系数的方法
• 给定两点求一次函数 • 给定函数值求一次函数 • 给定斜率求一次函数 • 给定截距求一次函数
案例分析1:给定两点求一次函数
已知点A(1, 2)和点B(3, 8),求通过这两点的一次函数。
已知数据
A(1, 2)和B(3, 8)
解决方法
使用两点式,代入数据求解
解决方案
通过两点式求得函数为 y = 3x - 1
案例分析2:给定函数值求一次函数
已知函数值为 y = 4x + 1,求对应的一次函数。
已知数据
y = 4x + 1
解决方法
根据函数的形式,确定函 数的系数
解决方案
一次函数为 y = 4x + 1
案例分析3:给定斜率求一次函数
已知斜率为 m = 2,求对应的一次函数。
1
已知数据
m=2
解决方法
2
根据斜率截距形式,确定函数的斜率
和截距
3
解决方案
一次函数为 y = 2x
案例分析4:给定截距求一次函数
已知截距为 c = -3,求对应的一次函数。
已知数据 解决方法 解决方案
c = -3 根据斜率截距形式,确定函数的斜率和截距 一次函数为 y = x - 3
一次函数图像与性质ppt课件

图
象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是
一
条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .
完整版)一次函数图像与性质练习题

完整版)一次函数图像与性质练习题授课目的与考点分析:本文主要介绍了一次函数图像与系数的关系,包括直线的平移和位置关系,以及k、b对图像和性质的影响等内容。
文章还提供了一些例题,帮助读者更好地理解和掌握相关知识点。
一、一次函数图像与系数的关系1.函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线:当b>0时,直线y=kx+b是由直线y=kx向上平移b个单位长度得到的;当b<0时,直线y=kx+b是由直线y=kx向下平移|b|个单位长度得到的。
2.一次函数y=kx+b(k、b为常数,且k≠0)的图像与性质:正比例函数的图像是经过原点(0,0)和点(1,k)的一条直线;一次函数y=kx+b(k≠0)图像和性质如下:3.k、b对一次函数y=kx+b的图像和性质的影响:k决定直线y=kx+b从左向右的趋势,b决定它与y轴交点的位置,k、b一起决定直线y=kx+b经过的象限。
4.两条直线l1:y=k1x+b1和l2:y=k2x+b2的位置关系可由其系数确定:1)k1≠k2,即斜率不相等,l1与l2相交;2)k1=k2,且b1≠b2,即斜率相等但截距不等,l1与l2平行;例题:1.若b<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限2.若直线y=kx+b(k≠0)不经过第一象限,则k、b的取值范围是()A.k>0,b0,b≤0 XXX<0,b<0 D.k<0,b≤03.已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第象限。
4.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图像可能是()A. B. C. D.5.已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图像大致是()A. B. C. D.6.如果函数y=3x+m的图像一定经过第二象限,那么m的取值范围是()A.m>0 B.m≥0 C.m<0 D.m≤07.一次函数y=kx+k(k<0)的图像大致是()A. B. C. D.8.函数y=kx+k(k≠0)在直角坐标系中的图像可能是().已知一次函数y=−mx+n−2的图象如下图所示,则m、n的取值范围是()。
专题:一次函数的图像及性质重难点(答案)有答案

初中数学.精品文档如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯专题:一次函数的图像及性质重难点考点一一次函数的图像及性质1.一次函数y=kx+b与y=kx的图像关系(1)平移变换:y=kx------------------------→y=kx+b;(2)作图:通常采用“两点定线”法作图,一般取直线:与y轴的交点(0,b) ,与x轴的交点(-bk,0) ;注意:平移前后两直线,平行直线的系数k ;2.一次函数y=kx+b的图像与性质k b示意图象限增减性k>0 b>0y随x增大而.b<0k<0 b>0y随x增大而.b<0注意:①系数k叫直线的斜率,反映直线的倾斜程度,与直线的增减性有关,即:k>0时直线递增,k<0时直线递减;②常数b叫直线的截距,反映直线与y轴的交点位置,即:b>0时直线交于y正半轴,b<0时直线交于y负半轴.【例1】1.对于y=-2x+4的图象,下列说法正确的是(D) A.经过第一、二、三象限B.y随x的增大而增大C.图象必过点(-2,0) D.与y=-2x+1的图象平行2.若ab<0且a>b,则函数y=ax+b的图象可能是(A) 3.将函数y=-0.5x 的图象向上平移3个单位,得到的函数与x轴、y轴分别交于点A,B,则△AOB 的面积是9 .4.已知一次函数y=kx+2k+3(k≠0)的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1 .5.已知一次函数y=(2m-1)x-m+3,分别求下列m的范围:(1)过一、二、三象限;(2)不过第二象限;(3) y随x增大减小.(4)与y正半轴相交.解:(1) 12<m<3;(2) m≥3;(3) m<12;(4) m<3且m≠12.变式训练1:1.点A(x1,y1),B(x2,y2)是一次函数y=kx+2(k<0)图象上不同的两点,若t=(x2-x1)(y2-y1),则( A )A.t<0 B.t=0 C.t>0 D.t≤0 2.如图,在同一坐标系中,一次函数y=mx+n与正比例函数y=mnx (m,n为常数,且mn≠0)的图象可能是( A )3.将直线y=3个单位得到直线y=-3x-n,则实数m= - 3 ,n= -2 .4.已知函数y=abx+a-b的图像经过一、二、四象限,则函数y=ax+b的图像经过一三四象限.5.已知直线l:y=kx+b与直线y=-3x+4平行,且与直线y=-2x-2交y轴于上同一点.(1)直线l:y=kx+b的关系式为y=-3x-2 ;(2)当-3≤x<1时,求直线l的函数值y的取值范围.解:(2)-5<y≤7考点二一次函数关系式的确定1.求一次函数表达式的方法称为:待定系数法.【例2】1.已知y是x的一次函数,下表列出了y与x的部分x …-101…y …1m -5…A.-2.一次函数的图象经过点A(-2,-1),且与直线y=2x+1平行,则此函数的表达式为(B)A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-5 3.若y-2与x成正比例,且当x=1时,y=6,则y关于x的函数表达式是y=4x+2 .4.已知一次函数图像经过两点A(2,7)、B(m,-5),且与直线y=-2x+1相交于y轴一点C,则m的值是-2 .5.已知某产品的成本是5元/件,每月的销售量y(件)与销售价格x(元/件)成一次函数关系,调查发现,当售价定位30元/件时,每月可售出360件产品,若降价10元,每月可多售出80件.(1)求销售量y与销售价格x的函数关系式;(2)若某月可售出480件产品,求该月的利润.解:(1) y=-8x+600;(2)当y=480,x=15,利润=4800元.变式训练2:1.如图1,两摞相同规格的碗整齐地叠放,根据图信息,则饭碗的高度y(cm)与饭碗数x (个)之间关系式是y=1.5x+4.5 ;图1 图22.如图2,已知直线l1与直线l2相较于点A,点A的横坐标为-1,直线l2与x轴交于点B(-3,0),若△ABO的面积为3,则l1的函数关系式是y=-2x ;l2的函数关系式是y=x+3 .3.已知函数y=kx+b,当自变量x满足-3≤x≤2时,函数值y的取值范围是0≤y≤5,求该函数关系式.解:当k>0时y=x+3;当k<0时y=-x+2;考点三一次函数与方程、不等式【例3】1.如图3,函数y1=2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式2x>ax+3的解集是(A)A.x>1 B.x<1C.x>2 D.x<22.