灰色预测模型
灰色预测模型公式

灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。
灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。
灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。
灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。
系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。
灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。
2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。
3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。
4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。
5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。
灰色预测模型在实际应用中具有广泛的应用价值。
它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。
同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。
灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。
灰色理论预测模型

灰⾊理论预测模型灰⾊理论通过对原始数据的处理挖掘系统变动规律,建⽴相应微分⽅程,从⽽预测事物未来发展状况。
优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较⼩;缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。
灰⾊预测模型在多种因素共同影响且内部因素难以全部划定,因素间关系复杂隐蔽,可利⽤的数据情况少下可⽤,⼀般会加上修正因⼦使结果更准确。
灰⾊系统是指“部分信息已知,部分信息未知“的”⼩样本“,”贫信息“的不确定系统,以灰⾊模型(G,M)为核⼼的模型体系。
灰⾊预测模型建模机理灰⾊系统理论是基于关联空间、光滑离散函数等概念,定义灰导数与会微分⽅程,进⽽⽤离散数据列建⽴微分⽅程形式的动态模型。
灰⾊预测模型实验以sin(pi*x/20)函数为例,以单调性为区间检验灰⾊模型预测的精度通过实验可以明显地看出,灰⾊预测对于单调变化的序列预测精度较⾼,但是对波动变化明显的序列⽽⾔,灰⾊预测的误差相对⽐较⼤。
究其原因,灰⾊预测模型通过AGO累加⽣成序列,在这个过程中会将不规则变动视为⼲扰,在累加运算中会过滤掉⼀部分变动,⽽且由累加⽣成灰指数律定理可知,当序列⾜够⼤时,存在级⽐为0.5的指数律,这就决定了灰⾊预测对单调变化预测具有很强的惯性,使得波动变化趋势不敏感。
本⽂所⽤测试代码:1 clc2 clear all3 % 本程序主要⽤来计算根据灰⾊理论建⽴的模型的预测值。
4 % 应⽤的数学模型是 GM(1,1)。
5 % 原始数据的处理⽅法是⼀次累加法。
6 x=[0:1:10];7 x1=[10:1:20];8 x2=[0:1:20];9 y=sin(pi*x/20);10 n=length(y);11 yy=ones(n,1);12 yy(1)=y(1);13 for i=2:n14 yy(i)=yy(i-1)+y(i);15 end16 B=ones(n-1,2);17 for i=1:(n-1)18 B(i,1)=-(yy(i)+yy(i+1))/2;19 B(i,2)=1;20 end21 BT=B';22 for j=1:n-123 YN(j)=y(j+1);24 end25 YN=YN';26 A=inv(BT*B)*BT*YN;27 a=A(1);28 u=A(2);29 t=u/a;30 t_test=5; %需要预测个数31 i=1:t_test+n;32 yys(i+1)=(y(1)-t).*exp(-a.*i)+t;33 yys(1)=y(1);34 for j=n+t_test:-1:235 ys(j)=yys(j)-yys(j-1);36 end37 x=1:n;38 xs=2:n+t_test;39 yn=ys(2:n+t_test);40 det=0;41 for i=2:n42 det=det+abs(yn(i)-y(i));43 end44 det=det/(n-1);4546 subplot(2,2,1),plot(x,y,'^r-',xs,yn,'b-o'),title('单调递增' ),legend('实测值','预测值');47 disp(['百分绝对误差为:',num2str(det),'%']);48 disp(['预测值为: ',num2str(ys(n+1:n+t_test))]);495051 %递减52 y1=sin(pi*x1/20);53 n1=length(y1);54 yy1=ones(n1,1);55 yy1(1)=y1(1);56 for i=2:n157 yy1(i)=yy1(i-1)+y1(i);58 end59 B1=ones(n1-1,2);60 for i=1:(n1-1)61 B1(i,1)=-(yy1(i)+yy1(i+1))/2;62 B1(i,2)=1;63 end64 BT1=B1';65 for j=1:n1-166 YN1(j)=y1(j+1);67 end68 YN1=YN1';69 A1=inv(BT1*B1)*BT1*YN1;70 a1=A1(1);71 u1=A1(2);72 t1=u1/a1;73 t_test1=5; %需要预测个数74 i=1:t_test1+n1;75 yys1(i+1)=(y1(1)-t1).*exp(-a1.