概念与解法学生版
初一 二元一次方程组及其解法(学生版)

3.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如 也是二元一次方程组.4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.题型1:二元一次方程【例1-1】已知下列方程,其中是二元一次方程的有________. (1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6);(7);(8);(9);(10).举一反三:下列各方程中,是二元一次方程的是( ) A .=y+5x B .3x+2y=2x+2y C .x=y 2+1 D .题型2:二元一次方程的解【例2-1】下列数组中,是二元一次方程x+y=7的解的是( ) A .B .C .D .【例2-2】已知二元一次方程. ⎩⎨⎧=-=+52013y x x x ay b =⎧⎨=⎩2526x y x y +=⎧⎨+=⎩1222x y x y +=-⎧⎨+=-⎩102x +=251x y+=132x y +=280x y -=462x y +=3142x y +=(1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ; (3)用适当的数填空,使是方程的解.举一反三:1、若方程的一个解是,则a= .2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .题型3:二元一次方程组及方程组的解【例3-1】下列各方程组中,属于二元一次方程组的是( ) A .B .C .D .【例3-2】判断下列各组数是否是二元一次方程组的解.(1) (2)举一反三:2_______x y =-⎧⎨=⎩24ax y -=21x y =⎧⎨=⎩4221x y x y +=⎧⎨+=-⎩①②35x y =⎧⎨=-⎩21x y =-⎧⎨=⎩1、写出解为的二元一次方程组.知识点二:代入消元法1、消元法消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.消元的基本思路:未知数由多变少.消元的基本方法:把二元一次方程组转化为一元一次方程. 2、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; ③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.题型1:用代入法解二元一次方程组 【例1-1】用代入法解方程组:的解为 .12x y =⎧⎨=-⎩【例1-2】用代入法解二元一次方程组:举一反三:1、若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.2、与方程组有完全相同的解的是( )A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .3、若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .题型2:由解确定方程组中的相关量 【例2-1】已知关于x ,y 的二元一次方程组的解互为相反数,求k 的值.【例2-1】若方程组的解为,试求的值.举一反三:524050x y x y --=⎧⎨+-=⎩①②2020x y x y +-=⎧⎨+=⎩22(2)0x y x y +-++=ax+by=11(5-a)x-2by+14=0⎧⎨⎩14x y =⎧⎨=⎩a b 、1、已知是二元一次方程组的解,则m﹣n的值是.知识点三:加减消元法1、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.2、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.题型1:加减法解二元一次方程组【例1-1】直接加减:已知21xy=⎧⎨=⎩是二元一次方程组21mx nynx my+=⎧⎨-=⎩的解,则3m n+的值为.【例1-2】先变系数后加减:2521 4323x yx y-=-⎧⎨+=⎩①②【例1-3】建立新方程组后巧加减:解方程组2511 524x yx y+=⎧⎨+=-⎩①②【例1-4】先化简再加减:解方程组0.10.3 1.3123x yx y+=⎧⎪⎨-=⎪⎩①②举一反三:1、已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.题型2:用适当方法解二元一次方程组【例2-1】(1)323112x yx y-=⎧⎨=-⎩(2)5(1)2(3)2(1)3(3)m nm n-=+⎧⎨+=-⎩举一反三:1、用两种方法解方程组29(1) 321(2) x yx y+=⎧⎨-=-⎩三、课堂练习一、选择题1.下列方程组是二元一次方程组的是()A.53x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩2. 是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.13. 方程组233x yx y-=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .23x y =⎧⎨=⎩4.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解5.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ) A .4和6 B .6和4C .2和8D .8和﹣26.对于方程3x-2y-1=0,用含y 的代数式表示x ,应是( ). A .1(31)2y x =- B .312x y += C .1(21)3x y =- D .213y x += 7.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a-b 的值为( ).A .-1B .1C .2D .38.已知2|21|(27)0x y x y --++-=,则3x y -的值是( ) A .3 B .1 C .﹣6 D .8 9.用加减消元法解二元一次方程组231543x y x y +=⎧⎨-=⎩①②,下列步骤可以消去未知数x 的是( )A .①×4+②×3B .①×2-②×5C .①×5+②×2D .①×5-②×2 10.解方程组①3759y x x y =-⎧⎨+=-⎩,②3512,215 6.x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法 二、填空题11.已知方程2x+y ﹣5=0用含y 的代数式表示x 为:x= .12.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==13.若(a ﹣3)x+y |a|﹣2=1是关于x 、y 的二元一次方程,则a 的值是 .14.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.15.若方程3x-13y =12的解也是x-3y =2的解,则x =________,y =_______. 16.方程组的解是 .17.用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________. 18.若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 19.已知关于x ,y 的方程组271x y x y +=⎧⎨-=-⎩满足3x y +=,则k = .三、解答题20.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组. (1)甲数的13比乙数的2倍少7;(2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元.21.用代入法解下列方程组:一、选择题1.下列各方程中,是二元一次方程的是()A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=12. 关于,m n的两个方程23321m n m n-=+=与的公共解是()A.3mn=⎧⎨=-⎩B.11mn=⎧⎨=-⎩C.12mn=⎧⎪⎨=⎪⎩D.122mn⎧=⎪⎨⎪=-⎩3.利用代入消元法解方程组,下列做法正确的是()A.由①得x= B.由①得y=C.由②得y= D.由②得y=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13- C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.用加减消元法解二元一次方程组时,必须使这两个方程中()A.某个未知数的系数是1 B.同一个未知数的系数相等C.同一个未知数的系数互为相反数 D.某一个未知数的系数的绝对值相等7.方程组231498x yx y+=-⎧⎨-=⎩的解是()A.13xy=⎧⎪⎨=-⎪⎩B.2xy=⎧⎨=⎩C.1223xy⎧=⎪⎪⎨⎪=-⎪⎩D.1223xy⎧=-⎪⎪⎨⎪=-⎪⎩8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣二、填空题9.若是二元一次方程的一个解,则的值是__________.10.已知,且,则___________.11.若方程ax-2y=4的一个解是21xy=⎧⎨=⎩,则a的值是 .12.二元一次方程组的解是.13.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.14.已知二元一次方程组2728x yx y+=⎧⎨+=⎩,则x-y=________,x+y=________.三、解答题15.若方程组是二元一次方程组,求a的值.16.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.。
第1讲一元二次方程的根与解法学生版

