灰色预测模型案例

合集下载

灰色预测模型及MATLAB实例

灰色预测模型及MATLAB实例

灰⾊预测模型及MATLAB实例下⾯将主要从三⽅⾯进⾏⼤致讲解,灰⾊预测概念及原理、灰⾊预测的分类及求解步骤、灰⾊预测的实例讲解。

⼀、灰⾊预测概念及原理:1.概述:关于所谓的“颜⾊”预测或者检测等,⼤致分为三⾊:⿊、⽩、灰,在此以预测为例阐述。

其中,⽩⾊预测是指系统的内部特征完全已知,系统信息完全充分;⿊⾊预测指系统的内部特征⼀⽆所知,只能通过观测其与外界的联系来进⾏研究;灰⾊预测则是介于⿊、⽩两者之间的⼀种预测,⼀部分已知,⼀部分未知,系统因素间有不确定的关系。

细致度⽐较:⽩>⿊>灰。

2.原理:灰⾊预测是通过计算各因素之间的关联度,鉴别系统各因素之间发展趋势的相异程度。

其核⼼体系是灰⾊模型(Grey Model,GM),即对原始数据做累加⽣成(或者累减、均值等⽅法)⽣成近似的指数规律在进⾏建模的⽅法。

⼆、灰⾊预测的分类及求解步骤:1.GM(1,1)与GM(2,1)、DGM、Verhulst模型的分类⽐较:预测模型适⽤场景涉及的序列GM(1,1)模型⼀阶微分⽅程,只含有1个变量的灰⾊模型。

适⽤于有较强指数规律的序列。

累加序列均值序列GM(2,1)模型适⽤于预测预测具有饱和的S形序列或者单调的摆动发展序列缺陷。

累加序列累减序列均值序列DGM模型累加序列累减序列Verhulst模型累加序列均值序列2.求解步骤思维导图:其中预测过程可能会涉及以下三种序列、⽩化微分⽅程、以及⼀系列检验,由于⼤致都相同,仅仅是某些使⽤累加和累减,⽽另外⼀些则使⽤累加、累减和均值三个序列的差别⽽已。

于是下⾯笔者将对其进⾏归纳总结再进⾏绘制思维导图,帮助读者理解。

(1)原始序列(参考数据列):(2)1次累加序列(1-AGO):(3)1次累减序列(1-IAGO ):(也就是原始序列中,后⼀项依次减去前⼀项的值,例如,[x(2)-x(1),x(3-x(2),...,x(n)-x(n-1))]。

)(4)均值⽣成序列:(这是对累加序列"(前⼀项+后⼀项)/2"得出的结果。

灰色预测GM(1,1)

灰色预测GM(1,1)

南昌市民用汽车保有量灰色GM(1,1)模型预测灰色预测是一种对含有不确定因素的系统进行预测的方法。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

灰色模型适合于小样本情况的预测,当然对于大样本数据,灰色模型也可以做,并且数据个数的选择有很大的灵活性。

原始序列X (0):表1 南昌市民用汽车保有量年份 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 南昌市民用汽车保有量(万辆)24.410926.730730.387836.380741.016143.7348.41615763.1第一步:构造累加生成序列X (1); 第二步:计算系数值;通过灰色关联分析软件GM 进行灰色模型拟合求解,得到:α= -0.101624 , μ=25.290111 , 平均相对误差为4.685749%第三步:得出时间响应预测函数模型为:()()858996.248269896.2731101624.01-=+⋅k e k X第四步:进行灰色关联度检验。

真实值:{24.4109,26.7307,30.3878,36.3807,41.0161,43.7300,48.4100,61.0000,57.0000,63.1000} 预测值:{24.4109,29.2310,32.3578,35.8190,39.6504,43.8917,48.5867,53.7839,59.5371,65.9056}计算得到关联系数为: {1,0.906683,0.444273,0.416579,0.82377,0.357133,0.715694,0.843178,0.333333,0.770986} 于是灰色关联度:r=0.661163关联度r=0.661163满足分辨率ρ=0.5时的检验准则r>0.60,关联性检验通过。