如图是直线y=kx+b的图象,图3初中数学.精品文档根据图上信息填空:(1)方程kx +b =0的解是 x =1 ; 方程kx +b =2的解是 x =0 ;(2)不等式kx +b >0的解集为 x <1 , 不等式kx +b <0的解集为 x >1 ; (3)当自变量x >0 时,函数值y <2, 当自变量x <0 时,函数值y >2;(4)不等式0<kx +b ≤2的解集为 0≤kx +b <1 ; 变式训练3:1.一元一次方程ax -b =0的解为x =-3,则函数y =ax -b 的图象与x 轴的交点坐标是( B ) A .(3,0) B .(-3,0) C .(0,3) D .(0,-3) 2.如图,函数y =ax +b 和y =kx 的交于点P ,根据图象解答:(1)方程ax +b -kx =0的解是 x =-4 ; (2)方程组⎩⎨⎧y =ax +b ,y =kx的解是 ;(3)不等式ax +b<kx 的解集是_ x >-4__;(4)不等式组 的解集为 -4<x <0 .考点四 两个一次函数相交综合应用【例4】如图,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A B ,,直线l 1,l 2交于点C . (1)求点D 的坐标和直线l 2的解析表达式; (2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标. 解:(1) D (1,0)和直线l 2:y =32x -6;(2) C (2,-3)和△ADC 的面积4.5; (3)点P 的坐标(6,3).※课后练习1.平面直角坐标系中,将y =3x 的图象向上平移6个单位,则平移后的图象与x 轴的交点坐标为( B ) A .(2,0) B .(-2,0) C .(6,0) D .(-6,0) 2.直线y =kx +b 经过第一、三、四象限,则直线y =bx -k 的图象可能是( C )3.直线y =3(x -1)在y 轴上的截距是-3 ,其图像不过第 二 象限且由直线y = 3x -1 向下平移2单位得到.4.已知直线y =kx +m 与直线y =-2x 平行且经过点P (-2,3),则直线y =kx +m 与坐标轴围成的三角形的面积是 14 .5.若y =ax +2与y =bx +3的交于x 轴上一点,则a b = 23 .6.已知函数y =2x -3,当自变量x 的取值范围是-1<x ≤0, 则函数值y 的取值范围是 -5<y ≤-3 .7.如图1,正比例函数y 1的图象与一次函数y 2的图象交于点A (1,2),两直线与y 轴围成的△AOC 的面积为2,则这正比例函数的解析式为y 1= 2x ,一次函数y 2= -2x +4 . 8.如图2,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得不等式组的解集 x <-3 .图1 图29.某商店购进一批单价为16元/件的电子宠物,销售一段时间后,为了获取更多利润,商店决定提高售价.经试销发现:当按20元/件的价格销售时,每月能卖出360件;当按25元/件的价格销售时,每月能卖出210件.若每月的销售数量y (件)是售价x (元/件)的一次函数,则按28元/件的价格销售时,这个月可卖出____120____件,这个月的利润是___1440___元.10.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (1,b ). (1)根据图中信息填空: ①b =2 ; ②方程组的解为;③不等式x+1≤mx+n 的解集为 x ≤1 ;(2)判断直线l 3:y=nx+m 是否也经过点P ? 请说明理由.解:(2)直线l 3:y=nx+m 经过点P . 理由:因为y=mx+n 经过点P (1,2),所以m+n=2,所以直线y=nx+m 也经过点P .11.如图,直线l 1:y 1=2x +1与坐标轴交于A ,C 两点,直线l 2:y 2=-x -2与坐标轴交于B ,D 两点,两直线的交点为点P . (1)求△APB 的面积;(2)利用图象直接写出下列不等式的解集: ①y 1<y 2; ②y 1<y 2≤0. 解:(1)联立l 1,l 2的表达式, 得⎩⎨⎧ y =2x +1,y =-x -2,解得⎩⎨⎧x =-1,y =-1, ∴点P 的坐标为(-1,-1).又∵A (0,1),B (0,-2),∴S △APB =3×12=32.(2)由图可知,①当x <-1时,y 1<y 2. ②-2≤x <-1时,0<y 2≤y 1.12.“十一”期间,小明一家计划租用新能源汽车自驾游.当前,有甲乙两家租车公司,设租车时间为x h ,租用甲公司的车所需要的费用为y 1元,租用乙公司的车所需要的费用为y 2元,他们的租车的情况如图所示.根据图中信息: (1)直接写出y 1与y 2的函数关系式;{02<-<+kx b ax初中数学.精品文档(2)通过计算说明选择哪家公司更划算. 解:(1)y 1=15x +80(x ≥0), y 2=30x (x ≥0).(2)当y 1=y 2时,x =163,选甲乙一样合算;当y 1<y 2时,x >163,选甲公司合算;当y 1>y 2时,x <163,选乙公司合算.。
20.2一次函数的图像(1)

20.2一次函数的图像(1)知识梳理+九大题型分析+经典同步练习知识梳理1、一次函数(、为常数,且≠0)的图象:解析式(为常数,且)自变量取值范围全体实数形状过(0,)和(,0)点的一条直线、的取值示意图位置经过一、二、三象限经过一、三、四象限经过一、二、四象限经过二、三、四象限图象趋势从左向右上升从左向右下降函数变化规律随的增大而增大随的增大而减小y kx b =+k b k y kx b =+k 0k ¹b bk-k >0k <k b 0b >0b <0b >0b <y x y x2、 、对一次函数的图象和性质的影响:①一条直线与轴的交点的纵坐标叫做这条直线在轴上的截距,直线的截距是.②由于值的不同,则直线相对于轴正方向的倾斜程度不同,这个常数称为直线的斜率.③决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.3、函数(、为常数,且≠0)的图象是一条直线 :①当>0时,直线是由直线向上平移个单位长度得到的;②当<0时,直线是由直线向下平移||个单位长度得到的.4.、两条直线:和:的位置关系可由其系数确定:①与相交; ②,且与平行;典型例题题型一:由k ,b 的符号判断一次函数图像例题1一次函数y =-3x -2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】根据一次函数的性质,当k <0,b <0时,图象经过第二、三、四象限解答.解:∵k=-3<0,∴函数经过第二、四象限,k b y kx b =+y y y kx b =+b k x k k y kx b =+b y k b y kx b =+y kx b =+k b k b y kx b =+y kx =b b y kx b =+y kx =b 1l 11y k x b =+2l 22y k x b =+12k k ¹Û1l 2l 12k k =12b b ¹Û1l 2l∵b=﹣2<0,∴函数与y 轴负半轴相交,∴图象不经过第一象限.故选A题型二:利用一次函数的图像判断k ,b 的符号例题2已知一次函数y kx b =+的图象如图所示,则k ,b 的符号是( )A .0k >,0b >B .0k >,0b <C .k 0<,0b >D .k 0<,0b <【答案】D 【解析】由图可知,一次函数y=kx+b 的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k 、b 的关系作答.解:由一次函数y =kx+b 的图象经过二、三、四象限,又有k <0时,直线必经过二、四象限,故知k <0,再由图象过三、四象限,即直线与y 轴负半轴相交,所以b <0.故答案为:D .题型三:k ,b 的符号与一次函数图像的综合问题例题3若关于x 的一元二次方程x 2﹣2x+kb+1=0没有实数根,则一次函数y =kx+b 的大致图象可能是( )A .B .C .D .