初中数学联赛体系第1讲 一元二次方程的根与解法【知识要点与基本方法】 一、一元二次方程基本概念1、概念:只含有一个未知数x 的整式方程,并且都可以化为20ax bx c ++=(,,a b c 为常数,0a ≠)的形式的方程叫做一元二次方程.2、一元二次方程必须满足的三大条件 (1)整式方程(2)含有一个未知数(3)未知数的最高次数为2 3、一元二次方程的一般形式形如关于x 的一元二次方程:)0(02≠=++a c bx ax 的形式,(它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.注意b 、c 可以是任何实数,但a 绝对不能为零)二、一元二次方程的根与解法1、一元二次方程的根0x x =是方程20ax bx c ++=(,,a b c 为常数,0a ≠)的根的充要条件是0020=++c bx ax . 2、直接开平方法解一元二次方程:(1)把方程化成有一边是含有未知数的完全平方的形式,另一边是非负数的形式,即化成)0()(2≥=±a a b x 的形式(2)直接开平方,解得a b x a b x -=+= 21,3、配方法的定义:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.【注】、用配方法解一元二次方程的步骤:(1)利用配方法解一元二次方程时,如果02=++c bx ax 中a 不等于1,必须两边同时除以a ,使得二次项系数为1.(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根. 4、公式法解一元二次方程(1)对于一元二次方程02=++c bx ax 其中0≠a ,由配方法有22244)2(aacb a b x -=+, ①当042≥-ac b 时,得aacb b x 242-±-=;②当042<-ac b 时,一元二次方程无实数解.(2)公式法的定义:利用求根公式接一元二次方程的方法叫做公式法.(3)运用求根公式求一元二次方程的根的一般步骤:①必须把一元二次方程化成一般式02=++c bx ax ,以明确a 、b 、c 的值; ②再计算ac b 42-的值:当04Δ2≥-=ac b 时,方程有实数解,其解为:aacb b x 242-±-=;当04Δ2<-=ac b 时,方程无实数解. 5、因式分解解一元二次方程(1)分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法.(2)分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b (3)用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解.6、含字母系数一元二次方程的解法解关于含字母系数的方程,要求对每个参数允许值回答:方程是否有解?若有解,写出解集.特别地,当二次项系数含有字母系数时,如果题目本身没有指明时一元二次方程,则必须对二次项系数讨论是否为零.【例1】 1、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. 2、若方程()112=⋅+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 . 【例2】1、用分解因式法解下列方程(1)01032=--x x (2)01762=+-x x (3)0625412=-+x x (4)021)1(4)1(2=----x x . 2、利用求根公式求解下列方程(1) 0222=--x x (2)010342=+-x x(3)()()()()5211313+-=+-x x x x (4)061054422=--++-p x p px x【对应训练】:1、用公式法解下列方程(1)0232=+-x x (2)2212x x -=- (3)x x 3)1(2-=+(4)1(61)432(2)2x x x x ++-=+ (5)023222=--+-n mn m mx x【例3】解下列方程(1)42200x x --=;(2)06)13(2)32(2=----x x ;(3).02)23()21(2=++-+x x【例4】解下列方程 (1)4122+-=x x(2)112432--=-+x x x【例5】解关于x 的方程 (1);0)(222=++-ab x b a abx(2).)1()1()232(22222b x x ab a x x -=+---【例6】1、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 .2、设b a 、是整数,方程02=++b ax x 有一个根是347-,则=+b a .3、已知02=++c bx ax )0(≠ac 有一个根是3,则方程02=++a bx cx 一定有一个根是 ,方程02=+-a bx cx 一定有一个根是 .4、已知两数积1≠ab ,且03123456789022=++a a ,02123456789032=++b b ,则=ba【例7】已知方程p x x =--)97)(19(有实根21,r r ,试求方程p r x r x -=--))((21的最小实根.【例8】求k 的值,使得两个一元二次方程0)2(,0122=-++=-+k x x kx x 有公共根,并分别求出这两个方程的解集.【例9】对于任意实数,k 方程04)(2)1(2222=++++-+b k k x k a x k 都有实根1,试求另一个根的最大值与最小值.【例10】已知方程)0(2>=++a x c bx ax 的两根21x x 、满足ax x 1021<<<.当10x x <<时,证明:12x c bx ax x <++<.【例11】已知首项系数不相等的两个一元二次方程0)2()2()1(,0)2()2()1(222222=+++--=+++--b b x b x b a a x a x a 有公共根.(1)求证:.2++=b a ab(2)若b a ,为正整数,求ab ab ba b a --++的值. (3)设0x 为公共根,求证:.048403040>++-x x x【课后强化训练】A 组1、下列方程中,是一元二次方程的序号是①042=-y y ; ②0322=--x x ; ③312=x; ④bx ax =2; ⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ; ⑨22=-x x ; ⑩)0(2≠=a bx ax2、已知方程3ax 2-bx -1=0和ax 2+2bx -5=0,有共同的根1-,则a = ,b = .3、已知a 2-5ab +6b 2=0,则abb a +等于 4、在实数范围内分解因式:=--12x x ;=++-223y xy x5、等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形周长为 6、已知042=+-b x x 的一根的相反数为042=-+b x x 的根,则042=-+bx x 的根是 7、已知0132=+-a a ,那么=++--2219294a a a ___________. 8、方程019991997199822=⋅++x x 的解是 . 9、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=ba. 10、已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.11、方程0672=+-x x ,各根的和是 .12、若31028-是方程02=++b ax x 的一个根(其中b a 、是有理数),则ab 的值是 . 13、用公式法解下列各方程(1)x 2+6x +9=7 (2)017122=++x x(3)08242=+-x x (4)4)3)(12(=--x x(5)02)82(42=++-y y (6)02322=--x x(7))3)(21()12(5+-=-x x x14、用因式分解法解下列方程:(1)t (2t -1)=3(2t -1); (2)y 2+7y +6=0;(3)y 2-15=2y (4)(2x -1)(x -1)=1.(5))3)(21()12(5+-=-x x x (6)10x 2-x -3=015、解下列方程(1)0)34()45(22=---x x ; (2)06)23(2=++-x x ;(3)0154)35(222=----x x ; (4)02)32()347(2=----x x ;(5)629332+=-+++x x x x .16、已知两个二次方程02=++b ax x ,02=++d cx x 有一个公共根1,求证:二次方程0222=++++db xc a x 也有一个根为1.17、求方程072=--kx x 与()0162=+--k x x 的公共根.B 组1、已知c b 、为方程02=++c bx x 的两个根,且0≠c ,c b ≠.则c b 、的值分别是 、2、已知正实数a b c ,,满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,则a b c ++的值是3、关于x 的方程1)12(62++-=m x m x 有一根α,满足不等式:19981998≤≤-α,且使得α53为整数,则m 可取 个值.4、已知02=++c bx ax 的两根和为1S ,两根平方和为2S ,两根立方根为3S ,则123cS bS aS ++的值是5、已知1=x 是方程02=++c bx ax 的根,0≠abc .则)111(32333222cb ac b a c b a +++++++的值是 .6、(2012湖北随州)设0122=-+a a ,01224=--b b ,且012≠-ab ,52213⎪⎪⎭⎫ ⎝⎛+-+a a b ab 的值是 .7、解下列关于x 的方程(1)03222=-+m x m x ; (2)0))()((=+++++++abc b a x a c x c b x ;(3))0(0)(33442≠=++-ab b a x b a abx ;(4)0)3(2)1(2=+--+m x m x m ;(5)02)5(522=--+-x m x m )(.8、已知下面三个方程有公共根.02=++c bx ax ,02=++a cx bx , 02=++b ax cx .求证:abc c b a 3333=++.9、设等腰三角形的一腰与底边长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,试求a 的取值范围.10、若21q q 、是方程02=++b ax x 的两个实根,且0,21≠≠b q q .又21c c 、是任意两个实数,则n n n q c q c x 2211+=是方程021=++--n n n bx ax x 的解.11、设2121,,,b b a a 都是实数,21a a ≠,且1))(())((22122111=++=++b a b a b a b a ,求证:1))(())((22211211-=++=++b a b a b a b a .初中数学联赛体系第2讲 可化为一元二次方程的方程(组)模块一、特殊高次方程的解法次数超过2的整式方程称为高次方程.一般地高次方程没有统一的求解方法.对于一些特殊的高次方程,可通过降次,转化为一元二次方程或一元一次方程求解.转化的方法有因式分解法、换元法、变换主元法等.【例1】解下列方程(1)13322)132(222+-=+-x x x x(2)222222)143()352()2(+-=+-+-+x x x x x x(3).3123=--x x x(4).022224223=-+++x x x(5)062536506650362562345678=+-+-+-+-x x x x x x x x【例2】解方程.02)65(2)11(2102234=++++---a a x a x a x x 其中a 是常数.【例3】方程02=++b ax x 有两个不同的实数根.求证:方程01)2(234=+--++ax x b ax x 有4个不同的实数根.模块二、特殊分式方程的解法分母中含有未知数的方程叫分式方程,求解分式方程总的原则是通过去分母或换元,时期转化为整式方程,然后再求解.在这个过程中离不开分式的恒等变形,如通分、约分及降低分子的次数等等,这就有可能使未知数的范围扩大(或缩小),从而使方程产生增根(或遗根),因此,当未知数的范围扩大时,需验根。
