灰色系统预测模型实验
灰色预测GM(1, 1)模型实现过程

灰色系统预测模型GM(1,1)实现过程灰色系统预测模型GM(1,1) 1. GM(1,1)的一般形式设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列:X (1)={X (1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k -1)+ X (0)(k ) (1) 对X (1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即GM(1,1)模型。
上述白化微分方程的解为(离散响应): ∧X (1)(k +1)=(X (0)(1)-a u )ak e -+au(3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4) 式中:k 为时间序列,可取年、季或月。
2. 辩识算法记参数序列为∧a , ∧a=[a,u]T ,∧a 可用下式求解:∧a =(B T B)-1B T Y n (5)式中:B —数据阵;Y n —数据列B =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++- 1 (n))X 1)-(n (X 21 ... 1 (3))X (2)X (211 (2))X (1)X (21(1)1(1)(1)(1)(1))(-- (6) Y n =(X (0)(2), X (0)(3),…, X (0)(n))T (7)3. 预测值的还原由于GM 模型得到的是一次累加量,k ∈{n+1,n+2,…}时刻的预测值,必须将GM 模型所得数据∧X(1)(k +1)(或∧X(1)(k ))经过逆生成即累减生成(I —AGO)还原为∧X (0)(k +1)(或∧X (0)(k )),即:∧X (1)(k )=∑=ki 1∧X (0)(i)=∑-=11k i ∧X(0)(i)+∧X (0)(k )∧X(0)(k )=∧X(1)(k )-∑-=11k i ∧X (0)(i)因为∧X(1)(k -1)=∑-=11k i ∧X(0)(i),所以∧X (0)(k )=∧X (1)(k )-∧X (1)(k -1)。
基于灰色系统理论的气调库环境预测模型

LI J u n - Hu a i 。J I AN G Zhe n g - Do n g , BA I Yu , M A Li — Ho n g , S HE J u n— A ’
Abs t r a c t : Ba s e d o n l o w t e mp e r a t u r e s t o r a g e a n d c o n t r o l o f c o n c e n t r a t i o n s o f o x y g e n a n d c a r b o n d i o x i d e , t e c h n o l o g y o f c o n t r ol l e d a t mo s p h e r e s t o r a g e a f f e c t s t h e ma t u r i t y a n d wi t h e r i n g p r o g r e s s of f r u i t a nd v e g e t a b l e ,S O a s t o i mp r o ve t he le f s h — k e e p i n g e f f e c t o f c o n t r o l l e d a t mo s p h e r e s t o r a g e .Gr a y‘ s y s t e m p r e d i c t i o n t he o r y i s u s e d t o e s t a b l i s h a p r e d i c t i o n
灰色预测模型的研究及应用

灰色预测模型的研究及应用
灰色预测模型是一种用于预测问题的数学模型,广泛应用于各个领域。
它在1982年由中国科学家GM灰所提出,因此得名为“灰色预测模型”。
灰色预测模型基于灰色系统理论,它假设事物的发展具有一定的规律性和趋势性,但也存在不确定性的因素。
它通过对已知数据的分析和处理,来预测未来的发展趋势。
灰色预测模型的核心思想是将已知数据序列分解为两个部分:灰色部分和白色部分。
灰色部分是由数据的数量级和函数形式决定的,因此可以用来预测未来的趋势。
白色部分则是由不确定的随机因素引起的,往往被视为噪声,不具备预测能力。
灰色预测模型有多种形式,其中最常用的是GM(1,1)模型。
该模型通过建立一阶线性微分方程来描述数据的变化趋势,然后利用指数累减生成灰色模型。
基于灰色模型,可以进一步进行累加、累减、累乘等操作,来实现更复杂的预测。
灰色预测模型在各个领域都有广泛的应用。
其中最典型的应用是经济预测领域,包括国民经济、金融市场等。
此外,它还可以应用于工业生产、环境保护、农业发展、医疗卫生等方面的预测。
灰色预测模型的优点是简单易懂、计算量小、适用范围广。
它可以对数据的趋势进行较为准确的预测,尤其适用于数据量较小或者不完整的情况下。
缺点是对数据的要求较高,数据的采
样点要均匀分布,并且在建立模型时需要进行一些参数的选择,可能存在主观性和不确定性。
总之,灰色预测模型是一种有效的预测方法,具有广泛的应用前景。
在实际应用中,需要对具体问题进行合理的建模和参数选择,以提高预测的准确性。
灰色预测原理及实例