【答案】A 【解析】由根的判别式△<0,即可得出k 、b 同号,再利用一次函数图象与系数的关系找出k >0、b >0或k <0、b <0时,一次函数y =kx+b 的图象经过的象限,此题得解.解:∵关于x 的一元二次方程x 2﹣2x+kb+1=0没有实数根,∴△=(﹣2)2﹣4×1×(kb+1)=﹣4kb <0,∴k 、b 同号.当k >0、b >0时,一次函数y =kx+b 的图象经过第一、二、三象限;当k <0、b <0时,一次函数y =kx+b 的图象经过第二、三、四象限.故选:A题型四:一次函数图像平移问题(要点:左加右减(在x 上),上加下减(在y 上))例题4将一次函数23y x =-+的图像沿x 轴向左平移4个单位长度后,得到的新的图像对应的函数关系式为( )A .25y x =--B .211y x =-+C .27y x =-+D .21y x =--【答案】A直接利用一次函数平移规律“上加下减”、“左加右减”即可得到答案.将一次函数y =﹣2x +3的图像沿x 轴向左平移4个单位长度,平移后所得图像对应的函数关系式为:2(4)3y x =-++,即y =﹣2x -5.故选:A .题型五:一次函数的图像与坐标轴交点问题(利用坐标轴上点的坐标特点可解)例题5已知方程ax +b =0的解为x =32-,则一次函数y =ax +b 图象与x 轴交点的横坐标为( )A .3B .23-C .﹣2D .32-【答案】D 【解析】关于x 的一元一次方程ax +b =0的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y =ax +b 的图象与x 轴交点的坐标.解:方程ax +b =0的解为x =32-,则一次函数y =ax +b 的图象与x 轴交点的坐标为(32-,0),即一次函数y =ax +b 图象与x 轴交点的横坐标为32-.故选:D .拓展题:在平面直角坐标系中,点O 为原点,点(1,0)A ,直线3y kx =-交x 轴于点B ,交y 轴于点C ,若ABC D 的面积6,则k =( )A .±1B .35±C .1或35-D .1-或35【答案】D利用一次函数图象上点的坐标特征可得出点B ,C 的坐标,进而可得出OC ,AB 的长,利用三角形的面积公式结合ABC D 的面积为6,即可得出关于k 的方程,解之即可得出结论.解:当0x =时,033y k =´-=-,\点C 的坐标为(0,3)-,3OC =;当0y =时,30kx -=,解得:3x k=,\点B 的坐标为3(k,0),3|1|AB k=-.162ABC S AB OC D ==Q g ,即133|1|62k´-=,解得:1k =-或35k =.故选:D .题型六:利用一次函数图像或者解不等式求自变量或函数值的范围关键词:数形结合、几何法、代数法、一次函数与不等式例题6一次函数2y kx =+与x 轴交于点(4,0)A ,则不等式21kx +<的解是( )A .2x >B .2x <C .2x >-D .2x <-【答案】A 【解析】先由题意求出一次函数表达式,然后再求解不等式的解集即可.解:由题意得:把点A 坐标代入解析式得:042k =+,解得1k=2-;\一次函数解析式为:122y x =-+,\1212x -+<,解得2x >;故选A .题型七:直线的倾斜程度与k 的大小关系例题7 帮练习第7题题型八:一次函数与其他函数相交问题例题8如图在平面直角坐标系中,直线y 6x =-+分别与x 轴、y 轴交于点A 、B ,与()y 0kx x=>的图象交于点C 、D .若CD =13AB ,则k 的值为( )A .4.B .6.C .8.D .10.【答案】C 【解析】先求出点A 、B 的坐标,于是可得AB 的长,进而可得CD 的长,设C 、D 的横坐标分别为a ,b ,则a ,b 是联立y =﹣x +6和y =kx并整理后的方程的解,由CD b -并结合根与系数的关系可得关于k 的方程,解方程即可求出k ,从而可得答案.解:对直线y =﹣x +6,令x =0,则y =6,令y =0,则x =6,∴点A 、B 的坐标分别为(6,0)、(0,6),∴OB =OA =6,∴AB==3CD,∠BAO=45°,∴CD=,联立y=﹣x+6和y=kx并整理得:x2﹣6x+k=0,设点C、D的横坐标分别为a,b,则a+b=6,ab=k,∵∠BAO=45°,∴CD b-,∴CD2=2(a﹣b)2=2[(a+b)2﹣4ab]=2(36﹣4k)=()2,解得:k=8.故选:C.题型九:一次函数的几何综合问题例题9已知直线y=x轴,y轴分别交于,A B两点,在x轴上取一点P,使得PABD是等腰三角形,则符合条件的点P有()个A.2B.3C.4D.5【答案】A【解析】根据等腰三角形的性质进行分类讨论:以AB为腰和底进行讨论即可求解.解:由题意,如图:Q 直线y =x 轴,y 轴分别交于,A B 两点,\()(1,0,A B ,\1,OA OB ==在Rt AOB V 中,2AB =,\∠ABO=30°,∠OAB=60°,又Q 在x 轴上取一点P ,使得PAB D 是等腰三角形,\①当AB=AP=2时,在x 轴上有()()123,0,1,0P P -;②当BP=AP 时,易得△ABP 为等边三角形,则有AB=BP=AP=2,所以()31,0P -;综上所述:符合条件的点P 有2个;故选A .一、单选题1.一次函数3y x =-+的图像经过的象限是( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限【答案】B 【解析】根据一次函数解析式k 和b 的符号,即可判定该函数图像经过的象限,即可解决.解:∵k <0∴一次函数图像y 随x 的增大而减小∵b >0∴图像交y 轴正半轴∴函数经过一、二、四象限故选B .【点睛】本题主要考查了一次函数图形的性质,熟练k 和b 决定图像位置是解决本题的关键.2.直线1y x =+与y 轴的交点是( )A .()1,0-B .()1,0C .()0,1D .()1,1--【答案】C 【解析】根据y 轴上点的坐标特征:横坐标为0,将x=0代入直线解析式中即可求出结论.解:当x=0时,011y =+=∴直线1y x =+与y 轴的交点是()0,1故选C .【点睛】此题考查的是求直线与y 轴的交点坐标,掌握y 轴上点的坐标特征:横坐标为0,是解决此题的关键.3.一次函数0y kx b kb =+,<,且y 随x 的增大而增大,则其图象可能是( )A .B .C .D .【答案】A【解析】先根据一次函数y kx b =+中,y 随x 的增大而增大,且0kb <,判断出k 与b 的符号,再根据一次函数的图象与系数的关系进行解答.∵一次函数y kx b =+中,y 随x 的增大而增大,∴0k >,∵0kb <,∴0b <,∴一次函数y kx b =+的图象过一、三、四象限.故答案为:A .【点睛】本题考查的是一次函数的图象与性质、一次函数的性质及不等式的基本性质,解决本题的关键是熟练掌握一次函数图像和系数的关系.4.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,4),则不等式﹣2x +b <0的解集为( )A.x>2B.x<2C.x<4D.x>4【答案】A【解析】首先把A点坐标代入一次函数解析式,算出b的值,进而可求出B点坐标,再结合图象可得不等式﹣2x+b <0的解集.∵一次函数y=﹣2x+b的图象过A(0,4),∴b=4,∴函数解析式为y=﹣2x+4,当y=0时,x=2,∴B(2,0),∴不等式﹣2x+b<0的解集为x>2,故选:A.【点睛】此题主要考查一次函数与不等式的综合运用,熟练掌握,即可解题.5.某个一次函数的图象与直线162y x=+平行,并且经过点()2,4--,则这个一次函数的解析式为()A.152y x=--B.132y x=+C.132y x=-D.28y x=--【答案】C 【解析】根据两直线平行时k 的值相等,设出所求解析式,把已知点坐标代入计算即可.由一次函数的图象与直线y ═12x +6平行,设直线解析式为y =12x +b ,把(−2,−4)代入得:−4=−1+b ,即b =−3,则这个一次函数解析式为y =12x−3.故选:C .【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数的图象,熟练掌握待定系数法是解本题的关键.6.