一元二次方程的概念及解法 学生版

一元二次方程的概念及解法要点一、一元二次方程的概念1.一元二次方程只含有 个未知数,并且未知数的最高次数是 的 方程叫做一元二次方程.2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为 系数,b 为 系数,c 为 项.3.要点归纳(1)要判断一个方程是一元二次方程,必须符合以下三个标准:①一元二次方程是整式方程,即方程的两边都是关于未知数的 .②一元二次方程是一元方程,即方程中只含有 未知数.③一元二次方程是二次方程,也就是方程中未知数的最高次数是 .(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.【例1】下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223−9−+1=1;③x x 21++5=0;④x x 23−2+5−6=0;⑤||x x 2−3−3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________.【变式1】判断下列各式哪些是一元二次方程.① ;②;③;④;⑤ ;⑥ ;⑦ .【例2】关于x 的方程2x 2−(a +1)x =x (x −1)−1的一次项系数是-1,则a .21x x ++2960x x −=2102y =215402x x −+=2230x xy y +−=232y =2(1)(1)x x x +−=【变式2-1】若一元二次方程()()m x m x m 222−2+3+15+−4=0的常数项为零,则m 的值为_________.【变式2-2】若a b a b x x 2+−−3+1=0是关于x 的一元二次方程,求a 、b 的值.【例3】(1)已知关于x 的一元二次方程()m x x m 22−1+2+−1=0有一个根是x =0,则m 的值为_______.(2)x=1是x 2−ax +7=0的根,则a= .(3)已知关于x 的一元二次方程 有一个根是0,求m 的值.【变式3-1】如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是()A .-3,2B .3,-2C .2,-3D .2,3【变式3-2】已知a 是一元二次方程x x 2−2−1=0的根,求下列各式的值: ①a a 1−; ②a a 221+; ③a a a 22−3−3++52.22(1)210m x x m −++−=【例4】关于x 的方程2()0a x m b ++=的解是12x =−,21x =,(a ,m ,b 均为常数,0a ≠),则方程2(2)0a x m b +++=的解是__________.【变式4-1】关于x 的方程a (x+m )2+n=0(a ,m ,n 均为常数,m≠0)的解是x 1=﹣2,x 2=3,则方程 a (x+m ﹣5)2+n=0的解是( )A .x 1=﹣2,x 2=3B .x 1=﹣7,x 2=﹣2C .x 1=3,x 2=﹣2D .x 1=3,x 2=8要点二、一元二次方程的解法1. 直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程.2. 配方法:解形如()ax bx c a 2++=0≠0的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 将 系数化为1.② 将 项右移.③配方(两边同时加上一次项系数一半的平方).③ 化成()x m n 2+=的形式.④ 若 ,直接开平方得出方程的解.【例5】解方程:(1)()x x x 22−6+9=5−2(2)()()x x 224−2−3−1=0【变式5】解方程: (1)(3x+2)2=4(x ﹣1)2; (2)(x-2)2=25.【例6】用配方法解方程:(1)x x 2−4−1=0(2)x x 22−8−3=0(3)x x 24−6−4=0【变式6】用配方法解方程: (1)2x 2﹣4x ﹣3=0; (2)3x 2﹣12x ﹣3=0.3.公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222−4⎛⎫+= ⎪24⎝⎭.当 时,两个根为,x 12=,其中b ac 2−4=0时,两根相等为b x x a12−==2; 当 ,没有实数根.可以用△表示b ac 2−4,△称为根的判别式.运用公式法解一元二次方程的一般步骤是:①把方程化为一般形式;②确定a 、b 、c 的值;③计算b ac 2−4的值;④若≥b ac 2−40,则代入公式求方程的根;⑤ 若b ac 2−4<0,则方程无实数根.【例7】用公式法解方程:(1)()x x 2−5=2+1(2)()x x x x 1⎛⎫6+1+4−3=22+ ⎪2⎝⎭4.因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:② 将方程化为一元二次方程的一般形式;⑥ 把方程的左边分解为两个一次因式的积,方程右边是零;③令每一个因式分别为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的解.【例8】用因式分解法解方程:(1)22320x x −−=(2)2(21)36x x −=−(3)26x −=【变式8】用因式分解法解方程:(1)﹣3x 2+22x ﹣12=12. (2)3x 2﹣x ﹣4=0【例9】选择合适的方法求解下列方程:(1)x x 2547−25−572=0(2)x 23=1【课后作业】1.如果关于x 的方程()a x x 2−1+5−6=0是一元二次方程,则( ) A .a >1 B .a =1 C .a <1 D .a ≠12.如果关于x 的方程()m m x x 2−7−3−+3=0是关于x 的一元二次方程,则m 的值为______.3.关于x 的一元二次方程x ax a 2++=0的一个根是x =3,则a =________.4.若实数a ,b ,c 满足a b c 4−2+=0,则关于x 的一元二次方程()ax bx c a 2++=0≠0一定有一个根_________.5.三角形两边的长是3和4,第三边的长是方程x x 2−12+35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对6.已知a 是方程x x 2+−1=0的根,求a a a 32−−3+1的值.7.解方程:(1)()x 22−4−6=03(2)x x 22−8−198=0 (3)()()x x −5−7=18.解关于x 的方程:(1)x mx m n 222−2+−=0 (2)x a ax a 22+3=4−2+1(3)()()a b c x ax a b c 2−++2++−=09.解方程:()()x x x x 2222+−22+=3.。
第8讲 一元二次方程的概念及其解法(学生版)

第8讲 一元二次方程的概念及其解法【学习目标】一元二次方程概念及解法是八年级数学上学期第二章第一节内容,主要对一元二次方程概念和直接开平方法解一元二次方程进行讲解,重点是一元二次方程概念的理解,难点是开平方法解一元二次方程.通过这节课的学习一方面为我们后期学习因式分解法,配方法,公式法解一元二次方程提供依据,另一方面也为后面学习函数奠定基础.【基础知识】一、一元二次方程的概念1.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.2.一元二次方程:只含有一个未知数,且未知数的最高次数是2的的整式方程称作一元二次方程. 二、一元二次方程一般式任何一个关于x 的一元二次方程都可以化成的形式,这种形式简称为一元二次方程的一般式.其中2ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项. 三、一元二次方程的解能够使一元二次方程左右两边的值相等的未知数的值叫做方程的解.只含有一个未知数的方程,它的解又叫做方程的根. 四、直接开平方法如果一元二次方程的一边是含有未知数的代数式的平方,另一边是一个非负的常数,那么就可以用直接开平方法求解,这种方法适合形如()()20x h k k +=≥的形式求解.【考点剖析】考点一:一元二次方程的概念例1.下列方程中,哪些是一元二次方程?哪些不是一元二次方程.(1)2239x y +=;(2);(3);(4)242=0x -; (5)2322x x -=;(6)20,ax b +=(,a b 为已知数);(7)23+222x y y +=.例2.判断下列方程是否一元二次方程?哪些不是一元二次方程.(1) (,,a b c 为有理数); (2) ()2123513m m m x x ++-+=.例3.m 为何值时,关于x 的方程2(2)(3)4m m x m x m --+=是一元二次方程.例4.当m 取何值时,方程是一元二次方程.例5.关于x 的方程()2212(1)220k x k x k -+-++=.(1) 当k 取何值时,方程为一元二次方程? (2) 当k 取何值时,方程为一元一次方程?