*i)+t1;76 yys1(1)=y1(1);77 for j=n1+t_test1:-1:278 ys1(j)=yys1(j)-yys1(j-1);79 end80 x21=1:n1;81 xs1=2:n1+t_test1;82 yn1=ys1(2:n1+t_test1);83 det1=0;84 for i=2:n185 det1=det1+abs(yn1(i)-y1(i));86 end87 det1=det1/(n1-1);8889 subplot(2,2,2),plot(x1,y1,'^r-',xs1,yn1,'b-o'),title('单调递增' ),legend('实测值','预测值');90 disp(['百分绝对误差为:',num2str(det1),'%']);91 disp(['预测值为: ',num2str(ys1(n1+1:n1+t_test1))]);9293 %整个区间93 %整个区间94 y2=sin(pi*x2/20);95 n2=length(y2);96 yy2=ones(n2,1);97 yy2(1)=y2(1);98 for i=2:n299 yy2(i)=yy2(i-1)+y2(i);100 end101 B2=ones(n2-1,2);102 for i=1:(n2-1)103 B2(i,1)=-(yy2(i)+yy2(i+1))/2;104 B2(i,2)=1;105 end106 BT2=B2';107 for j=1:n2-1108 YN2(j)=y2(j+1);109 end110 YN2=YN2';111 A2=inv(BT2*B2)*BT2*YN2;112 a2=A2(1);113 u2=A2(2);114 t2=u2/a2;115 t_test2=5; %需要预测个数116 i=1:t_test2+n2;117 yys2(i+1)=(y2(1)-t2).*exp(-a2.*i)+t2;118 yys2(1)=y2(1);119 for j=n2+t_test2:-1:2120 ys2(j)=yys2(j)-yys2(j-1);121 end122 x22=1:n2;123 xs2=2:n2+t_test2;124 yn2=ys2(2:n2+t_test2);125 det2=0;126 for i=2:n2127 det2=det2+abs(yn2(i)-y2(i));128 end129 det2=det2/(n2-1);130131 subplot(2,1,2),plot(x2,y2,'^r-',xs2,yn2,'b-o'),title('全区间' ),legend('实测值','预测值'); 132 disp(['百分绝对误差为:',num2str(det2),'%']);133 disp(['预测值为: ',num2str(ys2(n2+1:n2+t_test2))]);。
灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测

(5)
x (1) (1) 由于 x (1) (i) 的两个时刻的值,因此, t 涉及到累加列 x
x(i ) (i) 替换为 取前后两个时刻的平均代替更为合理,即将
2 灰色系统的模型
1 (i ) [ x (i ) x (i ) (i 1)], (i 2,3,..., N ). 2
将(5)写为矩阵表达式
售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
则(6)式的矩阵形式为
y BU
ˆ a T 1 T ˆ U ( B B) B y ˆ u
(6)’
方程组(6)’的最小二乘估计为 (7)
2 灰色系统的模型
ˆ ˆ 把估计值 a与u 代入(4)式得时间响应方程
ˆ ˆ u ˆ u ˆ (1) (k 1) x(1) (1) e ak x ˆ ˆ a a
类似地有
x(1) (3) x (1) ( N ) (0) x (3),..., x (0) ( N ). t t
于是,由式(3)有
ì x ( 0) (2) + ax (1) (2) = u , ï ï ï ï ( 0) ï x (3) + ax (1) (3) = u , ï ï í ï .............................. ï ï ï ( 0) ï x (N ) + ax (1) (N ) = u . ï ï î
2 灰色系统的模型 把 ax
(1)
(i) 项移到右边,并写成向量的数量积形式
(0) a (1) x (2) [ x (2), 1] u a (0) (1) x (3) [ x (3), 1] u (0) a (1) x ( N ) [ x ( N ), 1] u
灰色预测模型原理

灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。
灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。
灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。
它适用于研究数据量小、信息不完备、非线性关系复杂的系统。
下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。
1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。
其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。
(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。
(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。
(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。
(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。
2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。
(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。
(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。
(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。
(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。
3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。
灰色预测模型GM

灰色预测模型GM (1,1)§1 预备知识平面上有数据序列 nn y x y x y x ,,,,,,2211 ,大致分布在一条直线上。
设回归直线为:b ax y ,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和ni iib ax y J 12最小。
J 是关于a, b 的二元函数。
