灰色系统预测模型GM(1,1)的基本思想与实现过程(xs)
灰色预测法GM(1,1)理论及应用

灰色预测法GM(1,1)理论及应用一、概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==。
如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。
灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测GM模型实现过程

灰色预测GM模型实现过程灰色预测GM(1,1)模型是一种基于灰色系统理论的预测模型,广泛应用于各个领域的预测和决策中。
该模型通过对原始序列进行累加、一次指数平滑运算,从而建立灰色微分方程,并利用该方程进行预测。
下面将详细介绍GM(1,1)模型的实现过程。
GM(1,1)模型的基本思想是将原始数据序列进行累加,然后进行一次指数平滑运算,得到一次累加生成序列的差分方程,建立灰色微分方程。
具体实现过程如下:1.数据序列的累加:将原始数据序列进行累加,得到累加序列。
累加操作可以使数据序列趋于线性。
2.累加序列的一次指数平滑:对累加序列进行一次指数平滑运算,得到平滑累加序列。
一次指数平滑可以使得序列的趋势更加明显。
3.灰色微分方程的建立:根据平滑累加序列可以建立灰色微分方程。
假设平滑累加序列为X(0),X(1),...,X(n),则灰色微分方程可以表示为:X(n)+a*X(1)=b其中,a为发展系数,b为灰色作用量。
4.参数估计:通过最小二乘法求解灰色微分方程中的参数a和b。
具体方法是:将方程改为矩阵形式,即[A][X]=[B],其中A为系数矩阵,X为参数向量,B为常数向量。
通过对矩阵A和B进行求逆运算,可以得到参数向量X,进而求得a和b的值。
5.模型检验:通过残差检验、相关系数检验、后验差检验等方法对模型的准确性进行检验。
如果模型通过检验,则认为预测结果可靠;否则,需要进行修正或重新建模。
6.模型预测:利用建立的灰色微分方程进行未来数值的预测。
根据已有的序列,可以求得发展系数a和灰色作用量b的值,从而可以插入到灰色微分方程中,得到未来数值的预测。
总结:GM(1,1)模型是一种简单且有效的预测模型,适用于非线性和不稳定的数据序列。
它基于灰色系统理论,通过累加和一次指数平滑运算建立灰色微分方程,利用最小二乘法估计参数,并进行模型检验和预测。
在实际应用中,可以根据具体情况调整模型中的参数和方法,以提高预测的精度和可靠性。
数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1,1)及其应用

§2 灰色预测模型GM(1,1)及其应用蠕变是材料在高温下的一个重要性能。
处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。
高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。
为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。
过去,人们都是通过蠕变试验测量断裂时间。
而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。
如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。
一、灰色预测模型GM (1,1) 建模步骤如下:(1)GM (1,1)代表一个白化形式的微分方程:u aX dtdX =+)1()1( (1) 式中,u a ,是需要通过建模来求得的参数;)1(X是原始数据)0(X的累加生成(AGO )值。
(2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。
表示为:∑==kn n X k X1)0()1()()( (2)不直接采用原始数据)0(X建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。
(3)对GM (1,1),其数据矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a ,N TT Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α (4) (5)建立时间响应函数,求微分方程(1)的解为au e a u X t Xat +-=+-))1(()1(ˆ)0()1( (5) 这就是要建立的灰色预测模型。
GM模型建立与预测方法

GM模型建立与预测方法1.灰色系统理论简介:灰色系统理论是由中国科学家李文建于1982年提出的,它是一种描述不确定性系统的理论方法。
灰色系统理论将系统划分为有较多信息和有较少信息的两个部分,将有较多信息的部分称为白色信号,将有较少信息的部分称为黑色信号。