例6.已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.考点二:一元二次方程一般式例1.把下列一元二次方程化成一般式,并写出方程中的各项和各项的系数.师生总结1、 一元二次方程的二次项系数为什么不能为0?2、 怎样判断一个方程为一元二次方程?3、 方程2210m m n ++-=是一元二次方程吗?(1) 2632x x =+; (2) ()2134x x x -=-;(3) ()2322y y +=+; (4)22(32)0x a x a b b --+-=.例2.若一元二次方程的常数项为零,则m 的值为_________.例3.已知关于x 方程235x mx m x -+-=的各项系数与常数项之和为2,求m 的值.考点三:一元二次方程的解例1.判断2、5、-4是不是一元二次方程28x x x +=-的根.例2.判断方程后面括号里的数是否为方程的根.(1)21223(2)2x x -=-,,;(2))2(23)333x =,.师生总结1、一元二次方程的一般式是什么?2、一元二次方程中的各项如何认识?例3.已知关于x 的一元二次方程()2110a x x a -++-=有一个根为0,求a 的值.例4.已知关于x 的一元二次方程20ax bx c ++=有一个根为1,有一个根为1-,求a c +的值.例5.已知关于x 的一元二次方程()22222340m x m x m +++-=有一个根为0,求22413m m -+的值.例6.若在一元二次方程20ax bx c ++=中,二次项系数、一次项系数、常数项和为0,则方程必有一个根是.例7.已知方程2310ax bx --=和2250ax bx +-=有共同的解1-,求a 与b 的值.师生总结1、如何判断一个一元二次方程有一个根为0,有一个根为1,有一个根为1-?师生总结1、什么是一元二次方程的根?2、如何判断一个数是否为一元二次方程的根?考点四:直接开平方法例8.解关于x的方程:290x-=.例9.解关于x的方程:2x-=.51250例10.解关于x的方程:2x-=.96250例11.解关于x)2x-=22592例1.解关于x 的方程:()21342x +=.例2.解关于x 的方程:()2422360x --=.例3.解关于x 的方程:.例4.解关于x 的方程:()223x a -=.例5.解关于x 的2220x kx --=.【过关检测】一、单选题1.(2019·上海市青浦区华新中学八年级月考)下列方程中,适合用直接开方法解的个数有( )师生总结1、直接开平方法适用于那种形式的一元二次方程求解?对于一般的一元二次方程我们能不能直接应用开平方法求①13x 2=1;②(x ﹣2)2=5;③14(x+3)2=3;④x 2=x+3;⑤3x 2﹣3=x 2+1;⑥y 2﹣2y ﹣3=0 A .1B .2C .3D .42.(2019·上海市西南模范中学八年级期中)方程的根为( ) A .1214x x ==B .1212x x ==C .10x =,212x =D .112x =-,20x =3.(黄浦2017期中3)关于x 的方程22()20m m x mx -++=是一元二次方程的条件是( ) A. 0m ≠ B. 1m ≠ C. 01m m ≠≠或 D. 01m m ≠≠且4.(金山2018期末2)下列方程是关于x 的一元二次方程的是( ) (A )12=ax ; (B )012=+x ; (C )112=x; (D )2)2)(1(x x x =-+. 5.(闸北2018期中4)下列方程一定是一元二次方程的是( )A .xy +x=yB .x 2=﹣1C .ax 2+bx=0D .(x ﹣5)x=x 2﹣2x ﹣16.(普陀2018期中4)下列关于x 的方程中,是一元二次方程的是( ) A. 230x = B. 22+21(21)x x x x -=- C. 20ax bx c ++= D. 212x=7.(浦东四署2018期中3)下列方程是一元二次方程的是( ) A. 221x y += B. C. 13x x+= D. 456x x += 二、填空题8.(2018·上海市青云中学八年级期中)方程的根是__________________. 9.(2020·上海八年级期中)方程22(1)2020x -=的根是__________.10.(2020·上海市静安区实验中学八年级课时练习)方程的实数根为 ____________. 11.(黄浦2017期中14)方程2(1)9x -=的根是 . 12.(松江2018期末3)方程2(1)1x -=的根为 .13.(金山2018期中10)当m 时,关于x 的方程2232mx x x mx -=-+是一元二次方程. 14.(黄浦2017期中13)把方程2(1)3(5)4x x x -=+-化为一元二次方程的一般形式是 . 15.(嘉定2017期中15)下列方程中,220;4;230x x y ax x ==++-=(其中a 是常数);21(23)2(1);(3)32x x x x x x -=-+=. 一定是一元二次方程的有 (填编号) 三、解答题16.(2020·上海市甘泉外国语中学八年级期中)解方程:()213123x -=.17.(2020·松江区九亭第二中学八年级月考)解方程:18.(2020·上海市静安区实验中学八年级课时练习)()23120x +-=19(闸北2018期中21)解方程:(2x ﹣3)2﹣25=0.。
第二讲 双曲线中常用的结论及解法技巧(学生版)

第二讲 双曲线中常用的结论及解法技巧【知识要点】一.双曲线三大定义定义 1.到两定点距离之差的绝对值(小于两定点距离)为定值的点的轨迹是双曲线. 几何性质:双曲线上任一点到两焦点的距离之差的绝对值为定值.定义 2.到一个定点的距离与到一条定直线的距离之比为定值(大于1)的点的轨迹是双曲线.几何性质:双曲线上任一点到左(右)焦点的距离与到左(右)准线的距离之比为离心率e . 定义 3.到两个定点的斜率之积为定值(大于0)的点的轨迹是双曲线.几何性质:双曲线上任一点到左右(上下)两顶点的斜率之积为22ab .二.双曲线经典结论汇总1.AB 是双曲线()0,012222>>=-b a by a x 的不平行于对称轴的弦,),(00y x M 为AB 的中点,则22a b k k ABOM =⋅,即 0202y a x b k AB =. 等价形式:21,A A 是双曲线()0,012222>>=-b a by a x 上关于原点对称的任意两点,B 是双曲线上其它任意一点,直线B A B A 21,的斜率存在,则2221ab k k BA B A =⋅. 2.双曲线()0,012222>>=-b a by a x 的左右焦点分别为21,F F ,点P 为双曲线上异于实轴端点的任意一点θ=∠21PF F 则(1)2122||||1cos b PF PF θ=-;(2)双曲线的焦点角形的面积为2tan 221θb S PF F =∆.3.过双曲线()0,012222>>=-b a by a x 上任一点),(00y x A 任意作两条倾斜角互补的直线交双曲线于C B ,两点,则直线BC 有定向且0202y a x b k BC-= (常数).4.P 为双曲线()0,012222>>=-b a by a x 上任一点,21,F F 为二焦点,A 为双曲线内一定点,则||||2||12PF PA a AF +≤-,当且仅当P F A ,,2三点共线且P 和2,F A 在y 轴同侧时,等号成立.5.已知双曲线()0,012222>>=-b a by a x ,O 为坐标原点,Q P ,为双曲线上两动点,且OP OQ ⊥,(1)22221111||||OP OQ a b +=-;(2)22||||OQ OP +的最大值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -.6.双曲线()0,012222>>=-b a by a x 的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于21,P P 时11P A 与22P A 交点的轨迹方程是22221x y a b+=. 7.双曲线()0,012222>>=-b a by a x 的焦半径公式:),0,(),0,(21c F c F -当),(00y x M 在右支上时,.||,||0201a ex MF a ex MF -=+=当),(00y x M 在左支上时,.||,||0201a ex MF a ex MF --=+-=8.若),(000y x P 在双曲线()0,012222>>=-b a by a x 内,则被0P 所平分的中点弦的方程是222202020by a x b y y a x x -=-. 9.若),(000y x P 在双曲线()0,012222>>=-b a by a x 内,则过0P 的弦中点的轨迹方程是20202222byy a x x b y a x -=-. 10.若),(000y x P 在双曲线()0,012222>>=-b a by a x 上,则过0P 的双曲线的切线方程是12020=-byy a x x . 11.若),(000y x P 在双曲线()0,012222>>=-b a by a x 外 ,则过0P 作双曲线的两条切线切点为21,P P ,则切点弦 21P P 的直线方程是12020=-byy a x x . 12.设双曲线()0,012222>>=-b a by a x 的两个焦点为P F F ,,21(异于实轴端点)为双曲线上任意一点,在21F PF ∆中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.13.若P 为双曲线()0,012222>>=-b a by a x 上异于实轴端点的任一点,21,F F 是焦点,12PF F α∠=,21PF F β∠=,则2cot 2tan βα=+-a c a c (或2cot 2tan αβ=+-a c a c ).14.设B A ,是双曲线()0,012222>>=-b a by a x 的实轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,e c 、分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-; (2)2tan tan 1e αβ=-;(3) 22222cot PAB a b S b aγ∆=+.15.