如图,已知一次函数y kx b =+的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②当2x >时,0y <;③当0x <时,3y <. 其中正确的是( )A .①②B .①③C .②③D .①③②【答案】A【解析】根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.由图象得:①关于x 的方程kx+b=0的解为x=2,故①正确;②当x>2时,y<0,故②正确;③当x<0时,y>3,故③错误;故选:A 【点睛】本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x 为未知数的一元一次方程,它都可以转化为kx+b=0(k ≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b 值为0时,求自变量的值.7.已知一次函数(3)1y a x b =+++的图象经过过一、二、四象限,那么a ,b 的取值范围是( )A .3a >-,1b >-B .3a <-,1b <-C .3a >-,1b <-D .3a <-,1b >-【答案】D【解析】由一次函数的图像经过过一、二、四象限可得:3a +<0且1b +>0,从而可得答案.解:因为一次函数(3)1y a x b =+++的图象经过过一、二、四象限,所以:3a +<0且1b +>0,所以:3a <-,1b >-,故选D .【点睛】本题考查的是一次函数的图像的性质,同时考查一元一次不等式的解法,掌握一次函数的图像的性质是解题的关键.8.如图,四个一次函数y ax =,y bx =,1y cx =+,3y dx =-的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .b a d c>>>B .a b c d >>>C .a b d c >>>D .b a c d>>>【答案】B【解析】根据一次函数和正比例函数的图象与性质可得.解:∵y ax =,y bx =经过第一、三象限,且y ax =更靠近y 轴,∴0a b >>,由∵ 1y cx =+,3y dx =-从左往右呈下降趋势,∴0,0c d <<,又∵3y dx =-更靠近y 轴,∴d c <,∴a b c d>>>故答案为:B .【点睛】本题考查了一次函数及正比例函数的图象与性质,解题的关键是熟记一次函数及正比例函数的图象与性质.9.将直线y=3x 向左平移2个单位长度,再向上平移5个单位长度,平移后所得新直线的表达式为( )A .()3-25y x =+B .()325y x =++C .()3-2-5y x =D .()325y x =+-【答案】B【解析】根据直线的平移规律:上加下减,左加右减解答即可.解:将直线y=3x 向左平移2个单位长度,再向上平移5个单位长度,平移后所得新直线的表达式为()325y x =++.故选:B .【点睛】本题考查了直线的平移,属于基本题型,熟练掌握一次函数的平移规律是解题关键.10.如图,点(,3)M m 在直线27y x =-+与直线21y x =-+之间(不在这两条直线上),则m 的取值范围是( )A .12m -<<B .02m <<C .51m -<<D .11m -<<【答案】A【解析】分别求出点M 在两条直线上时对应的m 的值,进而可得答案.解:当点(,3)M m 在直线27y x =-+上时,273m -+=,解得2m =,当点(,3)M m 在直线21y x =-+上时,213m -+=,解得1m =-;∵点(,3)M m 在直线27y x =-+与直线21y x =-+之间(不在这两条直线上),∴m 的取值范围为12m -<<.故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,属于常考题型,正确理解题意、熟练掌握一次函数的图象与性质是解题关键.二、填空题11.若一次函数()121y k x k =++- 的图象不经过第一象限,则k 的取值范围是_____【答案】k <-12【解析】根据一次函数图像所在的象限,得到关于k 的不等式组,进而即可求解.∵一次函数()121y k x k =++- 的图象不经过第一象限,∴1+2k <0,且k-1<0,∴k <-12,且k <1,∴k <-12故答案是:k <-12【点睛】本题主要考查一次函数的系数与图像的关系,熟练掌握y=kx+b (k ≠0,k ,b 为常数)中,常数k ,b 的几何意义,是解题的关键.12.直线1:24l y x =+沿x 轴向右移动4个单位长度得到直线2l ,则直线2l 的解析式为______.【答案】24y x =-【解析】根据函数图象平移的方法:左加右减判断即可;直线1:24l y x =+沿x 轴向右移动4个单位长度得到:()2:24424=-+=-l y x x ;故答案是:24y x =-.【点睛】本题主要考查了一次函数图象的平移,准确分析判断是解题的关键.13.直线3y x =-+与x 轴,y 轴分别交与点,M N ,则点,M N 的坐标分别__________和__________【答案】()3,0 ()0,3【解析】分别把y=0或x=0代入解析式计算出对应的自变量和函数值,则可确定直线与x 轴、y 轴的交点坐标解:把y=0代入得-x+3=0,解得x=3;把x=0代入得y=3所以直线3y x =-+与x 轴、y 轴的交点坐标分别为()3,0,()0,3故答案为()3,0,()0,3【点睛】本题考查一元一次函数图象上的点的坐标特征,熟练掌握知识点是解此题的关键14.如图,直线y kx b =+分别交坐标轴于()5,0-,()0,3两点,则不等式0kx b +<的解集是__________.【答案】5x <-【解析】求0kx b +<的解集,就是求使一次函数y kx b =+的值小于0的自变量x 的取值范围.解:求0kx b +<的解集,从图象上可以看出当0y <时,5x <-.故答案为:5x <-.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.在一次函数y=kx+2中,若y 随x 的增大而增大,则它的图象不经过第 象限.【答案】四.【解析】一次函数y=kx+b 的图象有两种情况:①当k 0>,b 0>时,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k 0>,b 0<时,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k 0<,b 0>时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.由题意得,函数y=kx+2的y 的值随x 的值增大而增大,因此,k 0>.由k 0>,b 0>,知它的图象经过第一、二、三象限,不经过第四象限.16.已知一次函数y =kx+b 的图象经过一,二,四象限,且当2≤x ≤4时,4≤y ≤6,则b k的值是_____.【答案】-8【解析】利用一次函数的性质得到k<0,则判断x=2时,y=6;x=4时,y=4,然后根据待定系数法求得k、b的值,即可求得bk的值.解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,∴函数y随x的增大而减小,∵当2≤x≤4时,4≤y≤6,∴当x=2时,y=6;当x=4时,y=4,∴26 44 k bk b+=ìí+=î,解得:18kb=-ìí=î,∴bk=﹣8,故答案为:﹣8.【点睛】本题考查了一次函数的性质,一次函数图象上点的坐标特征以及待定系数法求一次函数的解析式,根据题意得出当x=2时,y=6;当x=4时,y=4是解题的关键.17.已知:一次函数y=(2﹣m)x+m﹣3.(1)如果此函数图象经过原点,那么m应满足的条件为__;(2)如果此函数图象经过第二、三、四象限,那么m应满足的条件为__;(3)如果此函数图象与y轴交点在x轴下方,那么m应满足的条件为__;(4)如果此函数图象与y轴交点到x轴的距离为2,那么m应满足的条件为__.【答案】m=3 2<m<3 m<3且m≠2 m=5或m=1【解析】(1)将点(0,0)代入一次函数解析式,即可求出m的值;(2)根据一次函数的性质知,当该函数的图象经过第二、三、四象限时,2-m<0,且m-3<0,即可求出m 的范围;(3)先求出一次函数y=(2-m)x+m-3与y轴的交点坐标,再根据图象与y轴交点在x轴下方得到2-m≠0且m-3<0,即可求出m的范围;(4)先求出一次函数y=(2-m)x+m-3与y轴的交点坐标,再根据图象与y轴交点到x轴的距离为2,得出交点的纵坐标的绝对值等于2,即可求出m的值.