新课标八年级数学期末综合试卷
最新部编版八年级数学上册期末试卷及答案【完美版】

最新部编版八年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.使3x -有意义的x 的取值范围是( )A .x ≤3B .x <3C .x ≥3D .x >34.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .116.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.如图,在ABC ∆中,D 、E F 、分别在AB BC AC 、、上,且EF ∥AB ,要使DF∥BC,只需再有下列条件中的()即可.A.12∠=∠B.1DFE∠=∠C.1AFD∠=∠D.2AFD∠=∠9.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.225B.9220C.324D.42510.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.若|x|=3,y2=4,且x>y,则x﹣y=__________.3.若分式1xx-的值为0,则x的值为________.4.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD的面积是_______。
最新部编人教版八年级数学上册期末考试卷及答案【完整】

最新部编人教版八年级数学上册期末考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.如图,△ABC 中,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则下列结论不正确的是( )A .BF =DFB .∠1=∠EFDC .BF >EFD .FD ∥BC9.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC ,交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A .35°B .70°C .110°D .130°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=________.2.计算:16=_______.3.分解因式:3x -x=__________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解下列不等式组:(1)2132(1);x xx x>+⎧⎨<+⎩,(2)231213(1)8;xxx x-⎧+≥+⎪⎨⎪--<-⎩,2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、C5、B6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、43、x(x+1)(x-1)4、85、206、4三、解答题(本大题共6小题,共72分)1、(1)1<x<2 (2)-2<x22、1 23、–1≤x<34、略5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
八年级下学期数学期末综合试卷附带答案

八年级下学期数学期末综合试卷一、选择题(每题3分,共30分)1. 下列计算正确的是()A. $3a + 2b = 5ab$B. $a^6 ÷ a^2 = a^3$C. $(a + b)^2 = a^2 + b^2$D. $a^{m+n} = a^m \cdot a^n$ ($a \neq 0$,$m$、$n$为正整数)答案:D2. 下列图形中,是轴对称图形但不是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正方形D. 圆答案:A3. 下列说法中,正确的是()A. 无限小数都是无理数B. 绝对值等于它本身的数是非负数C. 垂直于同一直线的两条直线互相平行D. 两条直线被第三条直线所截,同位角相等答案:B4. 下列方程中,是一元一次方程的是()A. $x^2 - 2x = 3$B. $x + y = 5$C. $\frac{1}{x} = 3$D. $2x - 1 = 7$答案:D5. 下列不等式组中,解集为空集的是()A. $\left\{ \begin{array}{l} x > 2 \\ x < 1 \end{array} \right.$B. $\left\{ \begin{array}{l} x > -1 \\ x < 3 \end{array} \right.$C. $\left\{ \begin{array}{l} x \leq -2 \\ x \geq -2 \end{array} \right.$D. $\left\{ \begin{array}{l} x < 0 \\ x > -1 \end{array} \right.$答案:A6. 下列命题中,是真命题的是()A. 两个无理数的和一定是无理数B. 两条直线被第三条直线所截,内错角相等C. 平行于同一条直线的两条直线互相平行D. 三角形的一个外角大于任何一个内角答案:C7. 下列函数中,是一次函数但不是正比例函数的是()A. $y = -2x$B. $y = \frac{x}{2}$C. $y = -2x + 1$D. $y = \frac{1}{x}$答案:C8. 下列说法中,错误的是()A. 矩形的对角线相等B. 菱形的对角线互相垂直且平分C. 平行四边形的对角线互相平分且相等D. 等腰梯形的对角线相等答案:C9. 下列各数中,是无理数的是()A. $\sqrt{4}$B. $3\pi$C. $\frac{1}{3}$D. $\sqrt[3]{-8}$答案:B10. 下列关于数据的说法中,正确的是()A. 平均数一定大于中位数B. 众数一定等于这组数据中出现次数最多的数C. 极差就是这组数据中的最大值D. 方差越大,数据的离散程度越小答案:B二、填空题(每题3分,共30分)11. 若关于$x$的方程$2x - a = 3$的解是$x = 2$,则$a =$ _______。
部编版八年级数学上册期末考试题及答案【完整版】

部编版八年级数学上册期末考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为___________cm (杯壁厚度不计).6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知a 23+,求229443a a a a --+-4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A5、A6、A7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、1或5.3、13k <<.4、8.5、206、16三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==.2、x+2;当1x =-时,原式=1.3、7.4、略(2)∠EBC=25°5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
2023-2024学年全国初二上数学人教版期末试卷(含答案解析)