过双曲线()0,012222>>=-b a by a x 的右焦点F 作直线交该双曲线的右支于N M ,两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.16.已知双曲线()0,012222>>=-b a by a x ,B A ,是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点)0,(0x P ,则220a b x a +≥或220a b x a+≤-.17.点P 处的切线PT 平分21F PF ∆在点P 处的内角.18.过双曲线一个焦点F 的直线与双曲线交于两点Q P ,,21,A A 为双曲线实轴上的顶点,P A 1和Q A 2交于点M ,P A 2和Q A 1交于点N ,则NF MF ⊥.【例题解析】【例1】设双曲线()0,012222>>=-b a by a x 的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于B A ,两点,与双曲线的其中一个交点为P ,设O 为坐标原点,若),(R n m OB n OA m OP ∈+=→→→,且92=mn ,则该双曲线的离心率为( ) A .223 B .553 C .423 D .89【例2】双曲线134:22=-y x C 的左、右顶点分别为21,A A ,点P 在C 上且直线2PA 的斜率的取值范围是]2,1[,那么直线1PA 斜率的取值范围是( )A .]43,21[B .]43,83[C .]1,21[D .]1,43[【例3】已知斜率为3的直线l 与双曲线()0,01:2222>>=-b a by a x C 交于B A ,两点,若点)2,6(P 是AB 的中点,则双曲线C 的离心率等于( )A .2B .3C .2D .22【例4】已知双曲线()0,01:2222>>=-b a by a x C 的左、右焦点分别为21,F F ,直线l 过点1F 且与双曲线C 的一条渐进线垂直,直线l 与两条渐进线分别交于N M ,两点,若||2||11MF NF =,则双曲线C 的渐进线方程为( )A .x y 33±=B .x y 3±=C .x y 22±= D .x y 2±=【例5】设F 为双曲线()0,01:2222>>=-b a by a x C 的左焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点Q P ,,若||3||PF FQ =,060=∠FPQ ,则该双曲线的离心率为( ) A .3 B .31+ C .32+ D .323+【例6】已知双曲线()0,012222>>=-b a by a x ,若存在过右焦点F 的直线与双曲线交于B A ,两点,且→→=BF AF 3,则双曲线离心率的最小值为( )A .2B .3C .2D .22【例7】已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于A ,B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF △的面积为24a ,则双曲线的离心率为( )A B C .2D【例8】已知双曲线()0,012222>>=-b a by a x 的左右焦点分别为21,F F ,O 为双曲线的中心,P 是双曲线右支上的点,21F PF ∆的内切圆的圆心为I ,且圆I 与x 轴相切于点A ,过2F 作直线PI 的垂线,垂足为B ,若e 为双曲线的离心率,则( )A .||||OA e OB = B .||||OB e OA =C .||||OB OA =D .||OA 与||OB 关系不确定【例9】如图,已知双曲线()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,4||21=F F ,P 是双曲线右支上的一点,P F 2与y 轴交于点A ,1APF ∆的内切圆在1PF 上的切点为Q ,若1||=PQ ,则双曲线的离心率是( )A .3B .2C .3D .2 【课堂练习】【1】如图,21,F F 是双曲线()0,012222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点B A ,.若2ABF ∆为等边三角形,则双曲线的离心率为( )A .4B .7C .332 D .3 【2】如图,21,F F 是双曲线()0,012222>>=-b a by a x 的左、右焦点,点P 在第一象限,且满足0)(2211=⋅+→→→P F F F P F ,a P F =→||2,线段2PF 与双曲线交于点Q ,若→→=Q F P F 225, 则双曲线的渐近线方程为( )A .x y 21±= B .x y 55±= C .x y 552±= D .x y 33±=【3】已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则||||21PF PF ⋅等于( )A .2B .4C .6D .8【4】已知双曲线()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,由2F 向双曲线的一条渐近线作垂线,垂足为H ,若21HF F ∆的面积为2b ,则双曲线的渐近线方程为____________.【5】已知点P 为双曲线()0,012222>>=-b a by a x 右支上一点,21,F F 分别为双曲线的左右焦点,且ab F F 221||=,I 为21F PF ∆的内心,若2121F IF IPF IPF S S S ∆∆∆+=λλ成立,则λ的值为_______.【6】设双曲线1322=-yx 的左、右焦点分别为21,F F ,若点P 在双曲线上,且21PF F ∆为锐角三角形,则||||21PF PF +的取值范围是_______.【7】已知点P 为双曲线()0,012222>>=-b a by a x 右支上一点,其右焦点为2F ,若直线2PF 的斜率为3,M 为线段2PF 的中点,且||||22M F OF =,则该双曲线的离心率为_______.【课后作业】 【1】双曲线的左右焦点分别为,,焦距,以右顶点为圆心的圆与直线相切于点,设与交点为,,若点恰为线段的中点,则双曲线的离心率为( ) A .B .C .D .【2】(2019年全国2卷理数)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( ) A .2B .3C .2D .5【3】已知双曲线)0,0(12222>>=-b a by a x C :的左右焦点分别为21,F F ,过1F 的直线与C的两条渐近线分别交于A 、B 两点,若以21F F 为直径的圆过点B ,且A 为B F 1的中点,则C 的离心率为( )A .13+B .2C .3D .2【4】设双曲线C :22221(0,0)x y a b a b-=>>的左焦点为F ,直线02034=+-y x 过点F且与C 在第二象限的交点为P ,O 为原点, OP OF =,则双曲线C 的离心率为( ) A.5 B. 5 C.53 D. 54【5】设1F ,2F 是双曲线()2222:10,0x y C a b a b -=>>的两个焦点,P 是C 上一点,若126PF PF a +=,且12PF F △的最小内角为30︒,则C 的离心率为( )A .2B .32C .3D .62【6】如图所示,已知双曲线()222210x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于,A B 两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( )A.324 B. 233 C. 305 D. 52【7】已知F 是双曲线2221x a b2y -=()0,0a b >>的左焦点,E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围为 ( )A . ()1,+∞B . ()1,2C . ()1,12+D . ()2,12+【8】双曲线的离心率,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,,AOF △的面积为,则双曲线的方程为( )A .B .C .D . 【9】已知双曲线与轴交于、两点,点,则 面积的最大值为( )A .2B .4C .6D .8【10】双曲线的右焦点为,左顶点为,以为圆心,过点的圆交双曲线的一条渐近线于两点,若不小于双曲线的虚轴长,则双曲线的离心率的取值范围为( )A. B. C. D.【11】已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A. 33⎛⎫-⎪ ⎪⎝⎭B. (C. 33⎡⎢⎣⎦D. ⎡⎣ 【12】(2019年全国1卷理数)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.【13】已知直线与双曲线交于,两点,为双曲线上不同于,的点,当直线,的斜率,存在时, .2222:1(0,0)x y C a b a b-=>>e =F A C AOF OAF ∠=∠C 2213612x y -=221186x y -=22193x y -=2213x y -=222214x y b b-=-()02b <<x A B ()0,C b ABC ∆()222210,0x y a b a b-=>>F A F A,P Q PQ (]1,2((]1,3[)3,+∞12y x =22194x y -=A B P A B PA PB PA k PB k PA PB k k ⋅=。
第二讲 双曲线中常用的结论及解法技巧(学生版)

C. 3
D. 2
【4】设双曲线 C
x2
:
a2
y2 b2
1(a
0,b
0)
的左焦点为 F
,直线 4x 3y 20
0 过点 F
且与 C 在第二象限的交点为 P ,O 为原点, OP OF ,则双曲线 C 的离心率为( )
【例
9】如图,已知双曲线
x2 a2
y2 b2
1a
0,b
0的左、右焦点分别为 F1, F2 ,|
F1F2
|
4,
P 是双曲线右支上的一点, F2P 与 y 轴交于点 A , APF1 的内切圆在 PF1 上的切点为 Q ,
若 | PQ | 1 ,则双曲线的离心率是( )
4
A. 3
B. 2
C. 3
D. 2
则(1)|
PF1
||
PF2
|
2b2 1 cos
;(2)双曲线的焦点角形的面积为
S F1PF2
b2 .