2.GM(1,1)模型的建立步骤:(1)原始数据序列的累加生成:将原始数据序列累加得到累加序列,令累加序列为$$X^{(1)}=\sum_{i=1}^n X(i),\quad i=1,2,...,n.$$(2)累加生成序列的一次累减生成:将累加序列的每个相邻数据相减得到累减序列,令累减序列为$$Z^{(1)}=\sum_{i=1}^{n-1} X(i),\quad i=1,2,...,n-1.$$(3)GM(1,1)微分方程的建立:由累减生成序列得到微分方程为$$\hat{X}(k+1)-a\hat{X}(k) = b,$$其中 $\hat{X}(k)$ 表示 $Z^{(1)}$ 的紧邻均值,即$$\hat{X}(k)=\frac{Z^{(1)}(k)+Z^{(1)}(k+1)}{2},\quadk=1,2,...,n-1.$$系数$a$是发展系数,系数$b$可以由初始数值求得。
(4)模型参数的计算:根据微分方程,可以得到模型参数的计算公式:$$a = \frac{\sum_{i=1}^{n-1}(X^{(1)}/X(i))}{n-1},\quad b = X(1)-\frac{a}{1-a}X^{(1)}.$$3.GM(1,1)模型的预测方法:(1)模型参数的计算:根据已有的数据序列,利用上述步骤计算得到模型的参数$a$和$b$。
(2)模型的状态方程和预测方程:状态方程可以表示为$$X^{(1)}(k+1)=aX^{(1)}(k)+b,$$预测方程可以表示为$$\hat{X}(k+1) = X(1)-\frac{b}{a}[1-\exp(-a)]\exp(a(k+1)).$$ (3)模型的残差检验:计算原始序列和预测序列的离差,如果离差不满足预先设定的阈值,说明预测的效果较好;否则需要调整模型参数重新预测。
灰色系统预测模型GM(1,1)的基本思想与实现过程(xs)

灰色系统预测模型GM(1,1)的基本思想与实现过程(xs)灰色系统预测模型GM(1,1)的基本思想与实现过程邓聚龙,jq ,佚名摘要:从灰色系统的预备知识、灰色系统预测模型GM(1,1)的计算、灰色系统预测模型的检验、GM(1,1)预测应用举例以及GM(1,1)模型的特点等五个方面阐述了灰色系统预测模型GM(1,1)的基本思想与实现过程,这对于地理科学本科生学会运用该方法解决实际的地理预测问题,改进思维方式,提高实践能力具有一定的意义。
关键词:预测;灰色系统;模型检验;模型特点1 预备知识1.1 灰色系统白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。
1.2 灰色预测灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。
它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。
经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。
因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。
2 灰色系统预测模型GM(1,1) 2.1 GM(1,1)的一般形式设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列:X (1)={X (1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k -1)+ X (0)(k ) (1) 对X (1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即GM(1,1)模型。
python实现灰色预测GM(1,1)模型灰色系统预测灰色预测公式推导

python实现灰⾊预测GM(1,1)模型灰⾊系统预测灰⾊预测公式推导来源公式推导连接关键词:灰⾊预测 python 实现灰⾊预测 GM(1,1)模型灰⾊系统预测灰⾊预测公式推导⼀、前⾔ 本⽂的⽬的是⽤Python和类对灰⾊预测进⾏封装⼆、原理简述1.灰⾊预测概述 灰⾊预测是⽤灰⾊模型GM(1,1)来进⾏定量分析的,通常分为以下⼏类: (1) 灰⾊时间序列预测。
⽤等时距观测到的反映预测对象特征的⼀系列数量(如产量、销量、⼈⼝数量、存款数量、利率等)构造灰⾊预测模型,预测未来某⼀时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰⾊模型预测事物未来变动的轨迹。
(4) 系统预测,对系统⾏为特征指标建⽴⼀族相互关联的灰⾊预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。
上述灰⾊预测⽅法的共同特点是: (1)允许少数据预测; (2)允许对灰因果律事件进⾏预测,例如: 灰因⽩果律事件:在粮⾷⽣产预测中,影响粮⾷⽣产的因⼦很多,多到⽆法枚举,故为灰因,然⽽粮⾷产量却是具体的,故为⽩果。
粮⾷预测即为灰因⽩果律事件预测。