由120211n i i i i n i i i i i b x a y b J x b x a y a J0112n i i i ni ii i i b a y bx ax y x 则得使J 取极小的必要条件为:ii ii ni i i y nb x a y x x b x a 12 (*)22222ii i i i i i ii i i i i x x n y x x x y b x x n y x y x n a (1)以上是我们熟悉的最小二乘计算过程。
下面提一种观点,上述算法,本质上是用实际观测数据ix 、iy 去表示a 与b,使得误差平方和J 取最小值,即从近似方程b b b x x x a y y y n n 2121 中形式上解出a 与b。
把上式写成矩阵方程。
令 n y y y Y21,b a x x x Y n11121 yix xiiy x , jjyx ,令11121nx x x B ,则b a B Y 左乘T B 得b a B B Y B T T 注意到B T B 是二阶方阵,且其行列式不为零,故其逆阵(B T B)-1存在,所以上式左乘1BB T得 Y BB B b a TT 1(2)可以具体验算按最小二乘法求得的结果(1)与(2)式完全相同,下面把两种算法统一一下:由最小二乘得结果:方程(*) ii i i ni i i y nb x a y x x b x a 12 方程组改写为:n n iii y y y x xx b a nxxx21212111 令:11121nx x x B ,n y y y Y 21, b a a ˆ (*)化为 Y B aB B TTˆ所以Y BB B a TT1ˆ以后,只要数据列n j yx jj,,2,1, 大致成直线,既有近似表达式 n i bax y ii,,2,1当令: n y y y Y21,11121nx x x B ,b a a ˆ 则有 a B Y ˆy BBB a TT1ˆ(2)(2)式就是最小二乘结果,即按最小二乘法求出的回归直线b ax y 的回归系数a 与b。
数学建模——灰色预测模型

数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。
它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。
灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。
该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。
灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。
其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。
通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。
灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。
2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。
3.求解微分方程:求解微分方程,得到预测模型的参数。
4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。
示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。
然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。
这种情况下,你可以考虑使用灰色预测模型来预测销售量。
步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。
2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。
3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。
4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。
这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。
虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。
时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍时序预测是一种应用广泛的数据分析方法,它可以帮助我们预测未来一段时间内的数据趋势。
而在时序预测中,灰色模型是一种常用的模型之一。
本文将介绍灰色模型的基本原理、应用范围和优缺点。
一、灰色模型的基本原理灰色系统理论最早由中国科学家陈裕昌教授提出,它是一种用于处理少量数据和缺乏信息的系统分析方法。
灰色模型的基本原理是通过对数据进行灰色关联分析、灰色预测等处理,来实现对未来时序数据的预测。
灰色模型的关键在于建立数据的灰色关联度,通过对数据进行加权处理,将不规则的数据变为规则的规整数据,进而实现对未来数据的预测。
这种方法不仅可以用于单变量时序数据的预测,还可以用于多变量时序数据的预测,具有一定的灵活性和适用范围。
二、灰色模型的应用范围灰色模型在实际应用中具有广泛的应用范围,主要包括以下几个方面:1. 经济领域:灰色模型可以用于对经济指标的预测,如国内生产总值、消费指数、失业率等。
通过对这些指标的预测,可以帮助政府和企业制定发展战略和政策。
2. 工业领域:灰色模型可以用于对工业生产数据的预测,如原材料价格、产量、需求量等。
这对于企业的生产计划和库存管理具有重要意义。
3. 环境领域:灰色模型可以用于对环境数据的预测,如空气质量、水质数据等。
通过对这些数据的预测,可以帮助政府和环保部门采取相应的措施来改善环境。
4. 医疗领域:灰色模型可以用于对医疗数据的预测,如疾病发病率、病人数量、医疗资源需求等。
这对于医院和卫生部门的资源配置和医疗服务规划具有重要意义。
三、灰色模型的优缺点灰色模型作为一种时序预测方法,具有以下优点:1. 适用范围广:灰色模型可以处理各种类型的时序数据,包括线性和非线性数据,适用范围广泛。
2. 数据要求低:灰色模型对数据的要求相对较低,对于缺乏信息或者数据量较少的情况也可以进行预测。
3. 预测精度高:灰色模型在一定范围内可以取得较高的预测精度,对于短期和中期的预测效果较好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用差分代替微分,又因等间隔取样,t(t1)t1,故得
x(1 )(2 ) x(1 )(2 )x(1 )(2 ) x(1 )(1 )x(0 )(2 ), t
类似地有
x(1)(3)x(0)(3),..., x(1)(N )x(0)(N ).
