概率论第三章习题解答
概率论~第三章习题参考答案与提示

第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。
概率论与数理统计(经管类)第三章课后习题答案

P Z 30 P X 10, Y 20 20 3
P Z 20 P X 20, Y 0 20
P Z 10 P X 10, Y 0 P X 20, Y
P Z 0 P X 10, Y 则 Z=X‐Y 的分布律为
2 10 20
Z=X‐Y ‐40 ‐30 ‐20 ‐10 0
4. 设随机变量 X,Y 相互独立,且服从[0,1]上的均匀分布,求 X+Y 的概率密度. 解: 因 X,Y 都服从[0,1]上的均匀分布,且相互独立 故fX x fY y 1, f x, y fX x fY y
设 Z=X+Y
当0 z 1时
Z ZX
FZ
f x, y dydx
Z ZX
1dydx
Z
z xdx
;
P X 1, Y 0 P X 1 P Y 0
;
P X 1, Y 1 P X 1 P Y 1
;
(X,Y)的分布律与边缘分布律为
Y
X
0
1
p·
16
4
20
0
25 25 25
4
1
1
1
25 25
5
p·
20 25
1 5
(2) 不放回抽样的情况:
P X 0, Y 0 P X 0 P Y 0
;
P X 0, Y 1 P X 0 P Y 1
0, 其他.
0, 其他.
关于 Y 的边缘密度为
fY y
1
√2 24xydx , 0 y
0, 其他.
1 , 6x, 0 √3 =
y
1,
√3
0, 其他.
注意积分限为 Y 的值域,后面却 要写 X 的值域哦~
概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。
概率论习题第三章答案

第三章连续型随机变量3.1设随机变量 ξ 的分布函数为F (x ),试以F (x )表示下列概率: 。
)()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。
)(解:)0(1)()4();(1)()3();0()(P 2);()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ3.2函数x211F(x)+=是否可以作为某一随机变量的分布函数,如果在其它场合恰当定义。
在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞<<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能是随机变量的分布函数; (3)F(x)在),(-0∞内单调上升、连续且,若定义 ⎩⎨⎧≥<<∞=01)()(~x x X F x F -则)(~x F 可以是某一随机变量的分布函数。
3.3函数 sinx 是不是某个随机变量ξ的分布函数?如果ξ的取值范围为[]。
,);(,);(,)(⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ230302201 解:(1)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,sinx 0≥且1sin 20=⎰πxdx ,所以 sinx 可以是某个随机变量的分布密度; (2) 因为12sin 0≠=⎰πxdx ,所以sinx 不是随机变量的分布密度; (3) 当 ⎥⎦⎤⎢⎣⎡∈23,ππx 时,sinx<=0所以sinx 不是随机变量的分布密度。
3.4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有[][]。
--故上式右端=知由证:)1)(21a)P(1a)(3)P(1;-2F(a))(21)(1)1(,)(2)()()2(;)(21)()(1)(1)(1)(1)(1)()()1(.)(F 12)()3(;1)(2)()2(;(p 21)(1)()1(00000-=<=>-=-==<-=--=-=-=+=-==--=>-=<-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-∞-∞-∞-∞--∞-a F dxx p a F dx x p dx x p a P dx x p dx x p dx x p a F dx x p dxx p dx x p dx x p a F a a P a F a P dx x a F a F a a a a a aaaaaa ξξξξξ3.5设)(1x F 与)(2x F都是分布函数,证明F(x)=aF(x)+bF(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型? 证:因为)(1x F与 )(2x F 都是分布函数,于是F(x1)=aF1(x1)+bF2(x2)<= aF1(x1)+bF2(x2)= F(x2) 又F(x-0)= aF1(x1-0)+bF2(x2-0) = aF1(x)+bF2(x)= F(x) 所以,F(x)也是分布函数。
概率论第三章课后习题答案_课后习题答案
第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
概率论第三章习题及答案
PX x , Y y
j i
j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21
y2 p12
p22
… … … … …
yj
p1 j
… … …
pi
p1
p2
x1
x2
p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.