(1)∵一次函数y=(2﹣m)x+m﹣3的图象过原点,∴m﹣3=0,解得m=3.故答案为:m=3;(2)∵该函数的图象经过第二、三、四象限,∴2﹣m<0,且m﹣3<0,解得2<m<3.故答案为:2<m<3;(3)∵y=(2﹣m)x+m﹣3,∴当x=0时,y=m﹣3,由题意,得2﹣m≠0且m﹣3<0,∴m<3且m≠2.故答案为:m<3且m≠2;(4)∵y=(2﹣m)x+m﹣3,∴当x =0时,y =m ﹣3,由题意,得2﹣m ≠0且|m ﹣3|=2,∴m =5或m =1.故答案为:m =5或m =1.【点睛】本题考查了一次函数与系数的关系:由于y=kx+b 与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.k >0,b >0⇔y=kx+b 的图象在一、二、三象限;k >0,b <0⇔y=kx+b 的图象在一、三、四象限;k <0,b >0⇔y=kx+b 的图象在一、二、四象限;k <0,b <0⇔y=kx+b 的图象在二、三、四象限.也考查了一次函数图象上点的坐标特征以及一次函数的定义.18.已知一次函数y 1=x +2与y 2=-x +b (b 为常数),当x <1时,y 1<y 2.则b 的取值范围是___________.【答案】b≥4【解析】由12y y <,求出b 2x 2-<根据x<1时,12y y <,列出b 212-³,解出不等式即可求出答案.∵12y y <,y 1=x +2,y 2=-x +b∴x+2<-x+b∴2x<b-2∴b 2x 2-< 又∵x<1时,12y y < ∴b 212-³∴b ≥4故答案为:b ≥4【点睛】本题考查了一次函数与不等式的关系,掌握函数与不等式的关系是解题的关键.19.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则k 的值为________.【答案】±2【解析】求出直线与坐标轴的交点坐标或坐标表达式,根据三角形的面积公式建立关系式,即可求出k 的值.直线与y 轴的交点坐标为(0,﹣4),与x 轴的交点坐标为(4k,0),则与坐标轴围成的三角形的面积为14442k´´=,解得k=±2,经检验,k=±2是方程的解且符合题意,故答案为:±2.【点睛】本题考查了一次函数与坐标轴的交点与相关三角形的面积问题,要熟悉函数与坐标轴的交点的求法.20.在平面直角坐标系xOy 中,直线l :1(0)y kx k =-¹与直线x k y k =-=-,分别交于点A B ,.直线x k =-与y =k -交于点C .记线段AB ,BC AC ,围成的区域(不含边界)为W .横,纵坐标都是整数的点叫做整点.(1)当2k =-时,区域W 内的整点个数为_____;(2)若区域W 内没有整点,则k 的取值范围是_______.【答案】6 01k <…或k=2【解析】(1)当2k =-时,直线21y x =--与直线22x y ,==的交点A B ,的坐标为:322æö÷ç-÷ç÷çèø, ,()2,-5,作出函数图像即可得出答案.(2)将k=1与k=2的函数图像作出,得出线段AB ,BC AC ,围成的区域(不含边界)无整点,即区域W 内没有整点.(1)解:如图示,当2k =-时,直线21y x =--与直线22x y ,==的交点A B ,的坐标为:322æö÷ç-÷ç÷çèø ,()2,-5,则,区域W 内的整点有(0,0),(0,1),(1,-2),(1,-1),(1,0),(1,1)共6个.(2)当1k =时,图像如下图示线段AB ,BC AC ,围成的区域(不含边界)无整点,当2k =时,图像如下图示线段AB ,BC AC ,围成的区域(不含边界)无整点,综上所述,由(1)的图像可知,当01k <…或k=2时,区域W 内没有整点.【点睛】本题考查的是一次函数图像的性质特点,解题的关键是要懂得根据题目的条件,画出相对应的函数图像.三、解答题21.已知一次函数122y x =+的图象与x 轴交于点A ,与y 轴交于点B ,求A ,B 两点的坐标并在如图的坐标系中画出此函数的图象.【答案】()4,0A -;()0,2B ;图象见解析.【解析】根据一次函数的解析式求出点A 、B 的坐标,然后利用五点作图法,最好使用列表-描点-连线的作图步骤作出图象.解:当x=0时,则有:2y =;当y=0时,则有:4x =-;∴点()4,0A -,点()0,2B ,∴函数图像如图所示:【点睛】本题主要考查一次函数的图像,熟练掌握一次函数图像的画法是解题的关键.22.画出函数y=-2x+2的图象,结合图象回答下列问题:(1)这个函数中,随着自变量x的增大,函数值y是增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y<0?【答案】(1)见详解;(2)x=1;(3)x>1【解析】(1)画出函数图像,由图像可得;y随着x的增大而减小,图像从左至右下降;(2)由图像可得,当x=1时,y=0;(3)由图像可得,当x>1时,y<0.(1)函数y=-2x+2的图象为:由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降;(2)由图象知:当x=1时,y=0;(3)由图象知:当x>1时,y<0.23.一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?【答案】(1)y=x﹣2.(2)8;(3)14【解析】【解析】(1)观察函数的图象,得出一次函数经过点(2,0)(0,﹣2),代入函数解析式即得出一次函数的表达式.(2)(3)再分别令x=10和y=12,即可得出对应的y,x的值.解:(1)观察图象可得一次函数的图象经过点(2,0),(0,﹣2)代入函数的解析式y=kx+b中,得202k bb+=ìí=-î,解得k1b2=ìí=-î,∴一次函数的表达式为y=x﹣2.(2)令x=10,得y=10﹣2=8(3)令y=12,得x=12+2=14.【点睛】本题考查了待定系数法求一次函数的解析式,比较简单,同学们要熟练掌握.24.已知一次函数的图像经过()1,5A --和()1,1B 两点.(1)求这个一次函数的解析式;(2)若点(),1C a a -+在这个一次函数的图象上,求a 的值.【答案】(1)函数的解析式是:y=3x−2;(2) a=0.75.【解析】(1)设函数的解析式是y=kx+b ,把A (-1,-5)和B (1,1)代入函数的解析式,然后解方程组即可求解;(2)把点C 代入一次函数的解析式中,列方程可得a 的值.(1)设函数的解析式是y=kx+b ,根据题意得:53k b k b -+=-ìí+=î,解得:32k b =ìí=-î,则函数的解析式是:y=3x−2;(2)∵点C(a,−a+1)在这个一次函数的图象上,∴−a+1=3a −2a=0.75.【点睛】本题考查一次函数图象上点的坐标特征和待定系数法求一次函数解析式,解题的关键是掌握待定系数法求一次函数解析式.25.如图,已知直线123y x =-+和21y mx =-分别交y 轴于点A ,B ,两直线交于点()1,C n .(1)求m ,n 的值;(2)求ABC V 的面积.【答案】(1)2m =,1n =;(2)△ABC 的面积为2.【解析】(1)先利用直线1y 求出点C 坐标,再利用直线2y 求出m 的值.(2)两个函数图象与y 轴的交点为A 、B ,即x=0时,可以求出A 、B 坐标,即可得出三角形面积.解:(1)∵两直线交于点()1,C n ∴将()1,C n 代入123y x =-+得:n=-2+3=1即:C 点坐标为:(1,1)将C (1,1)代入21y mx =-得:m-1=1即:m=2故:m=2,n=1.(2)∵当x=0时,13y =∴A (0,3)当x=0时,2-1y =∴B (0,-1)∴11141222ABC S AB D =´=´´= 故:△ABC 的面积为2.【点睛】本题属于一次函数的基础题型,根据已知点求出函数解析式,然后利用解析式求出点坐标,并求出三角形面积.26.直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点,直线24(0)y kx k k =+->与直线2y x =--相交于C 点.