⽩因灰果律事件:在开发项⽬前景预测时,开发项⽬的投⼊是具体的,为⽩因,⽽项⽬的效益暂时不很清楚,为灰果。
项⽬前景预测即为灰因⽩果律事件预测。
(3)具有可检验性,包括:建模可⾏性的级⽐检验(事前检验),建模精度检验(模型检验),预测的滚动检验(预测检验)。
2.GM(1,1)模型理论 GM(1,1)模型适合具有较强的指数规律的数列,只能描述单调的变化过程。
已知元素序列数据:做⼀次累加⽣成(1-AGO)序列:其中,令为的紧邻均值⽣成序列:其中,建⽴GM(1,1)的灰微分⽅程模型为:其中,为发展系数,为灰⾊作⽤量。
设为待估参数向量,即,则灰微分⽅程的最⼩⼆乘估计参数列满⾜其中再建⽴灰⾊微分⽅程的⽩化⽅程(也叫影⼦⽅程):⽩化⽅程的解(也叫时间响应函数)为那么相应的GM(1,1)灰⾊微分⽅程的时间响应序列为:取,则再做累减还原可得即为预测⽅程。
《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言随着科技的飞速发展,大数据的崛起,预测与决策分析变得尤为重要。
灰色预测模型,特别是灰色GM(1,1)模型,以其对数据要求低、操作简单、效果良好的特点,被广泛应用于社会经济各个领域。
然而,传统灰色GM(1,1)模型在某些复杂、高精度的应用场景中存在一定局限性。
本文旨在探讨灰色GM(1,1)模型的优化方法及其在各领域的应用。
二、灰色GM(1,1)模型概述灰色GM(1,1)模型是一种以微分方程为基础的灰色预测模型,通过对原始数据进行累加生成(AGO)和累减生成(IAGO),构造出微分方程的系数,从而进行预测。
该模型在处理小样本、不完全信息的数据时具有较好的预测效果。
三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型在处理复杂、高精度数据时可能出现的局限性,本文提出以下几种优化方法:(一)改进数据处理方式对原始数据进行更为细致的预处理和后处理,包括但不限于利用更加先进的数据分析工具进行数据的筛选和净化,以及对AGO和IAGO的处理方法进行改进。
(二)引入其他变量和参数通过引入其他相关变量和参数,丰富模型的输入信息,提高模型的预测精度。
例如,可以通过引入时间变量、季节因素等,对模型进行时间和季节性优化。
(三)结合其他预测模型将灰色GM(1,1)模型与其他预测模型进行结合,如与神经网络、支持向量机等相结合,形成混合预测模型,以提高模型的预测精度和稳定性。
四、灰色GM(1,1)模型的应用(一)经济领域应用灰色GM(1,1)模型在经济领域的应用广泛,如对股票价格、房地产价格、经济周期等进行预测。
通过优化后的灰色GM(1,1)模型,可以更准确地预测经济走势,为政策制定提供科学依据。
(二)农业领域应用在农业领域,灰色GM(1,1)模型可以用于预测农作物产量、病虫害发生情况等。
通过优化后的模型,可以更准确地预测农业生产情况,为农业生产提供科学指导。
(三)其他领域应用除了经济和农业领域,灰色GM(1,1)模型还可以应用于其他领域,如医疗、能源、交通等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色系统预测模型GM(1,1)的基本思想与实现过程邓聚龙,jq ,佚名摘要:从灰色系统的预备知识、灰色系统预测模型GM(1,1)的计算、灰色系统预测模型的检验、GM(1,1)预测应用举例以及GM(1,1)模型的特点等五个方面阐述了灰色系统预测模型GM(1,1)的基本思想与实现过程,这对于地理科学本科生学会运用该方法解决实际的地理预测问题,改进思维方式,提高实践能力具有一定的意义。
关键词:预测;灰色系统;模型检验;模型特点1 预备知识1.1 灰色系统白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。
1.2 灰色预测灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行 预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。
它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。
经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。
因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。
2 灰色系统预测模型GM(1,1) 2.1 GM(1,1)的一般形式设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列:X (1)={X (1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k -1)+ X (0)(k ) (1)对X (1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即GM(1,1)模型。