灰色预测原理及实例ppt课件

灰色预测原理及实例ppt课件

7
青岛理工大学 管理学院
数列累加
【例1】 设原始数据序列
x(0) {x(0) (1), x(0) (2), , x(0) ( N ) } {6, 3, 8, 10, 7}
对数据累加 : x(1)(1) x(0)(1) 6,
x(1)(2) x(0)(1) x(0)(2) 6 3 9, x(1)(3) x(0) (1) x(0)(2) x(0)(3) 6 3+8 17, x(1)(4) x(0)(1) x(0)(2) x(0)(3) x(0)(4) 6 3+8+10 27, x(1) (5) x(0) (1) x(0) (2) x(0) (3) x(0) (4) x(0)(5)
ea(tt0 )

u a
.
对等间隔取样的离散值 (注意到 t0 1)则为
x(1) (k 1) [x(1) (1) u ]eak u .
a
a
(2.4)
灰色建模的途径是一次累加序列(2.2)通过最小二乘法来 估计常数a与u.
21
青岛理工大学 管理学院
2 灰色系统的模型
因x(1) (1) 留作初值用,故将 x(1) (2), x(1) (3),..., x(1) (N ) 分别代入方程(2.3),
(4)拓扑预测,将原始数据作曲线,在曲线上按定值寻找该定 值发生的所有时点,并以该定值为框架构成时点数列,然后建立模 型预测该定值所发生的时点。
(5)系统预测. 通过对系统行为特征指标建立一组相互关联的灰 色预测模型,预测系统中众多变量间的相互协调关系的变化。
5
青岛理工大学 管理学院
生成列
为了弱化原始时间序列的随机性,强化规律 性,在建立灰色预测模型之前,需先对原始 时间序列进行数据处理,经过数据处理后的 时间序列即称为生成列。

线性回归和灰色预测模型案例

线性回归和灰色预测模型案例

预测未来2015年到2020年的货运量灰色预测模型是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测. 预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断.灰色系统的定义灰色系统是黑箱概念的一种推广;我们把既含有已知信息又含有未知信息的系统称为灰色系统.作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统.区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系;建模原理模型的求解原始序列为:)16909 15781 13902 12987 12495 11067 101499926 9329 10923 7691())6(),...1(()0()0()0(==x x x构造累加生成序列)131159,114250,98469,84567,71580,59085,48018,37869,27943,18614,7691())6(),...1(()1()1()1(==x x x归纳上面的式子可写为称此式所表示的数据列为原始数据列的一次累加生成,简称为一次累加生成.对(1)X 作紧邻均值生成,....2))1()((21)()1()1()1(=-+=k k z k z k zMATLAB 代码如下:x=7691 18614 27943 37869 48018 590857 71580 84567 98469 114250 131159; z1=x1; for i=2:6 zi=xi+xi-1; endformat long g z z =Columns 1 through 37691Columns 4 through 632906Columns 7 through 991518Columns 10 through 11因此)53551.5 42943.5 3290623278.5 13152.5 ())5(),...1(()1()1()1(==z z z构造B 矩阵和Y 矩阵;对参数ˆα进行最小二乘估计,采用matlab 编程完成解答如下:B= -32906 -91518 ',ones10,1;Y=18614 27943 37869 48018 59085 71580 84567 98469 114250 131159'; format long g a=invB'BB'Y结果如下:a =即∂=,u=59277∂u = 则GM1,1白化方程为59277x 085.0)1(=-dtdx 预测模型为:697376.471-471.705067)1(ˆk *0.085)1(e k x =+再次通过线性回归模型对货运量进行预测:线性回归预测模型:一、定义一元线性回归预测是处理因变量y与自变量x 之间线性关系的回归预测法.二、模型的建立:1,设年份y, 货运量x y随x的变化函数,建立一元线性回归方程:Y=β0 + β1x其中β0、β1称为回归系数;散点图如下:首先根据x、y的现有统计数据,在直角坐标系中作散点图,观察y随x而变是否为近似的线性关系;若是,则求出的β0、β1值,就可确定其数学模型,然后由x的未来变化去求相应的y 值;,2,确定方法—最小二乘法使拟合的数值与实际值的总方差为最小,即拟合程度最好,则得两者之差e i根据极值原理,式对a、b分别求偏导,并令其=0,得z)()(()()222iiiiQiia aa b aaa ba bxyy xy x∂∂=∂∂∂=---∂=-----∑∑∑三,模型的求解:运用MATLAB 软件对数据进行一元线性回归分析:代码如下:x=1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 '; x=ones11,1 x;y=7691 10923 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,x b,bint ,stats ,rcoplotr,rint;()()()()()()()()222i i i i i i i Q y b x x y i b b y b x b x b y b x xy x x y x x ∂∂⎡⎤=---∑⎣⎦∂∂∂⎡⎤⎡⎤=-----⎣⎦⎣⎦∂⎡⎤=-----⎣⎦∑∑()()()()()()2002(7.4.8)i i i i xy xxx x y y b x x ix x y y b x xiS S =---=---==-∑∑∑∑令其,即所以结果:b =+006bint =+006stats =+005注:+006 为110^6 后同理因为,p<,所以可知回归方程为y=-1579600 + 800x 先观察观察模型残差:如图所示,应该剔除第2组数据;MATLAB代码为:x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ';x=ones10,1 x;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,xb,bint ,stats ,rcoplotr,rint;结果为:b =+006bint =+006stats =+005其中:+006 为110^6同理+005 为110^5剔除之后结果如下:回归系数回归系数估计值回归系数置信区间β0+006 +006 +005β1+006 +006 +006R2= F= +005 p< s2 = +005将异常数据去除后,再次对去除异常点的数据进行最小二乘法拟合一个多元回归模型,残差图如下:因为,p<, 无异常数据可剔除因此,可知最终回归方程为y=-1787900 + 900x,对ployfit拟合的函数进行评价与估计;运用polyconf函数对多项式评价和置信区间估计,matlab代码如下:x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909;p,S=polyfitx,y,1结果为:p =+006S =R: 2x2 doubledf: 8normr: +003对2015年的货运量预测,即y=polyconfp,2015y =+004DELTA =+003其中所以预测区间为:+004-+003, +004++003即,2015年的货运量在之间;同理对2016年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004-+003, +004++003即,2016年的货运量在之间;对2017年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004- +003, +004++003 即,2017年的货运量在之间;对2018年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004- +003, +004+ +003 即,2018年的货运量在之间;对2019年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004-+003, +004+ +003即,2019年的货运量在之间;对2020年的货运量预测,即y =+004DELTA =+003所以预测区间为:+004-+003, +004++003即,2020年的货运量在之间;附:MATLAB代码:1, x=1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 ';x=ones11,1 x;y=7691 10923 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,xb,bint ,stats ,rcoplotr,rint;2,x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ';x=ones10,1 x;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909'; plotx,y, '+';b,bint,r,rint,stats=regressy,xb,bint ,stats ,rcoplotr,rint;3,x=1991 1993 1994 1995 1996 1997 1998 1999 2000 2001 ;y=7691 9329 9926 10149 11067 12495 12987 13902 15781 16909;p,S=polyfitx,y,1y=polyconfp,2015。