(1)请说明24(0)y kx k k =+->经过点(4,2);(2)1k =时,点D 是直线24(0)y kx k k =+->上一点且在y 轴的右侧,若2DOB DOA S S =V V ,求点D 的坐标;(3)若点C 在第三象限,求k 的取值范围.【答案】(1)见解析;(2)(4,2)D 或42,33D æö-ç÷èø;(3)113k <<【解析】(1)把x=4代入函数关系求出y 的值即可;(2)先求出A ,B 的坐标,进而求出OA ,OB 的值,再设点D 的坐标为(,2)a a -,根根据2DOB DOA S S =V V ,列出方程求解即可;(3)分别求出当直线24(0)y kx k k =+->经过点A ,B 时k 的值即可.解:(1)当4x =时,244242y kx k k k =+-=+-=∴点(4,2)在直线24(0)y kx k k =+->上.(2)∵直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点∴(2,0)A -,(0,2)B -∴2OA OB==设D 的坐标为(,2)a a -∵2DOB DOA S S =V V ,∴2|2|a a =-,∴4a =或43a =,∴(4,2)D 或42,33D æö-ç÷èø(3)当直线24(0)y kx k k =+->经过点A 时,0224k k =-+-,解之得,13k =当直线24(0)y kx k k =+->经过点B 时,有224k -=-,解之得,1k =∴若点C 在第三象限,则113k <<.【点晴】本题考查了一次函数与一元一次方程,是一次函数的综合题,利用数形结合进行分析是解题的关键.27.如图,已知直线:4AB y x =+与直线AC 交于点A ,与x 轴交于点B ,且直线AC 过点(2,0)C 和点(0,1)D ,连接BD .(1)求直线AC 的解析式.(2)求交点A 的坐标,并求出ABD △的面积.(3)在x 轴上是否存在一点P ,使得APD △周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)112y x =-+;(2)(2,2)A -,3ABD S =V ;(3)存在点P 使APD △周长最小2,03P æö-ç÷èø.【解析】(1)设直线AC 解析式y kx b =+,代入(2,0)C ,(0,1)D ,用待定系数法解题即可;(2)将直线AB 与直线AC 两个解析式联立成方程组,转化成解二元一次方程组,再结合三角形面积公式解题;(3)作D 、E 关于x 轴对称,利用轴对称性质、两点之间线段最短解决最短路径问题,再用待定系数法解直线AE 的解析式,进而令0y =,解得直线与x 轴的交点即可.(1)设直线AC 解析式y kx b =+,把(2,0)C ,(0,1)D 代入y kx b =+中,得201k b b +=ìí=î,解得121k b ì=-ïíï=î,\直线AC 解析式112y x =-+.(2)联立1124y x y x ì=-+ïíï=+î,解得22x y =-ìí=î.(2,2)A \-,把0y =代入4y x =+中,得4x =-,(4,0)B \-,(2,0)C Q ,6BC \=,1162622ABC A S BC y \=×=´´=V ,1161322DBC D S BC y =×=´´=V ,633ABD ABC DBC S S S \=-=-=V V V .故答案为:(2,2)A -,3ABD S =V .(3)作D 、E 关于x 轴对称,PD PE \=,APD QV 周长AP PD AD =++,AD Q 是定值,AP PD \+最小时,APD △周长最小,AP PD AP PE AE +=+³Q ,\A 、P 、B 共线时,AP PE +最小,即AP PD +最小,连接AE 交x 轴于点P ,点P 即所求,(0,1)D Q ,D 、E 关于x 轴对称,(0,1)E \-,设直线AE 解析式y mx n =+,把(2,2)A -,(0,1)E -代入y mx n =+中,221m n n -+=ìí=-î,解得321m n ì=-ïíï=-î,312y x \=--,令0y =得3102x --=,23x =-,2,03P æö\-ç÷èø,即存在点P 使APD △周长最小2,03P æö-ç÷èø.【点睛】本题考查一次函数、二元一次方程组、轴对称最短路径问题、与x 轴交点等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
专题06 一次函数图像的五种考法(解析版)(北师大版)

专题06一次函数图像的五种考法类型一、图像的位置关系问题例.直线y kx k =-与直线y kx =-在同一坐标系中的大致图像可能是()A .B .C .D .【答案】A【分析】根据直线y kx k =-与直线y kx =-图像的位置确定k 的正负,若不存在矛盾则符合题意,据此即可解答.【详解】解:A 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以A 选项符合题意;B 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以B 选项不符合题意;C 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以C 选项不符合题意;D 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以D 选项不符合题意.故选A .【点睛】本题主要考查了一次函数的图像:一次函数0y kx b k =+≠()的图像为一条直线,当0k >,图像过第一、三象限;当0k <,图像过第二、四象限;直线与y 轴的交点坐标为()0b ,.【变式训练1】在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B ...【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.k>,故由一次函数图像与【详解】A、由正比例函数图像可知0,即0点的上方,故选项A不符合题意;....【答案】B【分析】先根据直线1l,得出k然后再判断直线2l的k和b的符号是否与直线.B...【答案】C【分析】根据一次函数的图象性质判断即可;ab>,【详解】∵0同号,A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;故选:A .【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.类型二、图像与系数的关系则13k≥或3k≤-,故答案为:【点睛】本题考查了一次函数的图象与性质,熟练掌握数形结合思想是解题关键.类型三、图像的平移问题例.将直线y kx b =+向左平移2个单位,再向上平移4个单位,得到直线2y x =,则()A .2k =,8b =-B .2k =-,2b =C .1k =,4b =-D .2k =,4b =【答案】A【分析】根据直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,然后结合得到直线2y x =,即可解出k 和b 的值.【详解】解:直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,得到直线2y x =,2k ∴=,240k b ++=,2k ∴=,8b =-,故选:A .【点睛】本题考查了一次函数图像平移变换,熟练掌握图象左加右减,上加下减的变换规律是解答本题的关键.【变式训练1】对于一次函数24y x =-+,下列结论错误的是().A .函数的图象与x 轴的交点坐标是(0,4)B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数值随自变量的增大而减小【答案】A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 选项:当0y =时,2x =,所以函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 选项:函数的图象经过第一、二、四象限,不经过第三象限,故B 选项正确;C 选项:函数的图象向下平移4个单位长度,得到函数244y x =-+-,即2y x =-的图象,故C 选项正确;D 选项:由于20k =-<,所以函数值随x 的增大而减小,故D 选项正确.