半导体物理总复习

合集下载

半导体物理复习梳理

半导体物理复习梳理

第一章填空题:1、 写出三种立方单胞的名称:简立方,体心立方,面心立方;这三种单胞中所含的原子数分别是1,2,42、 在四面体结构的共价晶体中,四个共价键是以s 态和p 态波函数的线性组合为基础,构成了所谓的“杂化轨道”。

3、 金刚石型结构的结晶学原胞是立方对称的晶胞。

4、 闪锌矿结构的Ⅲ-Ⅴ族化合物和金刚石型结构一样,都是由两个面心立方晶格套构而成的,称这种晶格为双原子复式格子。

5、 纤锌矿型结构和闪锌型结构相接近,它也是以正四面体结构为基础构成的,但是它具有六方对称性。

6、 内壳层的电子,轨道交叠少,共有化运动弱,可忽略。

外层的价电子,轨道交叠多,共有化运动强,能级分裂大,被视为“准自由电子”。

7、 原来简并的N 个原子的s 能级,结合成晶体后分裂为N 个十分靠近的能级,形成能带(允带),因N 值极大,能带被视为“准连续的”。

8、 Si 、Ge 具有一般晶体的共性,又有其特殊性:其能级分裂成能带时,存在轨道杂化。

9、 如图,当 时,形成稳定晶体,上下两带的状态数(各4N 个)不变,根据能量最小原理,低温下,下带填4N 个价电子是满的,称为满带或价带;而上带4N 个状态无电子是空的,称为导带;中间隔以禁带。

10、 在周期性势场内,电子的平均速度v 可表示为波包的群速度。

在能带极值附近的电子速度为:11、 半导体中电子在外加电场作用下,电子的加速度为:12、 半导体中除了导带上电子导电作用外,价带中还有空穴的导电作用。

对本征半导体,导带中出现多少电子,价带中相应地就出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是本征半导体的导电机构。

13、当磁场不变时,加高频电场Cw 垂直磁场,当电场频率B w =Cw 时,可观察到吸收峰,吸收峰的个数等于有效质量的个数。

14、 为了观察到明显的共振吸收峰, 要求半导体样品比较纯净, 而且一般是在低温下进行。

15、 右图为GaAs 的能带结构。

半导体物理复习归纳

半导体物理复习归纳

半导体物理复习归纳————————————————————————————————作者: ————————————————————————————————日期:一、半导体的电子状态1、金刚石结构(Si、Ge)Si、Ge原子组成,正四面体结构,由两个面心立方沿空间对角线互相平移1/4个空间对角线长度套构而成。

由相同原子构成的复式格子。

2、闪锌矿结构(GaAs)3-5族化合物分子构成,与金刚石结构类似,由两类原子各自形成的面心立方沿空间对角线相互平移1/4个空间对角线长度套构而成。

由共价键结合,有一定离子键。

由不同原子构成的复式格子。

3、纤锌矿结构(ZnS)与闪锌矿结构类似,以正四面体结构为基础,具有六方对称性,由两类原子各自组成的六方排列的双原子层堆积而成。

是共价化合物,但具有离子性,且离子性占优。

4、氯化钠结构(NaCl)沿棱方向平移1/2,形成的复式格子。

5、原子能级与晶体能带原子组成晶体时,由于原子间距非常小,于是电子可以在整个晶体中做共有化运动,导致能级劈裂形成能带。

6、脱离共价键所需的最低能量就是禁带宽度。

价带上的电子激发为准自由电子,即价带电子激发为导带电子的过程,称为本征激发。

7、有效质量的意义a.有效质量概括了半导体内部势场的作用(有效质量为负说明晶格对粒子做负功)b.有效质量可以直接由实验测定c.有效质量与能量函数对于k的二次微商成反比。