灰色预测原理及实例
一、灰色预测原理
灰色预测,是指根据动态系统的过去试验数据和实测数据,利用灰色规律进行预测的一种数学方法。
灰色预测的基本思想是:由内在原理和系统的实际运行数据,建立有关系的关于未来时间的数学模型,即所谓的灰色系统模型,从而建立未来状态的预测模型。
二、灰色预测实例
1、灰色模型在汽车行业的应用
汽车行业是一个特殊的行业,其市场受到很多因素的影响,因此,在汽车行业预测中,灰色模型能够很好地发挥其优势。
首先,根据汽车市场的详细统计数据,如汽车生产量、销售量,可以采集过去一定时间段内(如一年、两年)汽车的生产量及销售量等数据,将这些数据经过一定的模型处理,形成一个灰色模型,利用该模型可以预测汽车行业的今后发展趋势。
2、灰色模型在电力行业的应用。
灰色预测检验

道路交通事故灰色VerhUlSt预测模型网灰色预测是通过原始数据的处理和灰色模型的建立,发现和掌握系统发展规律,对系统的未来状态做出科学的定量预测。
目前应用较多的灰色预测模型是GM(1,1)模型、灰色马尔可夫预测模型等,可用于预测交通事故发生次数、死亡人数、受伤人数和财产损失等指标。
GM(1』)模型适用于具有较强指数规律的序列,只能描述单调的变化过程。
但是道路交通系统是一个动态的时变系统,道路交通事故作为道路系统的行为特征量,具有一定的随机波动性,它的发展呈现某种变化趋势的非平稳随机过程,因此可建立交-563-通事故灰色马尔可夫预测模型,以提高预测精度。
但灰色马尔可夫预测模型的应用难点是如何进行状态划分,故对于非单调的摆动发展序列或具有饱和状态的S形序列,Verhulst模型,GM(2,1)模型等更适用。
Verhulst模型主要用来描述具有饱和状态的过程,即S形过程,常用于人口预测、生物生长、繁殖预测及产品经济寿命预测等。
近年来中国道路交通事故表现为具有饱和状态的S形过程,故可采用VerhUlSt模型对其进行预表5谡是检验表平均相对误差A关联度r均方差比值C 小误差概率P0.03130.98150.2202 1表6常用的精度等级表等级平均相对误差A关联度r 均方差比值C 小误差概率P级0.010.90 0.35 0.95二级0.050.80 0.5 0.80三级0.100.70 0.65 0.70四级0.200.60 0.80 0.60把误差检验表跟常用的精度等级表对比可知,模型的等级接近一级,也即是说,该模型的拟合精度很高,可用来预测。
3.模型2BP神经网络预测模型附件中根据污染程度不同把水质状况分为六类,可以分别针对各类水质状况的河流长度比例在未来十年的变化进行预测。
得到未来六类不同水质河长比例的变化,从而可以全面显示未来十年污染趋势的变化针对第i类污染程度的河流长度比例进行分析,首先选择输入数据,不同水质河长的比例必然同长江流域内的排污量有关,而未来十年的排污量已经由灰色模型预测得到。
23实验二十三灰色预测模型