故选:C【点睛】本题考查一次函数的图象及性质,函数图象平移的法则,熟练运用一次函数的图象及性质进行判断是解题的关键.【变式训练2】把直线3y x =-先向右平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为()A .3B .1C .1-D .3-【答案】B【分析】由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,计算求解即可.【详解】解:由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,解得1m =,故选:B .【点睛】本题考查了一次函数图象的平移,一次函数与坐标轴的交点.解题的关键在于熟练掌握图象平移:左加右减,上加下减.类型四、规律性问题例.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,…,正方形1n n n n A B C C -,使得点1A ,2A ,3A ,….在直线l 上,点1C ,2C ,3C ,…,在y 轴正半轴上,则点2023B 的坐标为()A .()202220232,21-B .()202320232,2C .()202320242,21-D .()202220232,21+【答案】A【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点11A B 、的坐标,同理可得出2A 、3A 、4A 、5A …及2B 、3B 、4B 、5B …的坐标,根据点的坐标变化可找出变化规律()12,21n n n B --(n 为正整数),依此规律即可得出结论.【详解】解:当0y =时,由10x -=,解得:1x =,∴点1A 的坐标为()1,0,111A B C O 为正方形,()11,1B ∴,同理可得:()22,1A ,()34,3A ,()48,7A ,()516,15A ,…,∴()22,3B ,()34,7B ,()48,15B ,()516,31B ,…,【答案】20222022(21,2)-【分析】先求出1A 、2A 、3A 、4A 的坐标,找出规律,即可得出答案.【详解】解: 直线1y x =+和y 轴交于1A ,1A ∴的坐标()0,1,即11OA =,四边形111C OA B 是正方形,111OC OA ∴==,【答案】()20222,0【分析】根据1A 的坐标和函数解析式,即可求出点34,A A 探究规律利用规律即可解决问题.【详解】∵直线3y x =,点1A 的坐标为∴()11,3B 在11Rt OA B △中,11131,OA A B ==,类型五、增减性问题.B...A .()15,53B .()15,63C .()17,53D 【答案】D【答案】40432【分析】根据已知先求出2OA ,3OA ,33A B ,44A B ,然后分别计算出1S ,2S 【详解】解:∵11OA =,212OA OA =,∴22OA =,∵322OA OA =,∴34OA =,∵432OA OA =,。
一次函数图像性质总结

一次函数图像性质总结一次函数图像性质总结3、一次函数的图象及性质(1)形状:一次函数y=kx+b的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.(2)画法:由于一次函数y=kx+b的图象是一条直线,因此作一次函数图象时,只要确定两个点,再过这两个点作直线就可以了.一般地,一次函数y=kx+b的图象是经过点(0,b)和b(-,0)的一条直线,当b=0时,即为正比例函数,其图象k是经过原点(0,0)和点(1,k)的一条直线.(3)性质:一次函数y=kx+b(k、b是常数,且k≠0)的图像是一条直线,它的性质如下:性质一:(增减性)一次函数中k的取值决定了图像的倾斜方向。
①k>0直线必然经过一、三象限,y的值随着x的增大而增大。
②k<0直线必然经过二、四象限,y的值随着x的增大而减小。
性质二:一次函数中b的取值确定直线与y轴交点的位置,反之亦然。
①b>0直线与y的交点在x轴的上方。
②b=0直线过原点。
③b<0直线与y的交点在x轴的下方。
性质三:当k确定b变化时,图像为无数条平行线;即两直线平行K的值相等。
当b确定k变化时,图像为一束都经过点(0,b)的直线。
即当b相等时两直线相交于Y轴一点。
性质四:一般的,一次函数的k、b都未确定,他的图像分为四种情况:注意:一般的画一次函数y=kx+b(k、b是常数,且k≠0)图像时,选取(0,b)、(-,0)两点,即选取直线与两坐标轴的交点。
bk扩展阅读:一次函数图像性质小结与配套练习一次函数的图像性质总结(阅读+理解)一、一次函数的图像姓名1.正比例函数y=kx(k≠0,k是常数)的图像是经过O(0,0)和M(1,k)两点的一条直线(如图13-17).(1)当k>0时,图像经过原点和第一、三像限;(2)k<0时,图像经过原点和第二、四像限.2.一次函数y=kx+b(k是常数,k≠0)的图像是经过A(0,b)和B(-直线,当kb≠0时,图像(即直线)的位置分4种不同情况:(1)k>0,b>0时,直线经过第一、二、三像限,如图13-18A(2)k>0,b<0时,直线经过第一、三、四像限,如图13-18B(3)k<0,b>0时,直线经过第一、二、四像限,如图13-18C(4)k<0,b<0时,直线经过第二、三、四像限,如图13-18Db,0)两点的一条k3.一次函数的图像的两个特征(1)对于直线y=kx+b(k≠0),当x=0时,y=b即直线与y轴的交点为A(0,b),因此b叫直线在y轴上的截距.(2)直线y=kx+b(k≠0)与两直角标系中两坐标轴的交点分别为A(0,b)和B(-4.一次函数的图像与直线方程(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)b,0).k②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).二、两条直线的关系1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1与l2相交,则k1≠k2,其交点是联立这两条直线的方程,求得的公共解;若l1与l2平行,则k1=k2.三、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.用待定系数法求一次函数的解析式:若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①y2=kx2+b②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.一次函数的图像和性质练习题题组一:1.正比例函数ykx(k0)一定经过点,经过(1一次函数ykxb(k0)经,),过(0,)点,(,0)点.2.直线y2x6与x轴的交点坐标是,与y轴的交点坐标是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12、一次函数 y=ax+b,若 a+b=1,则它得图象必经过点( )
A. ( — 1, - 1)
B。(—1,1)
C.(1,-1)
D。(1,1)
13、点 P1(x1,y1),点 P2(x2,y2)就是一次函数 y=—4x+3 图象上得两个点,且
x1〈x2,则 y1 与y2 得大小关系就是( )A.y1>y2 B.y1>y2>0 C.y1〈y2 D。y1=y2
C.0〈k〈1
D.k>1
7、已知一次函数y=mx+2x-2,y 得值随着 x 值得增大而增大,则m得取值范围就是
( )A.m≥—2
B.m〉—2
C。m≤-2
D.m<—2
8、y=( m+ 3)x +2 就 是 一 次 函 数 ,且 y 随 自 变 量 x 得 增 大 而 减 小 ,那 么 m 得 取 值 就 是 ( )
(
)
35、已知正比例函数 y= (m—1) x得图象上两点A(x1, y1),B(x2, y2),当x1 < x
2 时,有 y1>y2,那么 m 得取值范围就是(
)A.m<1
B.m〉1 ﻩC.