能带越窄,二次微商越小,有效质量越大。

8、测量有效质量的方法回旋共振。

当交变电磁场角频率等于回旋频率时,就可以发生共振吸收。

测出共振吸收时电磁波的角频率和磁感应强度,就可以算出有效质量。

为能观测出明显的共振吸收峰,要求样品纯度较高,且实验要在低温下进行。

9、空穴价带中空着的状态被看成带正电的粒子,称为空穴。

这是一种假想的粒子,其带正电荷+q,而且具有正的有效质量m p*。

10、轻/重空穴重空穴:有效质量较大的空穴轻空穴:有效质量较小的空穴11、间接带隙半导体导带底和价带顶处于不同k值的半导体。

半导体物理复习资料

半导体物理复习资料

第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。

2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。

能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。

3.半导体中电子所受的外力dtdkh f ⋅=的计算。

4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。

施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。

深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。

深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。

3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。

在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。

设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。

半导体物理总复习

半导体物理总复习

隧道效应
单独的N型和P型半导体是电中性的,当这两 对于P型半导体和N型半导体结合面附近 种半导体结合形成PN结时,将在N型半导体和P 的电离施主和电离受主所带电荷称为空间电 型半导体的结合面上形成如下物理过程: 荷,它们所在的区域称为空间电荷区。 在空间电荷区,由于缺少多子,所以也 因浓度差 称耗尽层。 多子的扩散运动 由杂质离子形成空间电荷区 空间电荷区形成内建电场 内建电场促使少子漂移 内建电场阻止多子扩散

本征半导体: 不含杂质且结构非常完整的单晶半导体。 本征激发: 共价键上的电子激发成为准自由电子,亦即价带电子吸收能量被激发到 导带成为导带电子的过程,称为本征激发
有效质量的特点
决定于材料; E ② mn*只在能带极值附近有意义; ③ mn*可正可负; 在能带底部附近,E(k)曲线开口向上,d2E/dk2>0, mn*>0; 0 在能带顶部附近,E(k)曲线开口向下, 1/2 v a d2E/dk2<0, mn*<0; ④ mn*大小与能带宽窄有关; 0 内层:能带窄, d2E/dk2小, mn*大; 外层:能带宽, d2E/dk2大, mn*小. mn 因而,外层电子在外力作用下可以获得 + * 较大的加速度。 ⑤ 对于带顶和带底的电子,有效质量恒定。 0
本征区
● 饱和电离区的确定


载流子浓度随温度、掺杂浓度的变化规律 费米能级位置随温度、掺杂浓度的变化情况
图3-3、3-7、3-10、3-11、3-13、3-14、3-15
第四章
一、电导率、迁移率、电导率和平均自由 时间的关系 二、载流子的散射
1.电离杂质的散射:低温、掺杂浓度高 2.晶格散射:高温、掺杂浓度低
高度补偿:若施主杂质浓度与受主杂质浓度相差不大或二者相等,则不能提 供电子或空穴,这种情况称为杂质的高等补偿。

半导体物理_复习总结(刘恩科)

半导体物理_复习总结(刘恩科)
非平衡载流子的复合:当 半导体由非平衡态恢复为 平衡态,过剩载流子消失 的过程。
半导体物理
准费米能级
当半导体处于非平衡状态,不再具有统一的费米能 级,引入准费米能级
非平衡态下电子浓度:
n

ni
exp


Ei EFn k0T Βιβλιοθήκη 非平衡态下空穴浓度:p

ni
exp

Ei EFp k0T
以及其他大量电子的平均势场中运动,这个势场也是周期变化的, 并且它的周期与晶格周期相同。
半导体物理
半导体中的电子运动
半导体中E(k)与k的关系
电子速度与能量关系
电子有效质量
mn*

h2 d2E
dk 2
半导体物理
有效质量的意义:
f
a
1、概括了半导体内部势场 的作用 2、a是半导体内部势场和 外电场作用的综合效果 3、直接将外力与电子加速 度联系起来
(1) VG<0,多子积累 •绝对值较大时,,空穴聚集表面, C=C0,AB段(半导体看成导通) •绝对值较小时,C0和Cs串联,C随 V增加而减小,BC段 (2)VG=0 CFB-表面平带电容 (3) VG>0 •耗尽状态:VG增加,xd增大,Cs减小,CD段 •Vs>2VB时: EF段(低频)强反型,电子聚集表面, C=C0 GH段(高频):反型层中电子数量不能随高频信号而变,对电容无贡献, 还是由耗尽层的电荷变化决定(强反型达到xdm不随VG变化,电容保持最小 值);GH段
玻尔兹曼分布函数
条件:E-EF>>k0T EEF
fB E e k0T
费米统计分布:受到泡利不相容原理限制 玻尔兹曼分布:泡利原理不起作用