tan
2
3.过双曲线
x2 a2
y2 b2
1a
0,b
0 上任一点
A(x0 ,
y0 ) 任意作两条倾斜角互补的直线交双
曲线于 B,C
两点,则直线 BC 有定向且 kBC
b2 x0 a2 y0
(常数).
x a
2 2
y2 b2
1a 0,b 0上关于原点对称的任意两点, B 是双曲
线上其它任意一点,直线
A1B, A2B 的斜率存在,则 k A1B
k A2B
b2 a2
.
2.双曲线
x2 a2
y2 b2
1a
0, b
学生版三元一次方程组(基础)知识讲解
三元一次方程组(基础)知识讲解【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩B .111216y x z y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩类型二、三元一次方程组的解法2. (韶关)解方程组275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩①②③举一反三: 【变式】解方程组:3. 解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②举一反三:【变式】方程组329a b b c c a +=⎧⎪+=-⎨⎪+=⎩的解为 .类型三、三元一次方程组的应用2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③4.黄冈市在国庆节前夕举办了庆祝建国六十一周年足球联赛活动,这次足球联赛共赛11轮,胜一场记3分,平一场记一分,负一场记0分.某校队所负场数是胜的场数的12,结果共得20分.问该校队胜、平、负各多少场?举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?三元一次方程组(基础)巩固练习【巩固练习】一、选择题1.下列四组数,是方程2x-y+z=0的解的是( ).A .111x y z =⎧⎪=-⎨⎪=⎩B .000x y z =⎧⎪=⎨⎪=⎩C .210x y z =-⎧⎪=⎨⎪=⎩D .012x y z =⎧⎪=⎨⎪=⎩2.已知方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩,则a+b+c 的值为( ).A .6B .-6C .5D .-53.已知532y x y z x a b c ++-与254x y a b c -是同类项,则x-y+z 的值为 ( ) .A .1B .2C .3D .44.若x+2y+3z =10,4x+3y+2z =15,则x+y+z 的值为 ( ) .A .2B .3C .4D .55.已知甲、乙、丙三个人各有一些钱,其中甲的钱是乙的2倍,乙比丙多1元,丙比甲少11元,则三人共有( ).A .30元B .33元C .36元D .39元6. 如图所示,两个天平都平衡,则三个球的质量等于( )正方体的质量.A .2个B .3个C .4个D .5个二、填空题7. 解三元一次方程组的基本思路是 .8. 三元一次方程7x+3y-4z=1用含x、z 的代数式表示y = .9. 在三元一次方程x+y+z=3中,若x=-1,y=2,则z= .10. 若方程-3x-my+4z=6是三元一次方程,则m的取值范围是 .11. 如果方程组864x y y z z x +=⎧⎪+=⎨⎪+=⎩的解满足方程kx+2y-z =10,则k =________.12.已知方程组2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩,若消去z ,得到二元一次方程组________;若消去y ,得到二元一次方程组________,若消去x ,得到二元一次方程组________.三、解答题13.解方程组:(1) 2321122x y zx y x y z -=⎧⎪⎪+=⎨⎪⎪-=+⎩ (2)32522642730x y z x y z x y z ++=⎧⎪--=⎨⎪+-=⎩14. 在等式2y ax bx c =++中,当x =1时,y =4;当x =2时,y =3;当x =-1时,y =0,求a 、b 、c 的值.问每队胜一场、平一场、负一场各得多少分?。
第4讲 二元一次方程(组)的概念与解法(学生版)
第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。
学生版一元二次方程的解法(二)配方法—知识讲解(基础
一元二次方程的解法(二)配方法—知识讲解(基础)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】 知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (•淄博)解方程:x 2+4x ﹣1=0.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.类型二、配方法在代数中的应用2.若代数式221078Ma b a =+-+,2251N a b a =+++,则M N -的值( ) A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数3.用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.举一反三:【变式】求代数式 x 2+8x+17的最小值4.已知223730216b a a b -+-+=,求4a b -的值.一元二次方程的解法(二)配方法—巩固练习(基础)【巩固练习】一、选择题 1. (贵州)用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( ) A .(x +2)2=1 B .(x +2)2=7 C .(x +2)2=13 D .(x +2)2=192.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-15.把方程x 2+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( )A .2±10B .-2±14C .-2+10D .2-10二、填空题7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.8.(长兴县月考)用配方法将方程x 2-6x+7=0化为(x +m )2=n 的形式为 .9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 .12.已知a 2+b 2-10a-6b+34=0,则的值为 . 三、解答题13. 用配方法解方程(1) (2)221233x x +=14.已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.。
八下数学章节考点详细解析(学生版)
八下数学章节考点详细解析姓名第一章不等式与不等式组(六)一次函数图像与不等式1.如图2,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________。
2.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .3.如图,直线y kx b =+经过A (-2,-1)和B (-3,0)两点,则不等式组102x kxb <+<的解集为 .4.(2010年山东聊城)如图一次函数y kx b =+的图象与正比例函数y =2x 的图象相交于点P ,与y 轴交于(0,3)(1)关于x 的方程kx+b=2x 的解为 . (图表信息题)1.七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数. 2.下表给出甲、乙、丙三种食物的维生素A,B 的含量及成本:某食物营养研究所将三种食物混合成110千克的混合物,使之至少需含48400单位 的维生素A 及52 800单位的维生素B .求三种食物所需量与成本的关系式.(说明理由型)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价9折优惠.设顾客预计累计购物x 元(x >300).(1) 请用含x 代数式分别表示顾客在两家超市购物所付的费用; (2) 试比较顾客到哪家超市购物更优惠?说明你的理由.(混合夹逼型)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有—个小朋友分不到8个苹果.求这一箱苹果的个数与小朋友的人数.(方案选择型)例6.(黑龙江省)某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元,•每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.※一元一次不等式的解法易错点归纳1.去括号时,错用乘法分配律【例1】解不等式3x+2(2-4x)<19. 错解:去括号,得3x+4-4x<19,解得x>-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3.2.去括号时,忽视括号前的负号【例2】解不等式5x-3(2x-1)>-6. 错解:去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解:去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.3.