灰色预测模型案例

灰色预测模型案例

1.1.5 两岸间液体化工品贸易前景预测从上述分析可见,两岸间液体化工品贸易总体上呈现上升的增长趋势。

然而,两岸间的这类贸易受两岸关系、特别是台湾岛内随机性政治因素影响很大。

因此,要对这一贸易市场今后发展的态势做出准确的定量判断是相当困难的;但从另一方面来说,按目前两岸和平交往的常态考察,贸易作为两岸经济与贸易交往的一个有机组成部分,其一般演化态势有某些规律可寻的。

故而,我们可以利用其内在的关联性,通过选取一定的数学模型和计算方法,对之作一些必要的预测。

鉴此,本研究报告拟采用一定的预测技术,借助一定的计算软件,对今后10余年间大陆从台湾进口液化品贸易量作一个初步的预测。

(1) 模型的选择经认真考虑,我们选取了灰色系统作为预测的技术手段,因为两岸化工品贸易具有的受到外界的因素影响大和受调查条件限制数据采集很难完全的两大特点,正好符合灰色系统研究对象的主要特征,即“部分信息已知,部分信息未知”的不确定性。

灰色系统理论认为,对既含有已知信息又含有未知信息或不确定信息的系统进行预测,就是在一定方位内变化的、与时间有关的灰色过程进行的预测。

尽管这一过程中所显示的现象是随机的,但毕竟是有序的,因此这一数据集合具有潜在的规律。

灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

本报告以灰色预测模型,对两岸间化工品贸易进行的预测如下: 灰色预测模型预测的一般过程为: ① 一阶累加生成(1-AGO ) 设有变量为)0(X的原始非负数据序列)0(X =[)1()0(x ,)2()0(x ,…)()0(n x ] (1.1)则)0(X的一阶累加生成序列)1(X =[)1()1(x ,)2()1(x …)()1(n x ] (1.2)式中)()(1)0()1(i x k x ki ∑== k=1,2…n② 对)0(X进行准光滑检验和对进行准指数规律检验设)1()()()1()0(-=k x k x k ρ k=2,3…n (1.3) 若满足)(k ρ<1、)(k ρ∈[0,ε](ε<0.5),)(k ρ呈递减趋势,则称)0(X 为准光滑序列,则)1(X具有准指数规律。