2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,
X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2
概率论与数理统计习题解答(第3章)
习 题 三 (A )三、解答题1. 设口袋中有3个球,它们上面依次标有数字1,1,2,现从口袋中无放回地连续摸出两个球,以X ,Y 分别表示第一次与第二次摸出的球上标有的数字,求(X ,Y )的分布律. 解:(X ,Y )取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式: P {X =1,Y =1}=P {X =1}P {Y =1|X =1}=2/3⨯1/2=/3, P {X =1,Y =2}= P {X =1}P {Y =2|X =1}=2/3⨯1/2=1/3, P {X =2,Y =1}= P {X =2}P {Y =1|X =2}=1/3⨯2/2=1/3. (X ,Y )的分布律用表格表示如下:2.设盒中装有8支圆珠笔芯,其中3支是蓝的,3支是绿的,2支是红的,现从中随机抽取2支,以X ,Y 分别表示抽取的蓝色与红色笔芯数,试求: (1) X 和Y 的联合分布律;(2) P {X ,Y } ∈ A },其中A = {(x ,y )| x + y ≤ 1}. 解:X ,Y 所有可能取到的值是0, 1, 2(1) P {X =i , Y =j }=P {X =i }P {Y =j |X =i }=282223C C C C j i j i --, i , j =0,1,2, i +j ≤2 或者用表格表示如下:(2)P{(X ,Y )∈A }=P {X +Y ≤1}=P {X =0, Y =0}+P {X =1,Y =0}+P {X =0,Y =1}=3/28+9/28+6/28=9/14.3.设事件B A 、满足,21)|(,21)|(,41)(===A B P B A P A P 记X ,Y 分别为一次试验中A ,B 发生的次数,即⎩⎨⎧=不发生,发生A A X 0,1,⎩⎨⎧=不发生,发生,B B Y 0 1,求:二维随机变量(X ,Y )的分布律.解:因为P (A )=1/4,,21)|(=A B P 由P (B |A )=2/14/1)()()(==AB P A P AB P 得P (AB )=1/8, 由P (A |B )=2/1)()(=B P AB P 得P(B)=1/4.(X ,Y )取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则 P {X =0,Y =0}=)(1)()(B A P B A P B A P -===1-P (A )-P (B )+P (AB )=5/8, P {X =0,Y =1}=)(B A P =P (B -A )=P (B )-P (AB )=1/8, P {X =1,Y =0}=)(B A P =P (A -B )=P (A )-P (AB )=1/8, P {X =1,Y =1}=P (AB )=1/8.4.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,10 ,),(其它y x Axy y x f 试求: (1) 常数A (2) P {X = Y } (3) P {X < Y }(4) (X ,Y )的分布函数. 解:(1)由归一性知:1=, 故A=4(2) P {X =Y }=0, (3) P {X <Y }=.(4)F (x ,y )=即F (x ,y )=5.设二维随机变量),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<+=其它0,20,10 ,3),(2y x xyx y x f求P {X + Y ≥ 1}. 解:P{X+Y ≥1}=7265)3(),(102121=+=⎰⎰⎰⎰-≥+dydx xy x dxdy y x f xy x 6.将一枚硬币掷3次,以X 表示前2次中出现正面的次数,以Y 表示3次中出现正面的次数,求X ,Y 的联合分布律及(X ,Y )的边缘分布律.解:X 的所有可能取值为0,1,2,Y 的所有可能取值为0,1,2,3. P {X =0,Y =0}=0.53=0.125; P {X =0,Y =1}=0.53=0.125P {X =1,Y =1}=25.05.05.0212=⨯C , P {X =1,Y =2}=25.05.05.0212=⨯C P {X =2,Y =2}=0.53=0.125, P {X =2,Y =3}==0.53=0.125 X ,Y 的分布律及边缘分布律可用表格表示如下:Y X 0 1 2 3 P i . 0 0.125 0.125 0 0 0.25 1 0 0.25 0.250.52 00.125 0.125 0.25P .j0.125 0.375 0.375 0.125 1解法2:,21)21()21(}|{}{},{22⨯=======-iiiC i X j Y P i X P j Y i X P.1,0,3,2,1,0,2,1,0=-==i j j i7.