半导体物理学复习

半导体物理学复习
第一章
1、 金刚石结构
半导体中的电子状态
原子在晶胞中的排列情况是:8 个原子位于立方体的 8 个角顶上,6 个原 子位于 6 个面中心处,晶胞内部有四个原子。
1、在室温下 Si 的晶格常数 a=5.43A; Ge 的晶格常数 a=5.66A,分别计算单位体积内 硅、锗的原子个数。 2、 分别计算 Si (100) , (110) , (111) 面每平方厘米内的原子个数, 即原子面密度 (提 示:先画出各晶面内原子的位置和分布图) 。 3、计算硅<100>, <110>和〈111〉晶向上单位长度内的原子数,即原子线密度。 解: 1、Si: N Si Ge: N Ge
3、n 型半导体载流子浓度
ND E - ED 1 + 2 exp( F ) k0T ① 低温弱电离区:当温度很低时,大部分施主杂质被电子占据,只有少数杂质电离,使少量电 E - EF ND + )= = nD 子进入导带,称作低温弱电离: n0 = N C exp( - C E E k0T F 1 + 2 exp( - D ) k0T 1/ 2 1/ 2 N D NC EC ED N D NC ΔED EC + ED k0T ND exp( )= exp( ) 得到: EF = + ln( ) n0 = 2 2k0T 2 2k0T 2 2 2 NC N C exp(
8
a
3

8 4.99 10 28 m 3 10 3 (5.43 10 )
2、{1 0
{1 1
{1 1
3、<100>:
<110>:
<111>:
8 4.4 10 28 m 3 10 3 a (5.66 10 ) 1 14 2 4 2 0} : 6.78 10 14 atom / cm 2 2 2 8 2 a a (5.43 10 ) 1 1 2 4 2 4 2 4 9.59 10 14 atom / cm 2 0} : 2a a 2a 2 1 1 4 2 2 4 4 2 1} : 7.83 10 14 atom / cm 2 2 3 3a a 2a 2 1 2 1 2 1 1.84 10 7 cm 1 8 a a 5.43 10 1 2 1 2 1.41 2 2.6 10 7cm 1 8 5 . 43 10 2a 2a 1 1 2 2 1.15 2 2.1 10 7cm 1 8 5.43 10 3a 3a