【数学建模】灰色预测模型(预测)

【数学建模】灰色预测模型(预测)

【数学建模】灰色预测模型(预测)文章目录•一、算法介绍•o 1.灰色预测模型o 2.灰色系统理论o 3. 针对类型o 4. 灰色系统o 5. 灰色生成o 6. 累加生成o7. GM(1,1)模型o▪推导▪精度检验▪精度检验等级参照表•二、适用问题•三、算法总结•o 1. 步骤•四、应用场景举例•o 1. 累加生成o 2. 建立GM(1,1)模型o 3. 检验预测值•五、MATLAB代码•六、实际案例•七、论文案例片段(待完善)灰色预测模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五另外之前看过一篇比较完整的【数学建模常用算法】之灰色预测模型GM,作者:張張張張视频回顾一、算法介绍1.灰色预测模型灰色预测模型(Gray Forecast Model)是通过少量的、不完全的的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

2.灰色系统理论灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论.灰色预测是对灰色系统所做的预测。

目前常用的一些预测方法(如回归分析等),需要较大的样本,若样本较小,常造成较大误差,使预测目标失效。

灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具。

3. 针对类型灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。

二十几年来,引起了不少国内外学者的关注,得到了长足的发展。

目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。

特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.4. 灰色系统灰色系统是黑箱概念的一种推广。

灰色模型建模例题

灰色模型建模例题

灰色模型建模例题灰色模型是一种基于时间序列数据的预测方法,通过对序列数据的灰度化和建模,可以对未来的趋势进行预测和分析。

下面是一个灰色模型建模的例题:假设有一家服装公司,过去3年的销售额数据如下:年份销售额2018 100万2019 120万2020 135万现在需要利用灰色模型对2021年的销售额进行预测。

解答步骤如下:1. 灰度化处理:将原始数据进行一次累加得到累加数据:100, 220, 355。

可以发现累加数据的增长幅度不稳定,不适合直接进行建模,因此需要进行灰度化处理。

利用紧邻平均法进行灰度化处理,得到灰度数据:100, (100+220)/2 = 160, (220+355)/2 = 287.5。

2. 建立灰色模型:根据得到的灰度数据,可以建立灰色模型进行预测。

常用的灰色模型有GM(1,1)模型和GM(0,1)模型。

假设选取GM(1,1)模型,根据灰度数据建立差分方程:x(k+1) + a * x(k) = b,其中x(k)为累加数据,a为发展系数,b为灰色作用量。

代入灰度数据可得:160 + a * 100 = b,287.5 + a * 160 = b。

解上述方程组可以得到a ≈ 0.5754,b ≈ 100.0128。

进一步求取预测模型:x(k+1) = (x(0) - b/a) * exp(-a * k) + b/a。

代入x(0) = 355,k = 3,a ≈ 0.5754,b ≈ 100.0128可得:x(4) = (355 - 100.0128 / 0.5754) * exp(-0.5754 * 3) + 100.0128 / 0.5754 ≈ 140.36。