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<=-其它,00,),(yx e y x f y 求边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<<=-其它,00,),(yx e y x f y⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==-+∞-∞+∞-⎰⎰0,00,0,00,),()(x x e x x dy e dy y x f x f xxy X ⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==--∞+∞-⎰⎰0,00,0,00,),()(0y y ye y y dx e dx y x f y f y y yY 8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤=其它,01,),(22y x y cx y x f 求:(1) 确定常数c(2) 边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<≤≤=0,01,),(22x y x y cx y x f(1)214212),(1104211122cdx x x c ydydx cx dxdy y x f x =-===⎰⎰⎰⎰⎰-∞+∞-∞+∞-所以 c=21/4(2) ⎪⎩⎪⎨⎧<-=⎪⎩⎪⎨⎧<==⎰⎰∞+∞-其它其它,,01||,8)1(2101||,421),()(42122x x x x ydy x dy y x f x f x X⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰-∞+∞-其它其它,,010********),()(252y y y ydx x dx y x f y f y yY 9.设平面区域D 由曲线xy 1=及直线y = 0,x = 1,x = e 2围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求边缘概率密度f X (x ),f Y (y ). 解:2|ln 12211===⎰e e D x dx xS (X ,Y )在区域D 上服从均匀分布,故f (x ,y )的概率密度为⎪⎩⎪⎨⎧∈=其它,0),(,21),(Dy x y x f ⎪⎩⎪⎨⎧≤≤==⎰⎰∞+∞-其它(,01,21),()210X e x dy dy y x f x f x⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤≤-=-===--∞+∞-⎰⎰⎰其它(10,0),11(2121,2121),()221112X 2y e e y y dx e dx dx y x f x f y e 10.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f 试求条件概率密度f (y | x ).解:⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f)0)(( )(),()|(|>=x f x f y x f x y f X X X Y ⎪⎩⎪⎨⎧≤<===⎰⎰∞+∞-其它,010,233),()(20x x xdy dy y x f x f x X当0<x ≤1时,⎪⎩⎪⎨⎧<<==其它,00,233)(),()|(2|xy x x x f y x f x y f X X Y即,⎪⎩⎪⎨⎧≤<<=其它,010,2)|(|x y x x y f X Y11.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<=其它,0,10,1),(xy x y x f 求条件概率密度f (x | y ).解:⎩⎨⎧<<<=其它,0||,10,1),(xy x y x f⎪⎩⎪⎨⎧>-=≤+===⎰⎰⎰-∞+∞-0,10,1),()(11y y dx y y dx dx y x f y f y y Y当y ≤0时,⎪⎩⎪⎨⎧<<-<<+==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X当y >0时,⎪⎩⎪⎨⎧<<-<<-==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X所以,⎪⎩⎪⎨⎧<<<-==其它,01||0,||11)(),()|(|x y y x f y x f y x f Y Y X12.已知随机变量Y 的概率密度为⎩⎨⎧<<=其它,010,5)(4y y y f Y 在给定Y = y 条件下,随机变量X 的条件概率密度为⎪⎩⎪⎨⎧<<<=其它,010,3)(32y x y x y x f 求概率P {X > 0.5}. 解:由)(),()|(|x f y x f y x f Y Y X =得 ⎩⎨⎧<<<<==其它,00,10,15)()|(),(2|yx y yx y f y x f y x f Y Y X644715),(}5.0{15.0125.0===>⎰⎰⎰⎰+∞+∞∞-xdydx yx dydx y x f X P 13.设二维随机变量(X ,Y )的分布律为试分别求),max(Y X Z =和),min(Y X W =的分布律. 解:Z =max(X ,Y ),W =min(X ,Y )的所有可能取值如下表Z =max(X ,Y ),W =min(X ,Y )的分布律为14.设X 和Y 是相互独立的随机变量,且)(~),(~θθE Y E X ,如果定义随机变量Z 如下:⎩⎨⎧>≤=Y X YX Z ,0,1 求Z 的分布律.解:⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X θθ ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f yY θθ 由独立性得X ,Y 的联合概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,1),(2y x e y x f yx θθ 则P {Z =1}=P {X ≤Y }=211),(002==⎰⎰⎰⎰∞++-≤xyx yx dydx edxdy y x f θθ P {Z =0}=1-P {Z =1}=0.5故Z 的分布律为15.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π求边缘概率密度f X (x ),f Y (y );并问X 与Y 是否独立?解:⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π⎪⎩⎪⎨⎧<-===⎰⎰---∞+∞-其它,01||,121),()(222112x x dy dy y x f x f x x X ππ 同理,⎪⎩⎪⎨⎧<-=其它,01||,12)(2y y y f Y π显然,)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立16.设随机变量X 和Y 相互独立,试在以下情况下求Y X Z +=的概率密度, (1) )1,0(~),1,0(~U Y U X ; (2) )1(~),1,0(~Exp Y U X .解:(1)⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧<<=其它,010,1)(Y y y f利用卷积公式:⎰+∞∞--=dx x z f x f z f Y X Z )()()(求f Z (z ))()(x z f x f Y X -=⎩⎨⎧+<<<<其它,01,10,1x z x x⎪⎪⎩⎪⎪⎨⎧<≤<≤-===-=⎰⎰⎰-∞+∞-其它2110,02,)()()(110z z z dx z dx dx x z f x f z f z z Y X Z(2) ⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧≤>=-0,00,)(Y y y e y f y 利用卷积公式:⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎩⎨⎧+<<>=--其它,01,0,)()(y z y y e y f y z f y Y X⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≥<≤--=≥<≤=-----⎰⎰其它其它110,0,)1(,1110,0,,10z z e e e z z dy e dy e z zzz y z y17.设)1,1(~),1,0(~N Y N X ,且X 与Y 独立,求}1{≤+Y X P . 解:由定理3.1(P75)知,X +Y ~N (1,2),故5.0)0(}21121{}1{=Φ=-≤-+=≤+Y X P Y X P 18.设随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-. ,0;0,0,)(21),()(其它y x e y x y x f y x(1) 问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度. 解:(1) )1(21)(21),()0)(X +=+==-+∞+-+∞∞-⎰⎰x e dy e y x dx y x f x f x y x ((x>0) 同理,)1(21)(+=-y e y f yY y>0 显然,)()x (),(y f f y x f Y X =,所以X 与Y 不相互独立 (2).利用公式⎰+∞∞--=dx x z x f z f Z )()(,被积函数⎪⎩⎪⎨⎧>>=⎪⎩⎪⎨⎧>->-+=---+-其它其它,0,0,21,00,0,)(21),()(xz x ze x z x e x z x x z x f z x z x所以⎰+∞∞--=dx x z x f z f Z )()(,⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤>=≤>=--⎰0,00,210,00,2120z z e z z z dx ze z z z19. 设某系统L 由两个相互独立的系统L 1,L 2联合而成,各连接方式如图所示.已知L 1,L 2的使用寿命X 与Y 分别服从参数为α,β 的指数分布,求以下各系统L 使用寿命Z 的分布函数及概率密度.解:并联时,系统L 的使用寿命Z=max{X ,Y} 因X ~Exp (α),Y ~Exp (β),故⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X αα, ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f y Y ββ ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F xX α, ⎪⎩⎪⎨⎧≤>-=-0,00,1)(y y e y F y Y β ⎪⎩⎪⎨⎧≤>--==--0,00),1)(1()()()(z z e e z F z F z F z z Y X Z βα⎪⎩⎪⎨⎧≤>+-+=⎪⎪⎭⎫⎝⎛+---0,00,)11(11)(11z z e e e z f z z z Z βαβαβαβα 串联时,系统L 的使用寿命Z =min{X ,Y }⎪⎩⎪⎨⎧≤>-=---=⎪⎪⎭⎫⎝⎛+-0,00,1)](1)][(1[1)(11z z e z F z F z F z Y X Z βα ⎪⎩⎪⎨⎧≤>⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-0,00,11)(11z z e z f zZ βαβα (B )1.设二维随机变量(X ,Y )的分布律为已知随机事件{X = 0}与{X + Y = 1}相互独立,求a ,b 的值.解:P {X =0}=a +0.4,P {X +Y =1}=P {X =1,Y =0}+P {X =0,Y =1}=a +b. P {X =0,X +Y =1}=P {X =0,Y =1}=a 由于{X =0}与{X +Y =1}相互独立,所以 P {X =0, X +Y =1}=P {X =0} P {X +Y =1}即 a =(a +0.4)(a +b ) (1) 再由归一性知:0.4+a +b +0.1=1 (2) 解(1),(2)得 a =0.4, b =0.1 2.