半导体物理复习资料全

半导体物理复习资料全

第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。

2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。

3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。

处在这些稳定状态的原子不辐射。

(2)原子吸收或发射光子的频率必须满足。

(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。

(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。

(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。

6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。

半导体物理总复习

半导体物理总复习

能带论 共有化运动 电子/空穴 有效质量
杂质能级(施主、受主) E EF c k0T
n0 = Nc exp
p0 = Nv exp
E EF
k 0T
v
分本征、杂质半导体两种情况讨论(变化规律的物理图像) 简并半导体及其禁带变窄效应
n0p0 = ni2
Chapter 3
外场作用下载流子的运动规律
11/98
12/98
13/98
18/98
19/98
20/98
21/98
22/98
23/98
2
半导体中载流子的统计分布
本章内容提要
n n n
热平衡状态,状态密度 费米能级与分布函数 电中性方程 载流子浓度 Vs 温度
n
n
简并半导体
24/98
产生载流子(本征激发/杂质电离)
电子由低能态向高能态跃迁
EF p < EF
n = Nc exp
p = Nv exp np = n0p0 exp
空穴准费米能级比平衡费米能级低
Ec EF n k0T
p E F Ev k0T
EF EF = ni exp = n0 exp k0T = p0 exp EF EFp k0T
n p
n
n
EF Ei
陷阱中心的特点
复合中心:
rn 能 rp 够俘获两种不同载流子而复合掉
而陷阱中心对两种载流子的俘获能力必然相差很大
Nt
越大,陷阱作用最强
杂质能级与平衡时的费米能级重合时,陷阱作用最强
61/98
5
p-n结
本章内容提要
n n n n
p-n结的形成及其能带图 p-n结伏安特性 p-n结电容 p-n结击穿 p-n结隧道效应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过剩电子:导带中超出热平衡状态浓度的电子浓度 n n n0 过剩空穴:价带中超出热平衡状态浓度的空穴浓度 p p p0
过剩载流子:过剩电子和空穴的总称 过剩少子在复合前存在的平均时间。 2。小注入和大注入 小注入:过剩载流子的浓度远小于热平衡多子浓度的情况
大注入:过剩载流子的浓度接近或大于热平衡多子浓度的情况
半导体物理复习
第一章
一、基本概念
1. 能带,允带,禁带,K空间的能带图 能带: 在晶体中可以容纳电子的一系列能级 允带:分裂的每一个能带都称为允带。 禁带:晶体中不可以容纳电子的一系列能级 K空间的能带图:晶体中的电子能量随电子波矢k
的变化曲线,即E(K)关系。
(1)越靠近内壳层 的电子,共有化运动 弱,能带窄。
施主能级
受主能级
△ED △E
3.本征半导体,杂质半导体,杂质补偿半导体 本征半导体:没有杂质原子且晶体中无晶格缺陷 的纯净半导体 杂质半导体:掺有施主杂质的N型半导体或掺有 受主杂质的p型半导体都叫杂质半导体 杂质补偿半导体:同一半导体区域内既含有施主 杂质又含有受主杂质的半导体
第三章
一.基本概念 1。状态密度:单位体积单位能量中的量子态数量 2。费米能级:它是电子热力学系统的化学势,它标志在
2.扩散电流密度公式 33. .爱因斯坦关系:
J n,diff
qDn
dn dx
dp J p,diff qDp dx
D kT
q
4. 连续性方程
p t
Dp
2 p x 2
p
E
p x
E
p p x
p
p
gp
n t
Dn
2n x 2
n
E
n x
n
n
E x
n
n
gn
三.例题
例1. T 300K时,硅的掺杂浓度为N A 1014 cm 3 , N D 1015 cm 3 ,
式中a为晶格常数,试求 1、能带宽度;
2、电子在波矢k状态时的速度;
3、能带底部电子的有效质量;
4、能带顶部空穴的有效质量;
1、由 dE(k) 0 dk
得 k n (n=0,1,2…)
a
进一步分析
k (2n 1)
a
(n=0,1,2……)时,E(k)有极大值,E(k)
MAX
2 2 ma2
k 2n
kT ln
p0 NV
EF
Ei
kT ln
p0 ni
5.不同温区载流子浓度和费米能级的计
强电离区
n型半导体
n0 N D
p0
ni2 n0
补偿型半导体
p型半导体
p0 N A
n0
ni2 p0
费米能级仍用前面的公式
当N D N A时:
n0 N D N A
p0
ni2 n0
当N D
N

A
p0 N A ND
5 .什么是载流子的扩散运动?写出电子和空穴 的扩散电流密度方程
当半导体内部的载流子存在浓度梯度时,引 起载流子由浓度高的地方向浓度低的地方扩 散,扩散运动是载流子的有规则运动。
电子扩散电流: 空穴扩散电流:
J n,diff
qDn
dn dx
dp J p,diff qDp dx
二、基本公式
1. 漂移电流密度公式: J n nqn E J p pq p E
3。什么是载流子的散射?半导体中载流子的有哪两种主 要散射机制
没有外场的作用,载流子作无规则的热运动。载流子 在半导体中运动时,不断地与热振动的晶格原子或电 离的杂质离子发生碰撞,碰撞后载流子的运动速度的 大小和方向发生了改变。用波的概念,就是说电子波 在半导体中传播时遭到了散射。
半导体中载流子的散射机制: 晶格散射和电离杂质散 射
4. 半导体的电阻率(或电导率)与那些因素有关
n型半导体 p型半导体 本征半导体
nqn ,
1
nq n
pq p ,
1
pq p
ni qn
ni q p ,
ni qn
1
ni q p
电阻率与载流子浓度与迁移率有关,二者均 与杂质浓度和温度有关。
第五章 非平衡载流子
一、基本概念
1。过剩电子,过剩空穴,过剩载流子(非平衡载流子),非 平衡载流子的寿命?
mn*
2 d 2E
m (cos ka 1 cos 2ka)
dk 2
2
能带底部 k 2n
a
所以 mn* 2m