上述白化微分方程的解为(离散响应): ∧X (1)(k +1)=(X (0)(1)-a u )ak e -+au(3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4) 式中:k 为时间序列,可取年、季或月。
2.2 辩识算法记参数序列为∧a , ∧a=[a,u]T ,∧a 可用下式求解:∧a =(B T B)-1B T Y n (5)式中:B —数据阵;Y n —数据列B =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++- 1 (n))X 1)-(n (X 21 ... 1 (3))X (2)X (211 (2))X (1)X (21(1)1(1)(1)(1)(1))(-- (6) Y n =(X (0)(2), X (0)(3),…, X (0)(n))T (7)2.3 预测值的还原由于GM 模型得到的是一次累加量,k ∈{n+1,n+2,…}时刻的预测值,必须将GM 模型所得数据∧X(1)(k +1)(或∧X(1)(k ))经过逆生成即累减生成(I —AGO)还原为∧X (0)(k +1)(或∧X (0)(k )),即:∧X(1)(k )=∑=ki 1∧X (0)(i)=∑-=11k i ∧X (0)(i)+∧X (0)(k )∧X(0)(k )=∧X(1)(k )-∑-=11k i ∧X (0)(i)因为∧X(1)(k -1)=∑-=11k i ∧X (0)(i),所以∧X (0)(k )=∧X (1)(k )-∧X (1)(k -1)。
3 灰色系统模型的检验3.1 检验方法一:残差合格(相对误差)定义:设原始序列{})(,),2(),1()0()0()0()0(n x x x X =相应的模型模拟序列为{})(ˆ,),2(ˆ),1(ˆˆ)0()0()0()0(n x x x X= 残差序列{})(),2(),1()0(n εεεε ={})(ˆ)(,),2(ˆ)2(),1(ˆ)1()0()0()0()0()0()0(n x n x xx x x ---= 相对误差序列⎭⎬⎫⎩⎨⎧=∆)()(,,)2()2(,)1()1()0()0()0(n x n x x εεε{}n k 1∆=1.对于k <n,称)()()0(k x k k ε=∆为k 点模拟相对误差,称)()()0(n x n n ε=∆为滤波相对误差,称∑=∆=∆nk k n 11为平均模拟相对误差;2.称∆-1为平均相对精度,n ∆-1为滤波精度;3.给定α,当α<∆,且α<∆n 成立时,称模型为残差合格模型。
3.2 检验方法二:关联合格定义:设)0(X 为原始序列,)0(ˆX为相应的模拟误差序列,ε为)0(X 与)0(ˆX的绝对关联度,若对于给定的00,0εεε>>,则称模型为关联合格模型。
3.3 检验方法三:均方差比合格、小误差概率合格 定义:设)0(X为原始序列,)0(ˆX为相应的模拟误差序列,)0(ε为残差序列。
∑==n k k x n x 1)0()(1为)0(X 的均值,21)0(21))((1x k x n s n k -=∑=为)0(x 的方差,∑==nk k n 1)(1εε为残差均值,∑=-=n k k n s 1222))((1εε为残差方差,1. 称12s sc =为均方差比值;对于给定的00>c ,当0c c <时,称模型为均方差比合格模型。
2. 称()16745.0)(s k Pp <-=εε为小误差概率,对于给定的00>p ,当0p p >时,称模型为小误差概率合格模型。
表1 精度检验等级参照表精度等级相对误差 关联度 均方差比值 小误差概率一级 0.01 0.90 0.35 0.95 二级 0.05 0.80 0.50 0.80 三级 0.10 0.70 0.65 0.70 四级 0.20 0.60 0.800.60一般情况下,最常用的是相对误差检验指标。
4 GM(1,1)预测应用举例设原始时间序列为:{})5(),4(),3(),2(),1()0()0()0()0()0()0(x x x x x X=()679.3,390.3,337.3,278.3,874.2=建立GM(1,1)模型,并进行检验。