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<--=其它 ,010,10 ,2),(y x y x y x f (1) 求P {X > 2Y }(2) 求Z = X + Y 的概率密度f Z (z ). 解: (1) 247)2(),(}2{10202=--==>⎰⎰⎰⎰>xyx dydx y x dxdy y x f Y X P (2) 利用公式dx x z x f z f Z ⎰+∞∞--=),()(计算⎩⎨⎧<-<<<-=-其它,010,10,2),(x z x z x z x f ⎪⎩⎪⎨⎧≥<≤-<<-=⎪⎪⎩⎪⎪⎨⎧≥<≤-<<-=-=⎰⎰⎰-∞+∞-2,021,)2(10),22,021,)2(10,)2(),()(2110z z z z z z z dx z z dx z dx x z x f z f z z Z (3.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其它,020,4101,21)(x x x f X令2X Y =,),(y x F 为二维随机变量(X ,Y )的分布函数,求 (1) Y 的概率密度)(y f Y ;(2) )4,21(-F .解:(1) F Y (y )=P {Y ≤y }=P {X 2≤y } 当y <0时,f Y (y )=0当y ≥0时,)()(}{)(y F y F y X y P y F X X Y --=<<-=从而,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<=⎪⎩⎪⎨⎧-+=4041,8110,83)]()([21)(y y y y y y f y f yy f X X Y ,(2) F (-1/2,4)=P {X ≤-1/2,Y ≤4}= P {X ≤-1/2,X 2≤4} =P {-2≤X ≤-1/2}=4121)(211212==⎰⎰----dx dx x f X 4.设(X ,Y )为二维离散型随机变量,X 和Y 的边缘分布律分别如下:如果1}0{==XY P ,试求 (1) (X ,Y )的分布律; (2) 问X 与Y 是否独立. 解:P {XY ≠0}=1-P {XY =0}=0 即 P {X =-1,Y =1}+P {X =1,Y =1}=0由概率的非负性知,P {X =-1,Y =1}=0,P {X =1,Y =1}=0由边缘分布律的定义,P {X =-1}= P {X =-1,Y =0}+ P {X =-1,Y =1}=1/4 得P {X =-1,Y =0}=1/4再由P {X =1}= P {X =1,Y =0}+ P {X =1,Y =1}=1/4 得P {X =1,Y =0}=1/4再由P {Y =1}=P {X =-1,Y =1}+ P {X =0,Y =1}+ P {X =1,Y =1}= P {X =0,Y =1} 知P {X =0,Y =1}=1/2最后由归一性得:P {X =0,Y =0}=0(X ,Y )的分布律用表格表示如下:(2) 显然,X 和Y 不相互独立,因为P {X =-1,Y =0}≠ P {X =-1}P {Y =0}5.设随机变量X 与Y 相互独立,且),(~),,(~2ππσμ-U Y N X ,求Z = X + Y 的概率密度(计算结果用标准正态分布分布函数)(x Φ表示).解:X 与Y 相互独立,利用卷积公式dx x z f x fz f Y XZ ⎰+∞∞--=)()()(计算,21)(222)(σμσπ--=x X ex f ⎪⎩⎪⎨⎧-∈=其它,0),(,21)(πππy y f Y ⎪⎩⎪⎨⎧<-<-=---其它,0,221)()(222)(ππππσσμx z e x z f x f x Y X⎰⎰⎰+---+---+∞∞-==-=ππσμπππσμπσππσz z x z z x Y X Z dx edx edx x z f x f z f 22222)(212)(21221)()()()]()([21}{21ππππππ--+=+<<-=z F z F z X z P ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-+Φσμπσμππz z 21 6.设二维随机变量(X ,Y )在矩形}10,20),{(≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度)(s f S . 解:(X ,Y )~U(G )⎪⎩⎪⎨⎧∈=其它,0),(,21),(Gy x y x f设F (x )和f (s )分别表示S =XY 的分布函数和密度函数 F (s )=P {XY <s} s<0时,F S (s)=0s ≥0时,⎪⎩⎪⎨⎧+≥=⎰⎰⎰⎰s s xs S dydxdydx s F 010*******,1, 所以,⎪⎪⎩⎪⎪⎨⎧≥≥+<=2,12,2ln 220,0s s s s s s F S于是,S =XY 概率密度为⎪⎩⎪⎨⎧<<=其它,020,2ln 21)(s ss f S 7.设随机变量X 与Y 相互独立,其中X 的分布律为而Y 的概率密度为f (y ),求随机变量Y X U +=的概率密度)(u g . 