3. 预测销售额:根据建立的灰色模型,将k取为4进行预测,可以得到2021年的销售额预测值为140.36万。

通过灰色模型建模分析,得出2021年的销售额预测为140.36万。

数学建模-灰色预测方法

数学建模-灰色预测方法

• 灰色预测法用等时距观测到的反映预测对
象特征的一系列数量值构造灰色预测模型,
预测未来某一时刻的特征量,或达到某一
特征量的时间。
(3)灰色预测数据的特点:
1)序列性:原始数据以时间序列的形式出现。
2)少数据性:原始数据序列可以少到只有4个 数据。
(4)灰色预测的四种常见类型
• 灰色时间序列预测
对误差序列。
0 0 ˆ 残差: i x i x i
i 1 ,2 ,..., n
残差序列
i 相对误差:
( 1 , 2 , n )
( 0 )
i
x
0
i
100%
i 1 ,2 ,..., n
一般要求
4灰色预测实例一数列的预测实例原始数据x0x01x02x03x04272602954732411353881求原始序列的一届累加生成x1x11x12x13x142726056806892181246062对x0作准光滑性检验x0k?k1xk?13对x1作准指数规律性检验1x1k?k0xk?14作x1的紧邻均值生成序列z1并且确定byz1k05x1k??x1k?1??z121???4203351??x02??29547??1????0???b???z31???7301251y?x3?32411?????1????0?????z41???1066121??x4??35388?5按最小二乘法确定ab的估计值a?0089995???t?1t??a??bbby??b2579028????dx16确定模型dt?0089995x1t2579028其时间响应式??113138340089995k286574?xk?e????01?11?1??xk?xk???xk0?并得x的模拟值00000?????xx1x2x3x4272602955332337353817检验误差相对误差检验残差序列00000??1?2?3?40?6747相对误差序列??????00000200022800002123414平均相对误差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.5 两岸间液体化工品贸易前景预测
从上述分析可见,两岸间液体化工品贸易总体上呈现上升的增长趋势。

然而,两岸间的这类贸易受两岸关系、特别是台湾岛内随机性政治因素影响很大。

因此,要对这一贸易市场今后发展的态势做出准确的定量判断是相当困难的;但从另一方面来说,按目前两岸和平交往的常态考察,贸易作为两岸经济与贸易交往的一个有机组成部分,其一般演化态势有某些规律可寻的。

故而,我们可以利用其内在的关联性,通过选取一定的数学模型和计算方法,对之作一些必要的预测。

鉴此,本研究报告拟采用一定的预测技术,借助一定的计算软件,对今后10余年间大陆从台湾进口液化品贸易量作一个初步的预测。

(1) 模型的选择
经认真考虑,我们选取了灰色系统作为预测的技术手段,因为两岸化工品贸易具有的受到外界的因素影响大和受调查条件限制数据采集很难完全的两大特点,正好符合灰色系统研究对象的主要特征,即“部分信息已知,部分信息未知”的不确定性。

灰色系统理论认为,对既含有已知信息又含有未知信息或不确定信息的系统进行预测,就是在一定方位内变化的、与时间有关的灰色过程进行的预测。

尽管这一过程中所显示的现象是随机的,但毕竟是有序的,因此这一数据集合具有潜在的规律。

灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

本报告以灰色预测模型,对两岸间化工品贸易进行的预测如下: 灰色预测模型预测的一般过程为: ① 一阶累加生成(1-AGO ) 设有变量为)
0(X
的原始非负数据序列
)0(X =[)1()0(x ,)2()0(x ,…)()
0(n x ] (1.1)
则)
0(X
的一阶累加生成序列
)1(X =[)1()1(x ,)2()1(x …)()
1(n x ] (1.2)
式中
)
()(1
)0()
1(i x k x k
i ∑== k=1,2…n
② 对)
0(X
进行准光滑检验和对进行准指数规律检验

)1()
()()
1()0(-=k x k x k ρ k=2,3…n (1.3) 若满足)(k ρ<1、)(k ρ∈[0,ε](ε<0.5),)(k ρ呈递减趋势,则称)
0(X 为准光滑序列,则)
1(X
具有准指数规律。

否则,进行一阶弱化处理
))
(...)1()((11
)(')0(n x k x k x k n k x +++++-=
k=1,2…n (1.4)
并且将)()0(k x =
)(')0(k x ,即)0(X 由)0('X 所替代。

③ 由第2步可知,)
1(X 具有近似的指数增长的规律,因此可以认为序列)
1(X
满足下述
一阶线性微分方程
u ax dt dx =+)1()
1( (1.5)
解得,
n T T Y B B B u a
1)(ˆˆ-=⎥⎦
⎤⎢⎣⎡ (1.6)
其中,⎥⎥

⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)()3()2()0()0()0(n x x x Y n ,⎥⎥⎥⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=
1)]()1([211)]3()2([211)]2()1([21)1()1()1()1()1()1(n x n x x x x x B
将所求得的a ˆ、u ˆ代入微分方程(1.5),有
u x a
dt dx ˆˆ)1()
1(=+ (1.7)
④ 建立灰色预测模型
由微分方程(1.7)可得到累加数列)
1(X
的灰色预测模型为
a
u e a u x k x k a ˆˆ]ˆˆ)0([)1(ˆˆ)1()1(+
-=+- k=0,1,2…n (1.8) 如果)
1(X
来自)
0(X
一阶弱化处理得到的数列,则由式(1.4)可知,一阶弱化还原后
)1(ˆ)0(+k x
=)1(ˆ)1(+k x (1.9) 反之,则由式(1.8)在做累减还原,得到)
0(X
的灰色预测模型为
k a
a e a u n x e k x ˆ)0(ˆ)0(]ˆˆ)()[1()1(ˆ----=+ k=0,1,2…n (1.10)
⑤ 灰色预测模型的检验 ⅰ 适用范围
当-a
ˆ≤0.3时,可用于中长期预测;当0.3 <-a ˆ≤0.5时,可用于短期预测,中长期慎用;当0.5 <-a
ˆ≤0.8时,短期预测十分慎用;当0.8 <-a ˆ≤1时,应采用残差修正;当-a ˆ>1时,不宜采用灰色系统预测模型。

ⅱ 后验查检验 设残差序列
)0(ε=()1(ε, )2(ε…)(n ε)=()1(ˆ)1()0()
0(x
x -, )2(ˆ)2()0()0(x x -…)(ˆ)()0()0(n x n x -) )(11k n n k ∑==εε和2
12))((1εεε-=∑=k n S n k 分别是残差的均值和方差,)
(11)0(k x n x n k ∑==和2
1
)
0(2))((1x k x n S n k x
-=∑=分别为)0(X 的均值和方差。

则后验差比值x e
S S C =

小误差概率)6745.0)((x S k P p <-=εε,其中C 越小越好,p 越大
越好。

⑥ 等维新信息递推 去掉)
0(X
的首值,增加
)1(ˆ)
0(+k x 为)0(X 的末值,保持数列的等维,新陈代谢,逐个预测,依次递补,直到完成预测的目标为之。

(2) 以总进口量为例预测
数据来自表2-1 ① 累加生成
对数列)0(X =[166.7 214.6,256.3,342.8,406.4,644.3,736.2,805.4]累加生成 )
1(X
=[166.7 381.3 637.6 980.4 1386.4 2030.7 2766.9 3572.3]
② 对)
0(X 进行准光滑检验和对进行准指数规律检验
ρ=[1.29 0.67 0.54 0.41 0.46 0.36 0.29] ,可见,不满足)(k ρ∈[0,ε]、ε<0.5,则
称)
0(X
不符合为准光滑序列,须进行一阶弱化。

)0('X =[446.54 486.51 531.834 586.94 647.98 728.63 770.8 805.4]=)0(X
则对新的)
0(X
累加生成为
)1(X =[446.54 933.05 1464.89 2051.83 2699.80 3428.43 4199.23 5004.63]
③ 求解a
ˆ、u ˆ 运用MATLAB 工具算得a
ˆ=-0.0856、u ˆ=437.24,其中-a ˆ≤0.3,可用于中长期预测。

④ 建立灰色预测模型
a
u e a u x k x k a ˆˆ]ˆˆ)0([)1(ˆˆ)1()1(+-=+-=5557.39⨯k e 0856.0-5110.85
由于对)
0(X
进行一次一阶弱化的处理,所以)1(ˆ)1(ˆ)
0()1(+=+k x k x
,即预测2008年的数
据为)
0(ˆx
=805.4。

⑤ 模型检验
e S =10.34,x S =134. 28
)0(ε=[0 9.860600774608656
8.876768838703015 2.065250968582859
6.360973787144417
29.71162091038707 9.451993037681632
23.95009372654897],ε=11.28
则后验差比值为C=0.077<0.35,可见预测精度好。

小误差概率)6745.0)((x S k P p <-=εε=1>0.95,即预测精度好。

⑥ 等维新信息递推
)0(X =[446.54 486.51 531.834 586.94 647.98 728.63 770.8 805.4],进行循环运算,直到预测到2015年的数据为止。

具体预测值见表2-5。

表1-5 祖国大陆从台湾地区进口有机化学品贸易统计量及预测值表 单位:万吨
分析表1-5可知,在未来海峡两岸有机化学品贸易中,仍将以祖国大陆从台湾地区的进口量仍将继续保持增长的势头,但增长的幅度将有所趋缓。

其中的原因或恐有二:一是随着2006年前后祖国大陆大型化工项目的建成和投产,化工品对外的依存度将会有所下降;二是由于化学科技的进步以及工艺流程的革新,很可能会出现新的化工替代品,从而导致某些化工品的需求相应会减少。

相关文档
最新文档