移项时,不改变符号【例3】解不等式4x-5<2x-9.错解:移项,得4x+2x<-9-5,即6x<-14,所以诊断:一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解:移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.4.去分母时,忽视分数线的括号作用【例4】解不等式错解:去分母,得,解得:诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解:去分母,得6x-(2x-5)>14,去括号,得5.不等式两边同除以负数,不改变方向【例5】解不等式3x-6<1+7x. 错解:移项,得3x-7x<1+6,即-4x<7,所以诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以所以x>6.去分母时,漏乘不含分母的项【例6】解不等式错解:去分母,得x-2(x-1)>3x+1,去括号,解得诊断: 去分母时,要用最简公分母去乘不等式两边的每一项.而错解只乘了含有分母的项,漏乘了不含有分母的项.正解:去分母,得6x-2(x-1)>3x+6,去括号,得6x-2x+2>3x+6,解得x>4.7.忽视对有关概念的理解【例7】求不等式的非负整数解.错解:整理,得3x≤16,所以故其非负整数的解是1,2,3,4正解:非负整数的解是0,1,2,3,4,58.在数轴上表示解集时出现错误【例8】解不等式:3(1-x)≥2(x+9),并把它的解集在数轴上表示出来.错解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图1所示.诊断:本题求得的解集并没错,问题出在将解集在数轴上表示出来时出现了错误,即有两处错误:一是方向表示错误,不应该向右,而应该向左;二是不应用空心圆圈表示,而应用实心圆圈表示.正解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图2所示.注:上述三例告诉我们解一元一次不等式时一定要认真分析题目的结构特征,灵活运用解一元一次不等式的步骤,正确理解有关概念,才能及时避开陷阱,准确、快速的求解.9.不等式组解集忽视等号【例9】若不等式组的解集为x>2,则a的取值范围是().A. a<2B. a≤2C. a>2D. a≥2错解:原不等式组可化简为得a<2,故选A.诊断:当a=2时,原不等式组变为解集也为x>2.正解:应为a≤2 ,故选B.10.忽视了字母的范围【例10】解关于x的不等式m(x-2)>x-2.错解:化简,得(m-1)x>2(m-1),所以x>2.诊断:错解在默认为m-1>0,实际上m-1还可能小于或等于0.正解:化简,得(m-1)x>2(m-1),①当m-1>0时,x>2;②当m-1<0时,x<2;③当m-1=0时,无解.【例11】解不等式(a-1)x>3.错解:系数化为1,得.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解:①当a-1>0时,;②当a=1时,0³x>3,不等式无解;③当a-1<0时,.11.套用解方程组的方法解不等式组【例12】不等式组的解集为___________.错解:两个不等式相加,得 x-1<0,所以x<1.诊断: 这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解.正解:解不等式组,得在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:.【例13】 解不等式组错解:因为5x-3>4x+2,且4x+2>3x-2, 所以 5x-3>3x-2. 移项,得5x-3x >-2+3.解得.诊断: 上面的解法套用了解方程组的方法,是否正确,我们可以在的条件下,任取一个x 的值,看是否正确.如取x =1,将它代入5x-3>4x+2,得2>6(不成立).可知不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集. 正解:由5x-3>4x+2,得x >5. 由4x+2>3x-2,得x >-4.综合x >5和x >-4,得原不等式组的解集为x >5.第二章 因式分解考点考点一、因式分解的意义例1.一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏做得不够完整的一题是( )A.x 3-x =x (x 2-1)B.x 2-2xy +y 2=(x -y )2C.x 2y -xy 2=xy (x -y )D.x 2-y 2=(x -y )(x +y ) 考点二、直接提公因式分解例2.分解因式2a (b -c )-3c (b -c ).考点三、用公式法分解因式 例3.分解因式:(1)25-2161m ; (2)-(a -b )2+4(a -b )-4.考点四、确定多项式的公因式例4.多项式ax 2-4a 与多项式x 2-4x +4的公因式是___.考点五、换元法例5.(x 2-1)2-5(x 2-1)+4=0例6.计算2005+20052-20062.考点六、开放型问题例7.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,便记忆.理由是:如对于多项式44y x -,因式分解的结果是))()((22y x y x y x ++-,若取x =9,y =9时,则各个因式的值是:(x -y )=0,(x +y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一六位数的密码.对于多项式234xy x -,取x =10,y =10时,用上述方法产生的密码是: (写出一个即可).例8 甲、乙两生解同一个一元二次方程式,甲将x 项的系数看错,解得两根为-4与8;乙将常数项看错,解得两根为-4与10,此外无其它错误,试求正确的方程式考点七 十字相乘法例9 设x 、y 为正数,且x 2-3xy -4y 2=0,则x :y 的比值= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块一 一元二次方程的概念1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 关于一元二次方程的定义考查点有三个:①二次项系数不为0;②最高次数为2;③整式方程 2.一元二次方程的一般形式:20(0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.3.一元二次方程根的考察关于一元二次方程根的考查就是需要将根代入方程得到一个等式,然后再考察恒等变换。
(将根代入方程,这是很多同学都容易忽略的一个条件) 4.一元二次方程的识别:判断一个方程是否是一元二次方程,必须符合以下三个标准: ①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数. ③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.任何一个关于x 的一元二次方程经过整理都可以化为一般式20ax bx c ++=()0a ≠.要特别注意对于关于x 的方程20ax bx c ++=,当0a ≠时,方程是一元二次方程;当0a =且0b ≠时,方程是一元一次方程.板块二 一元二次方程的解法1.直接开平方法对于形如2x m =或2()ax n m +=(0a ≠,0m ≥)型的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平法求解 如2x m =(0m ≥)的解为x =,即1x =2x =如2()ax n m +=(0m ≥)转化为ax n +=ax n +或ax n +=进行求解 当0m <时,方程2x m =和2()ax n m +=均无解 2.配方法通过配方的方法把一元二次方程转化为形如2()ax b m +=的形式,再运用直接开平方的方法求解,即用配方法解方程。
用配方法解一元二次方程的步骤如下:(1)把方程中含有未知数的项移到方程的左边,常数项移到方程的右边 (2)根据等式的性质把二次项的系数化为“1”(3)把方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式。