解:由全概率公式: F U (u )=P {U ≤u }={X +Y ≤u }=P {X =1}P {X +Y ≤u |X =1}+ P {X =2}P {X +Y ≤u |X =2} = P {X =1}P {1+Y ≤u }+ P {X =2}P {2+Y ≤u } =0.3⨯F Y (u -1)+0.7⨯F Y (u -2)所以,f U (u ) =0.3⨯f Y (u -1)+0.7⨯f Y (u -2)8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,,,020,10 ,1),(x y x y x f 求:(1) (X ,Y )的边缘概率密度f X (x ),f Y (y ); (2) Y X Z -=2的概率密度)(z f Z ; 解:(1) ⎩⎨⎧<<<<=其它,00,10,1),(x y x y x f⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,2,010,1),()(20x x x dy dy y x f x f x X ⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,020,21,020,1),()(12y yy dx dx y x f y f y Y (2) ⎰⎰≤-=≤-=≤=zy x Z dxdy y x f z Y X P z Z P z F 2),(}2{}{)(如图所示,当z<0时,F Z (z)=0; 当z ≥2时,F Z (z)=1 当0≤z<2时:411)(212222020z z dydx dydx z F z xz x zx Z -=+=⎰⎰⎰⎰- 综上所述,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=2,120,40.0)(2z z z z z z F Z 所以Z 的概率密度为:⎪⎩⎪⎨⎧<≤-=20,21,0)(z zz f Z 其它 9.设随机变量X 在区间(0,1)上服从均匀分布,在X = x (0 < x < 1)的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求: (1) 随机变量X 和Y 的联合概率密度; (2) Y 的概率密度; (3) 概率P {X + Y > 1}. 解:(1) ⎩⎨⎧<<=其它,010,1)(x x f X⎪⎩⎪⎨⎧<<<<=其它,010,0,1)|(|x x y xx y f X Y ⎪⎩⎪⎨⎧<<<==其它(,010,1)()|),(|x y xx f x y f y x f X X Y(2) ⎩⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,ln ,010,1),()(1y y y dx x dx y x f y f y Y (3) 2ln 11),(}1{P 15.011-===≥+⎰⎰⎰⎰-≥+xx y x dydx xdxdy y x f Y X10. 设随机变量X 与Y 相互独立,X 的分布律为31}{==i X P ,(i = – 1,0,1),Y 的概率密度为⎩⎨⎧<≤=其它,010,1)(y y f Y ,记Y X Z +=,求:(1) 求}021{=≤X Z P (2) 求Z 的概率密度)(z f Z .解:(1) P {Z ≤1/2|X =0}=P {X +Y ≤1/2|X =0}=P {Y ≤1/2}=1/2 (2) 由全概率公式:F Z (z )=P {Z ≤z }=P {X +Y ≤z }=P {X =1}P {X +Y ≤z |X =1} +P {X =0}P {X +Y ≤z |X =0}=P {X =-1}P {X +Y ≤z|X =-1} = P {X =1}P {1+Y ≤z }+P {X =0}P {Y ≤z }=P {X =-1}P {-1+Y ≤z } =1/3⨯[F Y (z -1)+ F Y (z )+ F Y (z +1)]从而,f Z (z ) =1/3⨯[f Y (z -1)+ f Y (z )+ f Y (z +1)]=⎪⎩⎪⎨⎧<<-其它,021,31z11.设X 与Y 的联合概率密度为⎩⎨⎧<<<<=.,0;0,10 ,3),(其它x y x x y x f 试求Y X Z -=的概率密度. 解:⎩⎨⎧<<<<=其它,00,10,3).(xy x x y x f⎰⎰-≥=-≥=≤-=≤=zx y Z dxdy y x f Z X Y P z Y X P z Z P z F ),(}{}{}{)(如图,当z<0时,F Z (z)=0; 当z ≥1时,F Z (z )=1当0≤z<1时:22333)(3100z z xdydx xdydx z F z xz x zxZ -=+=⎰⎰⎰⎰-综上得:⎪⎪⎩⎪⎪⎨⎧≥<≤-<=1,010,2230,0)(3z z z z z z F Z 12Z 的概率密度为⎪⎩⎪⎨⎧<≤-=其它,010),1(23)(2z z z f Z12.设X 与Y 独立同分布,且都服从标准正态分布N (0,1),试求22Y X Z +=的分布. 解:,21)(22x X ex f -=π,21)(22y Y ey f -=π22221)()(),(y x Y X e y f x f y x f +-==π}{}{)(22z y x P z Z P z F Z ≤+=≤=当z<0时,F Z (z)=0; 当z ≥0时,220222222222121),(}{)(z zr z y x Z erdrd edxdy y x f z Y X P z F --≤+-===≤+=⎰⎰⎰⎰πθπ所以,Z 的概率密度为⎪⎩⎪⎨⎧≥=-其它,00,)(22z ze z f z Z。
(完整版)概率论第三章第四章习题及答案
第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n 14n e14 , n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2, ,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2, , n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
返回主目录
第四章 随机变量的数字特征
U 的密度函数为
nun1, x (0,1),
fU (u)
0,
其他.
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
E(U )
ufU (u)du
e14 (7.14)m (6.86)nm m!(n m)!
e
1414n n!