解:1)对)0(X作1-AGO ,得[D 为)0(X 的一次累加生成算子,记为1-AGO]{})5(),4(),3(),2(),1()1()1()1()1()1()1(x x x x x X= ()558.16,579.12,489.9,152.6,874.2=2)对)1(X作紧邻均值生成,令)1(5.0)(5.0)()1()1()1(-+=k x k x k Z{})5(),4(),3(),2(),1()1()1()1()1()1()1(z z z z z Z =()718.14,84.11,820.7,513.4,874.2=于是,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1718.14184.111820.71513.41)5(1)4(1)3(1)2()1()1()1()1(z z z z B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=679.3390.3337.3278.3)5()4()3()2()0()0()0()0(x x x x Y⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----•⎥⎦⎤⎢⎣⎡----=T 1718.14184.111820.71513.41111718.14184.11820.7513.4B B⎥⎦⎤⎢⎣⎡--=4235.38235.38221.423⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=--T832371.11665542.0165542.0017318.04235.38235.38221.423)(11B B⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⨯=221.423235.38235.384969.2301221.423235.38235.384235.384221.42312⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎦⎤⎢⎣⎡----•⎥⎦⎤⎢⎣⎡==T -T 679.3390.3337.3278.31111718.14184.11820.7513.4832371.11665542.0165542.0017318.0)(ˆ1Y B B B a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡•⎥⎦⎤⎢⎣⎡---=679.3390.3337.3278.3604076.10019051.0537833.0085280.1089344.0028143.0030115.0087386.0 ⎥⎦⎤⎢⎣⎡-=065318.3037156.0 3)确定模型065318.3037156.0)1()1(=-x dtdx 及时间响应式a be a b x k xak +-=+-))1(()1(ˆ)0()1( 4986.823728.85037156.0-=ke4)求)1(X 的模拟值{})5(ˆ),4(ˆ),3(ˆ),2(ˆ),1(ˆˆ)1()1()1()1()1()1(x x x x x X= =(2.8740,6.1058,9.4599,12.9410,16.5538)5)还原出)0(X 的模拟值,由)(ˆ)1(ˆ)1(ˆ)1()1()0(k x k x k x-+=+ 得 {})5(ˆ),4(ˆ),3(ˆ),2(ˆ),1(ˆˆ)0()0()0()0()0()0(x x x x x X==(2.8740,3.2318,3.3541,3.4811,3.6128) 6)误差检验表2 残差与相对误差计算结果 序号23.278 3.2318 0.04621.41% 3 3.337 3.3541 -0.0171 0.51% 4 3.390 3.4811 -0.09112.69% 53.679 3.61280.06621.80%① 平均相对误差%)80.1%69.2%51.0%41.1(414151+++=∆=∆∑=k k=1.0625%…………(参考表1,1级)② 计算X 与Xˆ的灰色关联度 ))1()5((21)1()((42x x x k x S k -+-=∑= =)874.2679.3(21)874.2390.3()874.2337.3()874.2278.3(-+-+-+- 0.40250.5160.4630.404+++==1.7855)1(ˆ)5(ˆ(21)1(ˆ)(ˆ(ˆ42x x x k x Sk -+-=∑= )874.26128.3(21)874.24811.3()874.23541.3()874.22318.3(-+-+-+-=3694.06071.04801.03578.0+++==1.8144[][]∑=---+---=-42))1(ˆ)5(ˆ())1()5((21))1(ˆ)(ˆ())1()((ˆk x x x x x k x x k x S S)4025.03694.0(21)516.06071.0()463.04801.0()404.03578.0(-+-+-+-=01655.0091.00171.00462.0-++-==0.0453564525.45999.404535.08144.17855.118144.17855.11ˆˆ1ˆ1=+++++=-+++++=S S SS S S ε=0.9902>0.90…………(参考表1,为1级)综合:精度为一级,可以用4986.823728.85)1(ˆ037156.0)1(-=+k e k x其中,)(ˆ)1(ˆ)1(ˆ)1()1()0(k x k x k x-+=+预测。