用配方法解一元二次方程比较麻烦,建议优先考虑其他的方法 3.公式法:x =(2b -4ac ≥0)一元二次方程的概念及解法新知学习一元二次方程的求根公式是由配方法演变而来,公式法是用求根公式求出一元二次方程的解的方法,它是解一元二次方程的一般解法,也是求一元二次方程解的万能公式.(1)求根公式解释:由求根公式可知,一元二次方程的根是由其系数a ,b ,c 决定的,只要确定了a ,b ,c 的值,就可以代入公式求出一元二次方程的根.(2)注意被开方数2b -4ac 必须是非负数,.(3)若2b -4ac ≥0,则把a,b,c 及2b -4ac 的值代入一元二次方程的求根公式a2ac4b ±b =x 2﹣﹣,求出1x ,2x .若2b -4ac <0,则方程没有实数根. 4.分解因式法:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解.这种解一元二次方程的方法称为分解因式法. 注:(1)分解因式法把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”的思想,这种思想在以后处理高次方程时非常重要.(2)分解因式法的理论依据是:两个因式的积等于0那么这两个因式中至少有一个等于0. (3)分解因式法简便易行,是解一元二次方程最常用的方法.一般步骤为:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是原方程的解.一.二次方程的概念1.一元二次方程的定义:【例1】判别下列方程哪些是一元二次方程(1)2370x +=; (2)20ax bx c ++=; (3)2(2)(3)1x x x -+=-; (4)240x -=; (5)2(10x -=; (6)24360x x-+=【例2】把下列方程化成一般形式,并写出它的二次项系数、一次项系数以及常数项(1)2(21)(32)2x x x -+=+ (2)2)(3)x x x =+基础演练【练一练】方程223x -=,化为一元二次方程的一般形式是 ,其中二次项系数是 ,一次项系数是 ,常数项是【练一练】先把下列的一元二次方程化为一般形式,再写出它的二次项系数、一次项系数、常数项(1)23x -=;(2)25(6)100x +=;(3)2(32)(23)4x x x +-=+;(4)211(2)52x x +=【例3】关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【练一练】已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围.【练一练】已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围.【练一练】若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. 【例4】若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠【练一练】m 为何值时,关于x 的方程2((3)4m m x m x m -+=是一元二次方程.【例5】已知方程2240a b x x x --+=是关于x 的一元二次方程,求a 、b 的值.【练一练】若2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值.【练一练】已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值.2.一元二次方程根的考察【例6】已知2是关于x 的方程23202x a -=的一个根,则21a -的值是( )A.3B.4C.5D.6【练一练】关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A.1B.1-C.1或1-D.12【练一练】若两个方程20x ax b ++=和20x bx a ++=只有一个公共根,则( )A.a b =B.0a b +=C.1a b +=D.1a b +=-【例7】若m 是方程23220x x --=的一个根,那么代数式2312m m -+的值为3.降次”思想 【例8】已知a 是方程2310x x +-=的一个根,则代数式3102a a -+的值为_________ 【练一练】已知m 是方程2200610x x -+=的一个根,试求22200620051m m m -++的值二.一元二次方程的解法1.直接开平方法 【例9】解下列方程(1)24(21)90x --= (2)229(32)(12)x x -=-【练一练】解关于x 的方程:()()222332x x +=+【练一练】解关于x 的方程: ()()22425931x x -=-【练一练】解关于x 的方程:22(31)85x +=【练一练】解方程:2269(52)x x x -+=-2.配方法【例10】用配方法解下列方程(1)22490x x +-= (2)2368x x =-+【练一练】你能用配方法解下列方程吗?试试看(1)2250x x +-= (2)2104x x ++= (3)2324x x -= (4)22410x x -+=【练一练】用配方法解下列方程(1)2640x x --= (2)2420x x +-= (3)211063x x +-= (4)2241y y -=-(5)223546x x x --=- (6)(1)(3)50y y -+-= ⑺22520x x --=3.公式法【例11】用配方法解方程:20ax bx c ++=(a 、b 、c 为常数且0a ≠)【例12】用公式法解下列方程(1)210x x --= (2)25720x x -+=【练一练】用公式法解下列方程(1)22310x x +-= (2)2362x x =- (3)23p += (4)235(21)0x x ++= (5)2952n n =- (6)(5)(7)1x x --=(7)1(61)432(2)2x x x x ++-=+ (8)2320x -=4. 因式分解法【例13】若215(3)()x mx x x n +-=++,则m 的值为【例14】解关于x 的方程:2(41)3(14)40x x ----=【练一练】解方程:2269(52)x x x -+=-【例15】解分式方程:222(1)6(1)711x x x x +++=++5.含绝对值的一元二次方程【例16】设方程22140x x ---=,求满足该方程的所有根之和.【练一练】解方程:210x x --=【题1】 关于x 的方程27(3)30mm x x ---+=是一元二次方程,则______m =【题2】 一元二次方程2()0ax b bx c +++=的二次项系数为 ,一次项系数为 ,常数项为 【题3】 已知关于x 的方程22(3)230m x x m m ++++-=一根为0,则m 的值为( )A.1B.3-C.1或3-D.以上均不对【题4】 对于方程2()ax b c +=下列叙述正确的是( )A.不论c 为何值,方程均有实数根B.方程根是c bx a -=C.当0c ≥时,方程可化为:ax b +=ax b += D.当0c =时,bx a=【题5】 选择恰当的方法解下列方程(1)219()43x +=;(2)260x x --=;(3)2310y y -+=;(4)22110362x x --=(5)22(54)(43)0x x ---=;(6)22530x x +-=;⑺(27)5(27)x x x +=+;⑻(1)(3)12x x -+=课后作业【题6】 当 时,2(2)30m x mx -++=是关于x 的一元二次方程 【题7】 如果(221)(221)63a b a b +++-=,则a b +的值是 【题8】 若214x mx -+是一个完全平方式,则m 的值是 【题9】 关于x 的一元二次方程2220mx x m -+=有一根为1-,则m 的值应为 【题10】 阅读材料解答下列问题为解方程222(1)5(1)40x x ---+=,我们可以将21x -视为一个整体,设21x y -=,则222(1)x y -=,原方程化为2540y y -+=①,解得14y =,21y =当4y =时,214x -=,∴x =当1y =时,211x -=,∴x =∴原方程的解为1x =2x =,3x =,4x =解答问题:(1)填空:在由原方程得到方程①的过程中,利用 方法达到降次的目的,体现了 的数学思想(2)解方程:4260x x --=【题11】 若0x =是方程()2223280m x x m m -+++-=的解,则m = . 【题12】 三角形的每条边的长都是2680x x -+=的根,则三角形的周长是 . 【题13】 若使分式22231x x x +--的值为0,则x 的取值为 .【题14】 若关于x 的一元二次方程()2215320m x x m m -++-+=的常数项为0,则m 的值为 . 【题15】 设方程2220022003200110x x -⨯-=的较大根为r ,方程22001200210x x -+=的较小根为s ,则r s -的值为 .【题16】 根据下列表格的对应值:判定方程00ax bx c a ++=≠一个解x 的范围是( )A .3 3.23x <<B .3.23 3.24x <<C .3.24 3.25x <<D .3.25 3.26x <<【题17】 已知a b 、是方程240x x m -+=的两个根,b c 、是方程2850x x m -+=的两个根,则m = .【题18】 设a b 、是整数,方程20x ax b ++=a b +的值是 . 【题19】 已知2310a a -+=,那么2294921a a a --+=+ . 【题20】 已知2520000xx --=,那么()()322112x x x ---+-的值为 .【题21】 设12x x 、是方程24x x +-的两个实数根,求代数式3212510x x -+的值.【题22】 解方程:24562x x x +-=-【题23】 已知三个关于x 的一元二次方程222000ax bx c bx cx a cx ax b ++=++=++=,,恰有一个公共实数根,则222a b c bc ca ab++的值为 .【题24】 已知22a b >>,,试判断关于x 的方程()20x a b x ab -++=与()20x abx a b -++=没有公共根,请说明.【题25】 设关于x 的二次方程()()()2221220a x a x a a --+++=①及()()()2221220b x b x b b --+++=②(其中a b 、皆为正整数,且a b ≠)有一个公共根,求b abaa b a b--++的值.。