Cnm
7.14 14
m
6.86 14
nm
Cnm 0.51m0.49nm , m 0,1,2, , n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2, , n; n 0,1,2, .
cxey ,0 x y ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章习题解1 在一箱子中装有12只开关,其中2 只就是次品,在其中任取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样。
定义随机变量X ,Y 如下: 0,1X ⎧=⎨⎩若第一次取出的是正品,,若第一次取出的是次品。
0,Y 1⎧=⎨⎩若第二次取出的是正品,,若第二次取出的是次品。
试分别就(1),(2)两种情况写出X ,Y 的联合分布律。
解 (1)放回抽样由于每次抽取时都就是12只开关,第一次取到正品有10种可能,即第一次取到正品的概率为 105{0}126P X ===, 第一次取出的就是次品的概率为 21{1}126P X === 同理,第二次取到正品的概率105{0}126P Y ===第二次取到次品的概率为21{1}126P Y ===由乘法公式得X ,Y 的联合分布率为{,}{|}{}{}{}P X i Y j P Y j X i P X i P X i P Y j =========,0,1i =,0,1j =。
具体地有5525{0,0}6636P X Y ===⨯=,515{0,1}6636P X Y ===⨯=, 155{1,0}6636P X Y ===⨯=,111{1,1}6636P X Y ===⨯=用表格的形式表示为(2)不放回抽样 5{0}6P X ==,1{1}6P X == 因为第二次抽取时,箱子里只有11只开关,当第一次抽取的就是正品,则箱子中有9只正品)。
所以9{0|0}11P Y X ===, 2{1|0}11P Y X === 10{0|1}11P Y X ===, 1{1|1}11P Y X ===则5945{0,0}61166P X Y ===⨯=5210{0,1}61166P X Y ===⨯=, 11010{1,0}61166P X Y ===⨯=,111{1,1}61166P X Y ===⨯=2 (1)盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 与Y 的联合分布律。
(2)在(1)中求{}P X Y >,{2}P Y X =,{3}P X Y +=,{3}P X Y <-。
解 X 可能的取值为0,1,2,3;Y 的可能取值为0,1,2。
{0,0}{}0P X Y P ===∅=(因为盒子里总共只有7只球,每次取4只球,而红球2只,故不可能白球与黑球同时都取不到){0,1}{}0P X Y P ===∅=, 220223471{0,2}35C C C P X Y C ==== {1,0}{}0P X Y P ===∅= 1123226{1,1}3535C C C P X Y ====。
1213226{1,2}3535C C C P X Y ====。
22323{2,0}3535C C P X Y ====21132212{2,1}3535C C C P X Y ====, 22323{2,2}3535C C P X Y ====, 31322{3,0}3535C C P X Y ====, 31322{3,1}3535C C P X Y ====,{3,2}{}0P X Y P ===∅=其联合分布律为(2){}{1,0}{2,1}{2,1}P X Y P X Y P X Y P X Y >===+==+== {3,0}{3,1}{3,2}P X Y P X Y P X Y +==+==+== 3122219003535353535=+++++=6{2}{0,0}{1,2}35P Y X P X Y P X Y ====+===; {3}{3,0}{2,1}{1,2}P X Y P X Y P X Y P X Y +====+==+== 2126204353535357=++==。
{3}{3,0}{2,1}{1,2}P X Y P X Y P X Y P X Y <-=<=+<=+<=361102353535357=++==。
3 设随机变量(,)X Y 的概率密度为 (6),02,24(,)0,k x y x y f x y --<<<<⎧=⎨⎩,其它.(1)确定常数k ; (2)求{1,3}P X Y <<; (3)求{ 1.5}P X <; (4){4}P X Y +<。
解 由(,)1f x y dxdxy ∞∞-∞-∞=⎰⎰得242(,)(6)f x y dxdxy dx k x y dy ∞∞-∞-∞=--⎰⎰⎰⎰22420(6)2y k y xy dx =--⎰2220(62)(6)8k x dx k x x k =-=-=⎰ 令81k =, 得18k =。
(2)131{1,3}(6)8P X Y dx x y dy -∞-∞<<=--⎰⎰21313202011(6)(6)882y dx x y dy y xy dx =--=--⎰⎰⎰12100171173()()828228x dx x x =-+=-+=⎰1.54021{ 1.5}{ 1.5,24}(6)8P X P X y dx x y dy <=<<<=--⎰⎰1.521.501112727(62)(6)888432x dx x x =-=-=⨯=⎰ 24021{4}(6)8x P X Y dx x y dy -+<=--⎰⎰(积分区域为02x ≤≤,24y x ≤≤-)22011(46)82x x dx =-+⎰3220111162(26)86833x x x =-+=⨯=。