t
t
于是,由式(7.3)有
ìïïïïïïïíïïïïïïïî
A
30
7.3 销售额预测
(2)建立矩阵:B, y
B1212[[xx((11))((32))xx((11))((21))]]
1 4.513 1 7.8205
1 1
1122[[xx((11))((54))xx((11))((43))]]
1 1
11.184 1 14.7185 1
y=[x(0)(2), x(0)(3), x(0)(4),x(0)(5)]T
A
19
7.2 灰色系统的模型
1[x(i)(i)x(i)(i1)],(i2,3,...,N ). 2
将(7.5)写为矩阵表达式
xx((00)M )((32))1212[[xx((11))((32))M xx((11))((21))]] x(0)(N) 12[x(1)(N)x(1)(N1)]
1 11ua. 1
y BU
方程组(7.6)’的最小二乘估计为
(7.6)’
Uˆ uaˆˆ(BTB)1BTy
(7.7)
A
21
7.2 灰色系统的模型
把估计值 aˆ 与 uˆ 代入(7.4)式得时间响应方程
xˆ(1)(k1)x(1)(1)u aˆˆea ˆku a ˆˆ
(7.8)
当 k1,2,L,N1时 , 由(7.8)式算得的 xˆ(1)(k 1) 是拟合值;
(2)灾变与异常值预测,即通过灰色模型预测异常值出现的时 刻,预测异常值什么时候出现在特定时区内。
(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生 在一年内某个特定的时区或季节的灾变预测。
(4)拓扑预测,将原始数据作曲线,在曲线上按定值寻找该定 值发生的所有时点,并以该定值为框架构成时点数列,然后建立模 型预测该定值所发生的时点。
A
28
7.3 销售额预测
【例7.2】 表7.2列出了某公司1999—2003年逐年的销
售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
表7.2 逐年销售额(百万元)
年份 序号
x(0)
1999 1
2.874
2000 2
3.278
2001 3
3.337
2002 4
3.390
2003 5
=[3.278, 3.337, 3.390, 3.679]T
A
31
7.3 销售额预测
A
32
7.3 销售额预测
A
33
7.3 销售额预测
A
34
7.3 销售额预测
A
35
7.3 销售额预测
下面我们用用GM预测软件求解例7.2.参考附录B (1)调用GM预测软件.见图7.3.
A
3
7.1 灰色系统的定义和特点 7.2 灰色系统的模型 7.3 销售额预测 7.4 城市道路交通事故次数的灰色预测 7.5 城市火灾发生次数的灰色预测 7.6 灾变与异常值预测
A
4
7.1 灰色系统的定义和特点
A
5
7.1灰色系统的定义和特点
灰色系统理论是由华中理工大学邓聚龙教授于 1982年提出并加以发展的。二十几年来,引起了不 少国内外学者的关注,得到了长足的发展。目前, 在我国已经成为社会、经济、科学技术在等诸多领 域进行预测、决策、评估、规划控制、系统分析与 建模的重要方法之一。特别是它对时间序列短、统 计数据少、信息不完全系统的分析与建模,具有独 特的功效,因此得到了广泛的应用.在这里我们将简 要地介绍灰色建模与预测的方法,更进一步的内容 可参考文献[23],[24],[25]。
63+8+10+7 34.
于是得到一个新数据序列
x(1){6,9,17,27,34}
A
12
7.2 灰色系统的模型
归纳上面的式子可写为
i
x(( 1) i) { x(0)(j) i1,2L,N} j1
称此式所表示的数据列为原始数据列的一次累加生 成,简称为一次累加生成.显然有 x(1)(1)x(0)(1).
令
y (x (0 )(2 ),x (0 )(3 ),L ,x (0 )(N ))T .
(7.6)
这里,T表示转置.令
A
20
7.2 灰色系统的模型
1212[[xx(1()1()3(2))xx(1()1()2(1))]]
M
12[x(1)(N)x(1)(N1)]
1 1,
1
Uua,
则(7.6)式的矩阵形式为
7
7.1灰色系统的定义和特点
2. 灰色系统的特点
(1)用灰色数学处理不确定量,使之量化. (2)充分利用已知信息寻求系统的运动规律. (3)灰色系统理论能处理贫信息系统.
