新人教版七年级数学上册第四章教案
2024年人教版初中七年级数学上册《余角和补角》精彩教案

2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。
详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。
二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。
三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。
四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。
3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。
4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。
5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。
六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。
3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。
4. 例题及解答。
七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。
人教版数学七年级(上册)第四章几何图形初步:(教案)

3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“几何图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-空间观念的培养:学生空间想象力不足,对几何图形的空间位置关系理解困难。
举例:在讲解几何证明时,教师可以通过举例说明,让学生理解如何运用已知性质定理进行推理。同时,针对面积计算的难点,教师可以设计一些实际问题,引导学生运用所学方法解决问题,提高学生解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
最后,我觉得自己在教学难点和重点的把握上还有待提高。在今后的教学中,我要更加注重对学生难点的突破,通过丰富多样的教学手段和策略,帮助学生克服学习困难,提高他们的几何素养。同时,也要关注学生的反馈,不断调整教学节奏,确保每个学生都能跟上课程进度,真正实现因材施教。
举例:在讲解点、线、面时,教师要强调它们是构成几何图形的基础元素,并通过实际操作让学生理解它们之间的关系。
2.教学难点
-理解几何图形的抽象概念:学生对几何图形的理解往往停留在具体形象明的逻辑推理过程掌握不足,难以运用性质定理进行证明。
-面积计算方法的应用:学生在解决实际问题时,难以灵活运用所学面积计算方法。
人教版数学七年级(上册)第四章几何图形初步:(教案)
一、教学内容
人教版数学七年级(上册)第四章几何图形初步:
4.1点、线、面
4.1.1了解点的概念,掌握点的基本性质
4.1.2学习直线、射线、线段的定义及表示方法
(完整word版)新人教版七年级上册数学第4章-几何图形初步全章教案

第四章几何图形初步4。
1 几何图形§ 4。
1.1 立体图形与平面图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念。
(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体。
2、过程与方法(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体。
3、情感、态度、价值观:形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣。
二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形。
三、教学过程1。
创设情境,导入新课。
让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形。
(4)引导学生得出几何图形、立体图形、平面图形的概念。
我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等。
几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等。
有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.3。
实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4。
新人教版七年级数学上册第四章教案

运用及分析(教具的准备及使用的意义)习意识,让每个学生参与学习中,提高学生学习的兴趣。
教学方法运用及分析启发式教学重点教学环节设计导入设计让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.新课教学直观感知,识别图形:(1)对于各种各样的物体,关注是它们的形状、大小和位置. (2)展示一个长方体,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看设计棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.重点教学环节设计师生互动设计实践探究.引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.学生活动设计(1)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(2)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(3)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来小结:(学生总结,老师补充)随堂练习设计课本第116页练习1、2课外作业设计与布置课本第121页习题1、2、3题及导学案板书设计4.1.1 立体图形与平面图形1、立体图像和平面图形的概念2、例题讲解和练习运用及分析启发式教学重点教学环节设计导入设计创设情景,引入新课请欣赏漫画并思考:为什么会出现争执?“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?(讨论)新课教1、不同角度看直棱柱、圆柱、圆锥、球让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,学设计由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)2、猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.3、分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)重点教学环节设计师生互动设计1、上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?2、再试一试,画出它的三视图.3、怎样画得又快又准?4、用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?5、桌上放着一个球和一个圆柱,下面a、b、c、d、e这五幅图分别是从什么方向看到的?6、一个正方体中,截去一个小正方体的立体图如图所示,从左面观察这个图形,得到的平面图形是()● 蚊子 壁虎 ●蚊子 ●●壁虎学生活动设计如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?学生各抒己见,提出路线方案。
七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。
2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。
3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。
4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。
6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。
新人教版(2024版)版)初中数学七年级上册 第四章整式的加减 4.1.1单项式 教学设计