实验二十三灰色预测模型一、实验目的了解灰色系统基本理论,理解灰色预测模型的基本概念。
掌握灰色预测模型的步骤和方法。
学会用MATLAB编程解决灰色预测中的计算问题.二、实验的理论与内容客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。
按事物内涵的不同,人们已建立了工程技术系统、社会系统、经济系统等。
人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。
从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。
这类系统内部特性部分已知的系统称之为灰色系统。
一个系统的内部特性全部未知,则称之为黑色系统。
灰色系统理论首先基于对客观系统的新的认识。
尽管某些系统的信息不够充分,但作为系统必然是有特定功能和有序的,只是其内在规律并未充分外露。
有些随机量、无规则的干扰成分以及杂乱无章的数据列,从灰色系统的观点看,并不认为是不可捉摸的。
相反地,灰色系统理论将随机量看作是在一定范围内变化的灰色量,按适当的办法将原始数据进行处理,将灰色数变换为生成数,从生成数进而得到规律性较强的生成函数。
例如,某些系统的数据经处理后呈现出指数规律,这是由于大多数系统都是广义的能量系统,而指数规律是能量变化的一种规律。
灰色系统理论的量化基础是生成数,从而突破了概率统计的局限性,使其结果不再是过去依据大量数据得到的经验性的统计规律,而是现实性的生成律。
这种使灰色系统变得尽量清晰明了的过程被称为白化。
目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。
关于“灰色预测模型”讲解

7.8205 11.184
1
14.7185
1
1
1 1
y = [x (0)(2), x (0)(3), x (0)(4), x (0)(5)]T
= [3.278, 3.337, 3.390, 3.679]T
谢谢观赏!
有不足之处,请老师和同 学指正。若有疑问之处 ,请课后交流!
由于
涉及到累加列
(1) 的两个时刻的值,因此,
(1)
t
取前后两个时刻的平均代替更为合理,即将 x(i) (i) 替换为
1 [x(i) (i) x(i) (i 1)], (i 2,3,..., N ). 2
将(7.5)写为矩阵表达式
xxx(((000))M)(((N23)))xxx(((000))M)(((N12231212 [[[))x)xx(((111)))
概率统计、模糊数学和灰色系统理论是三种最常用的不确定性 系统研究方法。其研究对象都具有某种不确定性。
模糊数学着重研究“认知不确定”问题,其研究对象具有“内 涵明确,外延不明确”的特点问题,主要是凭经验借助于隶 属函数进行处理。例:年轻人
概率统计研究的是“随机不确定”现象,着重于考察“随机不 确定”现象的历史统计规律,考察具有多种可能发生的结果 之“随机不确定”现象中每一种结果发生的可能性大小。其 出发点是大样本,并要求对象服从某种典型分布。
灰色系统理论的研究内容 灰哲学、灰哲学、灰生成、灰分析、灰建模、灰预 测、灰决策、灰控制、灰评估、灰数学等。
灰色系统理论的应用领域 农业科学、经济管理、环境科学、医药卫生、矿业 工程、教育科学、水利水电、图像信息、生命科 学、控制科学等。
灰色系统的模型
通过下面的数据分析、处理过程,我们将了解 到,有了一个时间数据序列后,如何建立一个基 于模型的灰色预测。 1. 数据的预处理 首先我们从一个简单例子来考察问题. 【例】 设原始数据序列
灰色预测模型※※分析

灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X有n 个观察值,()()()()()()(){}00001,2,,Xx x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X,()()()()()()(){}11111,2,,Xx x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为当t =1时,()(1)x t x =,即(1)c x a=-,则可根据上述公式得到离散形式微分方程的具体形式为 ()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()lim t dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2xx t x t ⎡⎤=++⎣⎦将其值带入式子,整理得 (0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1TT B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u ux t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e ea --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式. 或对()atux t cea-=+求导还原得 (0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验. 设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表:检验指标好合格勉强不合格P >0.95 >0.80 >0.70 <0.70 C <0.35 <0.50 <0.65 >0.65表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt xx x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()xt x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为()11nt r t n ξ==∑精度等级 关联度均方差比值小误差概率好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级)0.70< 0.65>0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()Xx x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()ee e e n =的均值e 和方差22s()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t xt t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.>0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70>0.65不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k x k =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k t δ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%. 进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析例:则该学生成绩时间序列如下:()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x ==对(1)X做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]Taa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值 相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四
1. 实验项目名称 灰色系统预测模型 2.实验目的
要求掌握灰色系统检验方法,尤其是GM(1.1)模型 2. 实验环境
使用灰色系统理论建模软件 4.实验内容与实验步骤
1.灰色预测时关于残差、关联度、方差比和小误差概率的检验准则
M(1,1)模型的检验分为三个方面:残差检验;关联度检验;后验差检验。
(1)残差检验:对模型值和实际值的残差进行逐点检验。
首先按模型计算(1)ˆ(1)x
i +,将(1)ˆ(1)x
i +累减生成(0)ˆ()x i ,最后计算原始序列(0)()x i 与(0)ˆ()x i 的绝对残差序列及相对残差序列,并计算平均相对残差。
给定α,当φα<,且n φα<成立时,称模型为残差合格模型。
(2)关联度检验:即通过考察模型值曲线和建模序列曲线的相似程度进行检验。
按前面所述
的关联度计算方法,计算出
(0)
ˆ()x i 与原始序列(0)()x i 的关联系数,然后算出关联度,根据经验,关联度大于0.6便是满意的。
(3)后验差检验:即对残差分布的统计特性进行检验。
若对于给定的00C >,当
0C C <时,
称模型为均方差比合格模型;如对给定的
00P >,当0P P >时,称模型为小残差概率合格
模型。
若相对残差、关联度、后验差检验在允许的范围内,则可以用所建的模型进行预测,否则应进行残差修正。
2.实验的基本程序、基本步骤和运行结果
现在已知我国从2002年-2013年的每年的专利申请量的数据,试建立灰色预测模型并且预测2014年我国的专利申请量的情况。
2.1在excel 表格中输入以下数据
2.2计算并累加
设时间序列为
X(0)=(x(0)(1), x(0)(2), x(0)(3),x(0)(4)………………………………. x(0)(12))=(205396,251238,278943,345074…………… 1505574)
计算并累加
X(0)的1-AGO序列为(累加)
(1)(1)(1)(1)(1)x(1)(12))得到下图
2.3对X(1)做紧邻均值生成
令Z(1)(k)=(0.5x(1)(K)+0.5X(1)(K-1)),k=1,2,3,4…….13;
2.4计算灰微分方程
打开灰色系统理论建模软件,
找到GM(1.1)模型,在第一行输入
205396,251238,278943,345074,383157,470342,586734,717144,877611,1109428,1411080, 1792177,2083483
得到方程X (0)
(K)-0.2099Z (1)
(K)=138316.4494
即模型的方程为X^(k+1)=1044777.462*e 0.2140k
-839381.4621 2.5估计值运算
(1)由预测公式,计算X^(1)
,
在E2中输入=($C$2-$E$11/$E$12)*EXP(-$E$12*(B2-1))+$E$11/$E$12,复制到E3:E7中;
(2)累减生成X^(0)
,在F7中输入=E7-E6,复制到F3,在F2中输入=E2-0;
3.模型检验
3.1检验一:残差和相对残差检验 原始序列
X (0)=(x (0)(1), x (0)(2), x (0)(3),x (0)(4)………………………………. x (0)(12)) 相应的银行模拟序列
(0)(0)(0)(0)(0)ˆˆˆˆˆ(1)(2)(3)..............(12)X
X X X X =+++ 残差为X (0)-(0)
ˆX
,得出残差序列如下
相对残差(X (0)-(0)
ˆX
)/X (0)
由平均相对残差为0.7551%,而第12期残差为1.2707%,均远小于5%,因此模型较好,预测精度高。
预测精度较高
3.2.检验二:绝对关联性模型检验
将国内的专利授权量作为序列1,国内授权专利量作为序列2,将其输入到软件中
得到结果如下
得到绝对关联度0.9921,说明实际值和预测的值之间有较强的关联性,是关联度合格模型4.对下一年度值得预测
综上所述,所估计得方程是合理的,方程为X^(k+1)=1044777.462*e0.2140k-839381.4621,可得到2014年的预测值为2611703.0135。
由国家统计局网站我们可以查到2014年的专利申请量为2549543
故预测得到2014年我国的专利申请量为2611703件。