5、能带顶部 k (2n 1)
a

m*p mn*

所以能带顶部空穴的有效质量
m*p 2m
第二章
基本概念
1。施主杂质,施主能级,施主杂质电离能 施主杂质:能够施放电子而在导带中产生电子并形成正 电中心的杂质,称为施主杂质,掺有施主杂质的半导体 叫N型半导体。。 施主能级被施主杂质束缚的电子的能量状态称为施主能级 ED,施主能级位于离导带低很近的禁带中。 施主杂质电离能:导带底EC与施主能级ED的能量之差 ED=EC-ED就是施主杂质的电离能。施主杂质未电离时是 中性的,电离后成为正电中心
由题意得:
解之得:
例题3
求在下列条件下,均匀掺杂硅样品中平衡状态的空穴和电子浓 度及Ei,EF-Ei,并在硅样品的能带图中仔细标出他们的位置
(a)T=300K, NA<< ND, ND=1015/cm3 (b)T=300K, ,NA=1016/cm3, ND<<NA (c)T=300K, NA=91015/cm3, ND=1016/cm3 (d)T=450K, NA=0, ND=1014/cm3, (e)T=650K, NA=0, ND=1014/cm3
5。直接带隙半导体和间接带隙半导体
直接带隙半导体:导带低和价带顶对应的电子波矢相同
间接带隙半导体:导带低和价带顶对应的电子波矢不相同
二. 基本公式
有效质量 速度:
m*
h2 d 2E
ห้องสมุดไป่ตู้
dk 2
1 dE
h dk
例1、 一维晶体的电子能带可写为,
E(k )
2 ma2
(7 8
cos ka
1 8
cos 2ka)
f外 mn*a
mn*
h2 d 2E
(3)电子的有效质量与晶体的能带结构有关
dk 2
利用有效质量可以对半导体的能带结构进
行研究
(4)有效质量可以通过回旋共振实验测得,并
椐此推出半导体的能带结构
4.空穴:空穴是几乎被电子填满的能带中未被电子占据的 少数空量子态,这少量的空穴总是处于能带顶附近。是价 电子脱离原子束缚 后形成的电子空位,对应于价带顶的电 子空位。把半导体中的空穴看成一个带有电荷为+q,并以 该空状态相应的电子速度v(k)运动的粒子,它具有正的有 效质量,价带中大量电子的导电作用可以用少数空穴的导 电作用来描写。
n0
ni2 p0
过渡区
n型半导体:
p型半导体:
n0 p0 N D n0 p0 ni2
p0 n0 N A n0 p0 ni2
联立解方程求n0,p0
补偿型半导体: n0 N A p0 N D n0 p0 ni2
费米能级仍用前面的公式
高温本征激发区
n0= p0=ni EF=Ei
费米能级仍用前面的公式得到EF=Ei
3.什么是准费米能级?
在非平衡状态下,由于导带和价带在总体上处于非
平衡,因此就不能用统一的费米能级来描述导带中
的电子和价带中的空穴按能量的分布问题。但由于
导带中的电子和价带中的空穴按能量在各自的能带
中处于准平衡分布,可以有各自的费米能级
EFn
和E
p F
称为准费米能级,准费米能级分离的程度,即
E
n F
例题1 (同类型题103页1题)
导出能量在Ec和Ec+kT之间时,导带上的有效状 态总数(状态数/cm3)的表达式, 是任意常数。
例题2
(a)在热平衡条件下,温度T大于0K,电子能量位于费米 能级时,电子态的占有几率是多少?
(b)若EF位于EC,试计算状态在EC+kT时发现电子的几率 。
(c)在EC+kT时,若状态被占据的几率等于状态未 被占据的几率。此时费米能级位于何处?
dZ dE
4V
(2mn* ) 2 h3
(E
1
EC ) 2
价带态密度
3
gV
(E)
dZ dE
4V
(2mP* ) 2 h3
(EV
1
E) 2
2.费米分布函数
f (E)
1
EEF
1 e k0T
当E-EF>>kT时
波尔兹曼函数
EEF
f (E) e k0T
3.载流子的浓度
n0
Nc
exp (
EC E f k0T
(2)各分裂能级间 能量相差小,看作准 连续
(3)有些能带被电 子占满(满带),有 些被部分占满(半满 带),未被电子占据 的是空带。
原子能级
能带
2、半导体的导带,价带和禁带宽度
导带
Eg
价带
价带:0K条件下被电子填充的能量最高的能带 导带: 0K条件下未被电子填充的能量最低的能带 禁带:导带底与价带顶之间能带 禁带宽度:导带底与价带顶之间的能量差
非简并半导体:掺杂浓度较低,其费米能级EF在禁带中的
半导体
n型半导体
p型半导体
非简并
EC EF 2k0T
EV EF 2k0T
弱简并 0 EC EF 2k0T
0 EV EF 2k0T
相关文档
最新文档