课堂教学设计
、章节、港珠澳大桥
港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的
跨海大桥.一辆汽车从香港口岸行驶到东人工岛的平均速度为96
km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92
km/h.请根据这些数据回答下列问题:
(1)汽车在主桥上行驶t h的路程是多少千米?如果汽车通过海底隧
道需要a h,从香港口岸行驶到东人工岛的时间
(2)是通过海底隧道时间的1.25倍,你能用含a的代数式表示香港
口岸到西人工岛的全长吗?
(3)如果汽车通过主桥需要b h,通过海底隧道所需时间比通过主
桥的时间少0.15h,你能用含b的代数式表示主桥与海底隧道长
度的和吗?主桥与海底隧道的长度相差多少千米?
要解决上面的问题,需要进一步学习代数式.在本章中,我们
将学习一类基本的代数式--整式,以及整式的加减运算.你将进一
步学习列代数式表示数量和数量关系,体会数与整式在加减运算
中的一致性,为后续学习方程、不等式、函数等内容打下基础
引起学生的学习兴趣,激
发学生学习数学的热情
例1.用单项式填空,并指出它们的系数和次数.
(1)每包书有12册,n包书有_______册.
(2)底边长为a,高为h的三角形的面积是______.
(3)一个长方体的长和宽都是a,高是h,它的体积是____
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在售价为_____元.
(5)一个长方形的长为0.9,宽是a,这个长方形的面积是_________.
例2、填空
例3、用字母表示数后,同一个式子可以表示不同的含义.你能赋予0.9a一个含义吗?项式的概念
学抽象能力核心素养。
新人教版(2024版)版)初中数学七年级上册 第四章整式的加减 4.1.2多项式 教学设计

课堂教学设计
例3、用多项式填空,并指出它们的项和次数.
(1)一个长方形相邻两条边的长分别为a,6,则这个长方形的周长为________
(2)m为一个有理数,m的立方与2的差为________
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环保和安全起见,从第三年年初起不再投放,且每个月回收b辆.第三年年底,该地区共有这家公司的共享单车的辆数为________
(4)现存于陕西历史博物馆的我国南北朝时期的
官员独孤信的印章如图4.1-2所示,它由18个
相同的正方形和8个相同的等边三角形围成.如
果其中正方形和等边三角形的边长都为a,等边
三角形的高为6,那么这个印章的表面积为
___________
多项式的排列
运用加法交换律,任意交换多项式x+x2+1中各项的位置,可以做到__种不同的排列方式。
你认为哪几种比较整齐?
1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
x2+x+1
(2)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
1+x+x2出多项式的概念,发展学生数学抽象能力核心素养
与学习的热情,
比较、
力
步巩固多项式的概念
展学生数学抽象能力核心素养
2。
新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2