m 〈2
D。m〉 0
1、下图中表示一次函数 y=mx+n 与正比例函数 y=m nx(m ,n 就是常数,且mn<0)图像得就是
14、已知点(-4,y1),(2,y2)都在直线 y=—x+2上,则 y1,y2 大小关系就是( )
A. y 1> y2
B. y1=y2
C. y1< y2
D.不能比较
15、已 知 一 次 函 数 y = ( m- 1)x+ 1 得 图 象 上 两 点 A( x1,y1) , B( x2, y2), 当 x1> x2 时,
就是(
)
A. ﻩB. C。 ﻩD。
21、若直线 y=mx+2m﹣3经过二、三、四象限,则 m 得取值范围就是(
)
A.m< ﻩB。m>0
C。m>ﻩ
D.m<0
22、一次函数 y=kx﹣k(k<0)得图象通过(
)
A.第一、二、四象限 ﻩB。第一、二、三象限 C。第一、三、四象限ﻩ
D.第二、三、四象限
23、。已知k〈0,b>0,则直线 y=bx﹣k 得图象只能就是如图中得( )
A。 B.ﻩC. D.
24、若点A(﹣5,y1)、B(﹣2,y2)都在直线上,则 y1
y2(填“>”或“<”).
25、若点(﹣4,y1)、(2,y2)都在直线 y=﹣3x+2上,则 y1
y2(填“>”、“=”或“<")。
y
x O
18、若式子 +(k﹣1)0 有意义,则一次函数 y=(k﹣1)x+1﹣k得图象可能就是(
)
A.ﻩB.ﻩC.ﻩD.
19、已知 k>0,b<0,则一次函数 y=kx﹣b 得大致图象为(
)
A。 ﻩB.
C. ﻩD.
20、已知一次函数y=kx+b,y 随着 x 得增大而减小,且 kb<0,则在直角坐标系内它得大致图象
5、直线 y=kx+b 经过一、二、四象限,则 k、b应满足( )
A.k>0,b>0 B。k>0,b<0 C.k<0,b>0 D。k<0,b<0
6、如 果 一 次 函 数 y=kx+ (k-1 )得 图 象 经 过 第 一 、三 、四 象 限 ,则 k 得 取 值 范 围 就 是( )
A.k>0
B.k〈0
A.第一象限 B.第二象限 C。第三象限ﻩ
D.第四象限
33、已知点(—4,y1),(2,y2)都在直线 y=(-k2-1)x+2上,则 y1 y2 大小关系就是( )
(A)y1 >y2
(B)y1 =y2
(C)y1 <y2
(D)不能比较
34、一次函数 y=kx+b,y随着 x 得增大而减小,且 kb<0,则在直角坐标系内它得大致图象就是
有 y1<y2,那么m得取值范围就是( )A.m>0 B.m〈0
C.m>1 D。m
<1
16、 一次函数y=-x+3 得图象上有两点 A(x1,y1)、B(x2,y2),若 y1<y2,则 x1 与
x2 得大小关系就是( 定
)A .x1< x2
B.x 1> x2
C. x1 =x 2
D。无法确
17 、 直 线 y = ( 3 - a ) x + ( b — 2 ) 在 平 面 直 角 坐 标 系 中 得 图 象 如 图 所 示 , 化 简
C.a〉0
D.a<0
3、一次函数y=kx+b中,k〈0,b〉0,那么它得图象不经过( )
A、第一象限
B.第二象限
C.第三象限
D.第四象限
4、如果一次函数 y=kx+b 得图象经过第一象限,且与 y 轴负半轴相交,那么( )
A.k>0,b>0
B。 k> 0 , b< 0
C.k<0,b>0
D.k〈0,b<0
一次函数图像与系数得关系
导学案
日期:
第 页 姓名:
1、一次函数y=kx+b 得图象经过第一、三、四象限,则( )
A. k> 0, b> 0
B.k>0,b〈0
C.k〈 0, b> 0
D. k < 0,b<0
2、已知一次函数 y=(a-1)x+b 得图象如图所示,那么
a得取值范围就是( ) A.a〉1
B.a<1
A. ﻩB。
C. ﻩD。
29、已知直线,经过点与点,若,且,则与得大小关系就是( )A.
B。ﻩﻩC. ﻩD.不能确定
30、若直线经过第二、三、四象限,则得取值范围就是( )
A。ﻩﻩB. ﻩC.ﻩﻩD.
31、一次函数得图象不经过第( )象限ﻩA。一 B。二 C.三 ﻩD.四 32、如果点 P(a,b)关于 x 轴得对称点 p,在第三象限,那么直线 y=ax+b 得图像不经过 ( )
26、已知点 A(-4, a),B(-2,b)都在一次函数 y=x+k(k 为常数)得图像上,则a与 b 得大小关
系就是a____b(填”〈”"="或">")
27、已知函数,要使函数值随自变量得增大而减小,则得取值范围就是( )
A. ﻩB.ﻩﻩC. ﻩD.
28、一次函数中,得值随得减小而减小,则得取值范围就是( )
A.m<3
B.m<-3
C.m=3
D.m≤-3
9、若点 P(a,b)在第二象限内,则直线y=ax+b不经过第
象限.
10、 一次函数 y=kx+b 图形不经过第四象限,那么 k
,b
。
11、 若 直 线 y= kx+b 经 过 第 一 、二 、四 象 限 ,则 k,b 得 取 值 范 围 就 是 k 0,b 0 。