4 设X ,Y 就是非负的连续型随机变量,它们相互独立。
(1)证明 0{}()()X Y P X Y F x f x dx ∞<=⎰,其中()X F x 就是X 的分布函数,()Y f y 就是Y 的概率密度。
(2)设X ,Y 相互独立,其概率密度分别为11,0,()0,.x X e x f x λλ-⎧>=⎨⎩其它, 22,0,()0,.x Y e y f y λλ-⎧>=⎨⎩其它求{}P X Y <。
解 (1)因为X ,Y 就是非负的连续型随机变量,且相互独立,所以(,)()()X Y f x y f x f y =,在区域(,)x x y -∞<<∞<内 {}(,)()()X Y xx yP X Y f x y dxdy f x dx f y dy ∞∞-∞<<==⎰⎰⎰⎰()[()]()[()()]X Y x X Y Y f x F y dx f x F F x dx ∞∞∞-∞-∞==∞-⎰⎰()[1()]()()()X Y X X Y f x F x dx f x dx f x F x dx ∞∞∞-∞-∞-∞=-=-⎰⎰⎰1()()1()(())X Y Y X f x F x dx F x d F x ∞+∞-∞-∞=-=-⎰⎰(分部积分)1()()()()Y X X Y F x F x F x f x dx +∞∞-∞-∞=-+⎰()()X Y F x f x dx ∞-∞=⎰(2) 12121210{}[]xxx x x xP X Y eedx e e dx λλλλλλλ∞∞∞----∞<==⎰⎰⎰1212()()11101212x xe dx e λλλλλλλλλλλ∞-+-+∞==-=++⎰5 设随机变量(,)X Y 具有分布函数1,0,0(,)0,x y e e c x y F x y --⎧--+>>=⎨⎩其它,求边缘分布函数。
解 当0x >时()lim (,)lim(1)1x y x y x X y y F x F x y e e e e -----→∞→∞==--+=-其它情形 ()0X F x =,即1,0,()0,x X e x F x -⎧->=⎨⎩其它。
同理 当0y >时()lim (,)lim(1)1x y x y y Y x x F y F x y e e e e -----→∞→∞==--+=-其它情形 ()0Y F y =,即1,0,()0,y Y e y F y -⎧->=⎨⎩其它。
6 将一枚硬币掷三次,以X 表示前两次中出现H 的次数,以Y 表示3次中出现H 的次数,求X,Y 的联合分布律以及(,)X Y 的概率密度。
解 将一枚硬币掷三次,其H 与T 出现的情况为{HHH,HHT,HTH,THH,HTT,THT,TTH,TTT } X 的取值为0,1,2,Y 的取值为0,1,2,3则1{0,0}8P X Y ===(TTT), 1{0,1}8P X Y ===(TTH){0,2}0P X Y ===, {0,3}0P X Y === {1,0}0P X Y === 2{1,1}8P X Y ===(HTT,THT) 2{1,2}8P X Y ===(HHT,THH) {1,3}0P X Y === 1{2,0}8P X Y === {2,1}0P X Y ===1{2,2}P X Y === (HHT) {2,3}0P X Y ===(HHH)7 设二维随机变量(,)X Y 的概率密度为4.8(2),01,0(,)0,.y x x y xf x y -≤≤≤≤⎧=⎨⎩其它求边缘概率密度。
解 当 01x ≤≤时220()(,) 4.8(2) 2.4(2)2.4(2)xx X f x f x y dy y x dy y x x x ∞-∞==-=-=-⎰⎰22.4(2),1,()0,.X x x x f x ⎧-≤≤=⎨⎩其它当 01y ≤≤时12121()(,) 4.8(2) 4.8(2)2.4(34)2Y yy f y f x y dx y x dy y x x y y y ∞-∞==-=-=-+⎰⎰22.4(34),01,()0,.Y y y y y f y ⎧-+≤≤=⎨⎩其它8 设二维随机变量(,)X Y 的概率密度为,0,(,)0,y e x y f x y -⎧<<=⎨⎩其它求边缘概率密度 解 当0x >时,()(,)y yx X xxf x f x y dy e dy e e ∞∞--∞--∞===-=⎰⎰于就是 ,0,()0,0x X e x f x x -⎧>=⎨≤⎩当0x >时00()(,)yy y yy Y f y f x y dx e dx e x ye ∞----∞===-=⎰⎰于就是 ,0,()0,0y Y ye y f y y -⎧>=⎨≤⎩9设二维随机变量(,)X Y 的概率密度为22,1(,)0,.cx y x y f x y ⎧≤≤=⎨⎩其它(1)确定常数c ;(2)求边缘概率密度 解 (1) 因为22111222111(,)2x xc f x y dxdy cx dx ydy x y dx ∞∞-∞-∞--==⎰⎰⎰⎰⎰11262610()()2c x x dx c x x dx -=-=-⎰⎰1370114()3721c x x dx c =-=⎰令 4121c =,得214c =。