四、教学方法及教学思路
本人在农村中学任教,面对的都是乡土气息浓厚的农村孩子。由于诸多方面的原因,造成这样的现状:绝大多数学生基础薄弱,没有学习习惯,学习品质、竞争意识差,更没有学习中知难而上的信心和毅力。所以面对这样的教育主体,我们在激发学生的学习兴趣、引导探究发现的同时,一定要注意学生的听课状态,降低难度,干启不发时,直接入主题。同时不能过分强调和主张学生课后的自主学习,因为绝大多数学生没有自主学习的习惯和能力。所以很多技能需在课上培养、训练和提高。我这里的教学,接近“一对一”的教,“手把手”的学。很多问题课前就有预见,准备好解决策略和途径。
中学数学(角)
一、教案背景
课时:1课时
二、教学课题
1.教养方面:
通过系统学习,进一步认识角。
通过实物和具体模型,了解从物体外形抽象出来的平面图形。
初步认识图形,培养学生对学习图形与几何的兴趣,建立数学来源于生产、生活,服务于生产、生活的理念。
2.教育方面:
通过模型理解角的两种描述方法。
经历角的画法,进一步理解、认识角,提高画图技能,增强对图形的理解,为今后几何的学习做好准备。
能准确找出和表示简单至复杂图形中的角。
通过强化、重复训练,夯实角的认识,提高学习几何的信心。
三、教材分析
人教版七年级数学(上)《第四章 图形认识初步》第三部分的第一节 《角》的第一课时。
本章是图形与几何的起始章,是图形学习的第三学段。在本章,要进一步丰富学生对几何图形的感性认识,还要引导学生逐步认识一些基本图形的特征和性质。但这并不意味着要用严格的逻辑推理方式来展开学习,还是要强调在实际背景中直观理解图形的概念和特征,经历探索图形性质的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题第四章:几何图形初步4.1.1 立体图形与平面图形主备人李莉参备人解天江、肖爱华、张小莉备课日期2014年11月23日教学目标知识与技能:1、初步了解立体图形和平面图形的概念,2、能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体。
过程与方法:1、过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉,2、方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体。
情感态度与价值观:形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣。
学情分析(学生对教学内容的熟悉把握情况)教学重点、难点分析重点:常见几何体的识别。
难点:从实物中抽象几何图形。
教学手段运用及分析(教具的准备及使用的意义)现代课堂教学手段、采用“有效课堂”模式教学,提高学生合作学习意识,让每个学生参与学习中,提高学生学习的兴趣。
教学方法运用及分析启发式教学重点教学环节设计导入设计让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.新课教学设计直观感知,识别图形:(1)对于各种各样的物体,关注是它们的形状、大小和位置. (2)展示一个长方体,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.重点教学环节设计师生互动设计实践探究.引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.学生活动设计(1)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(2)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(3)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来小结:(学生总结,老师补充)随堂练习设计课本第116页练习1、2课外作业设计与布置课本第121页习题1、2、3题及导学案板书设计 4.1.1 立体图形与平面图形1、立体图像和平面图形的概念2、例题讲解和练习教后反思设计请欣赏漫画并思考:为什么会出现争执?“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?(讨论)新课教学设计1、不同角度看直棱柱、圆柱、圆锥、球让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)2、猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.3、分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)重点教学环节设计师生互动设1、● 蚊子壁虎 ● 蚊子● ●壁虎 计 上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形? 2、再试一试,画出它的三视图.3、怎样画得又快又准?4、用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?5、桌上放着一个球和一个圆柱,下面a 、b 、c 、d 、e 这五幅图分别是从什么方向看到的?6、 一个正方体中,截去一个小正方体的立体图如图所示,从左面观察这个图形,得到的平面图形是 ( )学生活动设计如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?学生各抒己见,提出路线方案。
教师总结:若在平面上,壁虎只要沿直线爬过去就可以了。
而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案。