A
8
7.1灰色系统的定义和特点
常用的灰色预测有五种:
(1)数列预测,即用观察到的反映预测对象特征的时间序列来 构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征 量的时间。
当k N时,xˆ(1)(k 1) 为预报值.这是相对于一次累加序列
x (1) 的拟合值,用后减运算还原,当 k1,2,L,N1时 ,
就可得原始序列 x (0) 的拟合值 xˆ(0) (k 1);当k N时,
可得原始序列 x (0) 预报值.
A
22
3.精度检验
(1)残差检验:分别计算
7.2 灰色系统的模型
A
6
7.1灰色系统的定义和特点
1. 灰色系统的定义
灰色系统是黑箱概念的一种推广。我们把既含有已知信 息又含有未知信息的系统称为灰色系统.作为两个极端, 我们将称信息完全未确定的系统为黑色系统;称信息完全 确定的系统为白色系统.区别白色系统与黑色系统的重要 标志是系统各因素之间是否具有确定的关系。
A
(5)系统预测. 通过对系统行为特征指标建立一组相互关联的灰 色预测模型,预测系统中众多变量间的相互协调关系的变化。
A
9
7.2 灰色系统的模型
A
10
7.2 灰色系统的模型
通过下面的数据分析、处理过程,我们将了解到,有 了一个时间数据序列后,如何建立一个基于模型的灰色 预测。 1. 数据的预处理 首先我们从一个简单例子来考察问题. 【例7.1】 设原始数据序列
A
23
7.2 灰色系统的模型
(3)预测精度等级对照表,见表7.1.
A
24
7.2 灰色系统的模型
由于模型是基于一阶常微分方程(7.3)建立的,故称为 一阶一元灰色模型,记为GM(1,1).须指出的是, 建模时 先要作一次累加,因此要求原始数据均为非负数.否则, 累加时会正负抵消,达不到使数据序列随时间递增的目的. 如果实际问题的原始数据列出现负数,可对原始数据列进 行“数据整体提升”处理. 注意到一阶常微分方程是导出GM(1,1)模型的桥梁,在我 们应用GM(1,1)模型于实际问题预测时,不必求解一阶常 微分方程(7.3).
或称相减生成,它是指后前两个数据之差,如上例中
A
14
7.2 灰色系统的模型
x(1) (5) x(1) (5) x(1) (4) 34 27 7, x(1) (4) x(1) (4) x(1) (3) 27 17 10, x(1) (3) x(1) (3) x(1) (2) 17 9 8, x(1) (2) x(1) (2) x(1) (1) 9 6 3, x(1) (1) x(1) (1) x(1) (0) 6 0 6. 归纳上面的式子得到如下结果:一次后减 x ( 1 )( i) x ( 1 )( i) x ( 1 )( i 1 ) x (0 )( i)
A
2
灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色系统 所做的预测.目前常用的一些预测方法(如回归分 析等),需要较大的样本.若样本较小,常造成较 大误差,使预测目标失效.灰色预测模型所需建模 信息少,运算方便,建模精度高,在各种预测领 域都有着广泛的应用,是处理小样本预测问题的 有效工具.
x
(0) (2
)
[
x
(1) ( 2
), 1]
a
u
x
(0) (3 )
[
x
(1) (3 ), 1 ]
a
u
LL
x (0)( N
)
[
x (1) ( N
), 1]
a
u
(7.5)
由于 x (1 )
t
涉及到累加列 x (1)
的两个时刻的值,因此,x (1) (i)
取前后两个时刻的平均代替更为合理,即将 x (i) (i) 替换为
Operational Research
第七章 灰色预测模型及其应用
A 1
灰色预测模型(Gray Forecast Model)是通过少量 的、不完全的信息,建立数学模型并做出预测的 一种预测方法.当我们应用运筹学的思想方法解决 实际问题,制定发展战略和政策、进行重大问题 的决策时,都必须对未来进行科学的预测. 预测 是根据客观事物的过去和现在的发展规律,借助 于科学的方法对其未来的发展趋势和状况进行描 述和分析,并形成科学的假设和判断.
A
25
7.2 灰色系统的模型
4.GM(1,1)的建模步骤 综上所述,GM(1,1)的建模步骤如下:
A
26
7.3 销售额预测
A
27