如图所示:笔尖可以看作是一个点,这个点在纸上运动时,形成了什么?通过上述运动你得出了什么结论?教师在学生回答问题的基础上总结得到“点动成线”的结论.学生在组内讨论、交流的基础上,举出更多实例.如:蚂蚁搬家;在一望无际的沙滩上;一个孤独的旅行者留下的一排长长的足迹……3、汽车雨刷可以看作是一条线,它在档风玻璃上运动时有什么现象?通过对上面现象的分析你得出了什么结论?你能举出生活中的一些实例进一步说明这一结论吗?教师让学生拿笔或直尺当雨刷在纸上演示,启发学生类比上一个问题.并鼓励学生用自己的语言说出发现的结论.学生通过仔细观察图片,动手实践,回答问题.得出“线动成面”的结论.学生经讨论、交流后举例.如:夜晚街头闪烁的霓虹灯、利用竹条编织的凉席,用扫帚扫地、用刷子刷油、钟表盘上分针时针的运动……4、长方形纸片绕它的一边旋转,形成了什么图形?通过对上面现象的分析你得出了什么结论?你能再举出一些例子进一步说明这一结论吗?教师演示旋转过程,让学生通过观察,大胆猜测,想象.学生在观察、猜测、想象之后独立思考得出结论,再通过动手实践加以验证;最后进行小组讨论、交流,回答问题.得出“面动成体”的结论.重点教学环节设计师生互动设计[问题3](1)为什么在中国地图上,北京只是一个点,而在北京市地图上北京几乎占了整个版面?学生先独立思考后讨论、交流.回答问题,同学们之间可以相互补充、纠正.(2)观察下面的图片,你有什么发现?构成几何图形的基本元素是什么?学生观察图片.表述观点.教师参与学生的交流活动,总结出几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.学生活动设计小结:本节是从实际物体中抽象出几何图形、立体图形、平面图形,又进一步抽象出体、面、线、点等基本元素,研究了它们之间的关系之后,又由这些基本元素得到丰富多彩的图形世界.随堂练习设计课本第120页1、2、课外作业设计与布置导学案板书设计 4.1.2 点、线、面、体1、点、线、面、体关系例题讲解教后反思课题 4.2 直线、射线、线段(一)主备人李莉参备人解天江、肖爱华、张小莉备课日期2014年11月23日教学目标知识与技能:1、在现实情境中理解线段、直线、射线等简单的平面图形。
2、理解两点确定一条直线的事实。
3、掌握直线、射线、线段的表示方法。
重点教学环节设计导入设计观赏画面(找挂图)和实物,请在画面中的共同点――――角.新课教学设计1、请举出生活中角的实例.2、归纳、总结角的概念:角由两条具有公共端点的射线组成,两条射线的公共端点叫这个角的顶点,这两条射线叫做角的边.提醒:平时画角时,只能将边画成两条线段,即用角的一部分来研究角.3、小学曾接触到角,我们已经有了初步的认识,那么角是如何来表示的?角的大小用什么表示呢?用什么工具去度量呢?它的单位是什么呢?4、结合图形讲解角的表示方法(四种方法)O BA1O BAaO BA(1)用三个大写字母:表示角的顶点的字母写在中间∠AOB;(2)用数字:∠1,∠2;(3)用希腊字母:∠α,∠β;(4)用一个大写字母:表示角的顶点的字母∠O.5. 钟表上的时针与分针是如何构成角的?从中你能得到什么启发?学生活动设计:观测钟表,发现角是由线旋转而成的,从而可以从运动的观点定义角.角的第二定义:角也可以看作由一条射线绕着它的端点旋转而成的图形.重点教学环节设计师生互动设计角的度量(1)我们常用量角器度量一个角的度数,度、分、秒是常用的角的度量单位,把一个周角分成360份,一份就是1°,把1°分成60份,一份就是1′,把1′分成60份,一份就是1″,以度分秒为单位的角的度量制就是角度制,从角度制不难发现,角的度数在进行运算时,是60进制的.(2)填空:1周角= 01平角= 0 10= ′1′= ″学生活动设计1 、如右图:在∠AOB的内部有两条射线OC,OD,请问图中有几个角?(小于平角的角)2、如图:用另一种方法来表示角:(1)∠а表示为(2)∠FCG表示为(3)∠r表示为(4)∠1表示为(5)∠BDE表示为小结1.角的两种定义、2.四种表示方法;3.度分秒的转化、角度制随堂练习设计课本第134页1、2、3课外作业设计与布置课本第135页3、4及导学案板书设计 4.3.1 角(一)1、角的概念及表示方法例题讲解2、度与度分秒之间的转化教后反思(1)若时针由2点30分起到2点55分,问时针、分针各转过多少度数?(2)钟表上2时15分,时针与分针所成角小于900的角的度数是多少?例 3 已知∠M,如图,画∠AOB,使∠AOB的度数等于∠M的度数.重点教学环节设计师生互动设计如图∠1:∠2:∠3=1:2:3,∠4=600,试求∠1、∠2、∠3的度数学生活动设计1、计算并填空:(1)23045′+ 24026′= (2)55012′- 16037′=(3)5024′×3= (4)25030′÷3=2、已知∠а=27055′45″,那么3∠а= .1/3∠а= .3、由2点整到3点30分,时钟的时针转了度.解答题:1、在1点和2点之间,时钟的时针与分针在什么时刻成900角2、用一副三角板画图,画一个角使这个角等于1350小结:师生共同归纳本节课所学的内容随堂练习设计课本第136页1、2、3、课外作业设计与布置课本第139---140页5、6、9板书设计 4.3.1 角(二)1、画出特殊角. 例题讲解2、角的和、差、倍、分的计算教后反思角的位置关系.3. 一个角是35039’,求它的余角和补角?(独立完成,个别回答,学生点评)4.如图:∠1与∠2互补,∠3与∠4互补,如果∠2=∠3,则∠1与∠4相等吗?为什么?由上例我们可以得出结论:等角(或同角)的补角相等类似地,我们还有等角(或同角)的余角相等重点教学环节设计师生互动设计1、如图:指出图中射线OA、OB所表示的方向.2、若灯塔位于船的北偏东300,那么船在灯塔的什么方位?学生活动设计∠α∠α的余角∠α的补角∠α的补角-∠α的余角30060049’12201、已知一个角的补角是这个角的余角的3倍,求这个角。