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 一个等腰三角形的底边长是12厘米,腰长是8厘米,那么这个三角形的周长是()厘米。
A. 20B. 28C. 36D. 443. 一个正方形的边长是5厘米,那么它的面积是()平方厘米。
A. 10B. 15C. 20D. 254. 在一个等差数列中,首项是2,公差是3,那么第五项是()。
A. 11B. 12C. 13D. 145. 一个圆的半径是4厘米,那么它的周长是()厘米。
A. 8πB. 16πC. 32πD. 64π二、判断题(每题1分,共5分)1. 一个等腰三角形的两个底角相等。
()2. 一个正方形的对角线长度是边长的根号2倍。
()3. 在一个等差数列中,任意两项的差都是公差。
()4. 一个圆的周长是直径的π倍。
()5. 一个等腰三角形的底边长是腰长的两倍。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角都是____度。
2. 一个正方形的面积是边长的____倍。
3. 在一个等差数列中,首项是a,公差是d,那么第n项是____。
4. 一个圆的面积是半径的____倍。
5. 一个等腰三角形的底边长是腰长的____倍。
四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。
2. 简述正方形的性质。
3. 简述等差数列的性质。
4. 简述圆的性质。
5. 简述等腰三角形的判定方法。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是8厘米,求这个三角形的周长。
2. 一个正方形的边长是6厘米,求这个正方形的面积。
3. 在一个等差数列中,首项是2,公差是3,求第五项。
4. 一个圆的半径是5厘米,求这个圆的周长。
5. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。
六、分析题(每题5分,共10分)1. 分析等腰三角形的性质,并说明如何利用这些性质解决实际问题。
2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。
最新部编版八年级数学上册期末考试卷【及参考答案】

最新部编版八年级数学上册期末考试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5) 5.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或36.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图,等边△ABC 的边长为4,AD 是边BC 上的中线,F 是边AD 上的动点,E 是边AC 上一点,若AE=2,则EF+CF 取得最小值时,∠ECF 的度数为( )A .15°B .22.5°C .30°D .45°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.4.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=________厘米.5.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x =+ (2)3111x x x =-+-2.先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中x =5+2,y =5-2.3.已知:12x =-,12y =+,求2222x y xy x y +--+的值.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;l的解析式.(2)若△ABC的面积为4,求25.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A在x轴上,AB=AC,∠BAC=90°,且A(2,0)、B(3,3),BC交y轴于M,(1)求点C的坐标;(2)连接AM,求△AMB的面积;(3)在x轴上有一动点P,当PB+PM的值最小时,求此时P的坐标.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用150 175 ______ …______(元)方式二的总费用90 135 ______ …______(元)(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、D5、A6、A7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a23、﹣24、35、36、2三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、2xyx y-,123、4、(1)(0,3);(2)112y x=-.5、(1)C的坐标是(﹣1,1);(2)154;(3)点P的坐标为(1,0).6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
新课标八年级上册数学期末考试试卷及答案(实用)

八年级数学期末试卷(总分100分 答卷时间120分钟)一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出 的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A ’C B’,∠BCB ’=30°,则∠ACA ’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【 】6.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 【 】7.若0a >且2x a =,3ya =,则x ya-的值为A .-1B .1C .23D .32【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下CABB 'A '(第4题)(第8题)s /坡速度相同,那么他回来时,走这段路所用的时间为A .12分B .10分C .16分D .14分二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:32128x x ⎛⎫⨯-⎪⎝⎭= . 10.一次函数(24)5y k x =++中,y 随x 增大而减小,则k 的取值范是 . 11.分解因式:22m n mn -= .12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为 .13.计算:(1-)2009-(π-3)0+4= . 14.当12s t =+时,代数式222s st t -+的值为 . 15.2(16)0y +=,则x +y = . 16.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为 . 17.如图,小量角器的零度线在大量角器的零度线上, 且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点P 在小量角器上对应的度数为66°,那么在大量角器上对应的度数为__________° (只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)19.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.ADCEB(第12题)(第17题)(第16题)20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC 的形状和大小完全相同的模具△A B C ''',需要从残留的模具片中度量出哪些边、角?请简要说明理由. (2)作出模具A B C '''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)21.已知2514x x -=,求()()()212111x x x ---++的值.22.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组100x y mx y n -+=⎧⎨-+=⎩请你直接写出它的解.x(第22题)(第20题)(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △; (2)写出点111A B C ,,的坐标.24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .1 23 4AB CDO (第24题)(第23题)(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴.① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ② 画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画∠AOB 的对称轴,并写出画图的方法.【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC .(2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).ODCABEF(第26题)BC图1AOB 图2(第27题8分)27. 如图,在平面直角坐标系xOy 中,已知直线AC 的解析式为122y x =-+,直线AC 交x轴于点C ,交y 轴于点A .(1)若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标; (2)过点B 作x 轴的垂线l ,在l 上是否存在一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.(第27题)28.元旦期间,甲、乙两个家庭到300 km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(1)由于汽车发生故障,甲家庭在途中停留了h;(2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.y八年级数学(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)9.514x -10.k <-2 11.m n (m -n ) 12.37° 13.0 14.1415.9 16.-2<x <-1 17.48° 18.7三、解答题(本大题共10小题,共60分.)19.解:(1))8(21)2)(2(b a b b a b a ---+2224214b ab b a +--=……………………………………………………4分 ab a 212-=…………………………………………………………………6分 (2)322x x x ---=2(1)x x x -++ …………………………………………………………3分 =2(1)x x -+ …………………………………………………………5分20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.……………………………3分 (2)按尺规作图的要求,正确作出A B C '''∠的图形.……………………………5分 21.解:()()()212111x x x ---++=22221(21)1x x x x x --+-+++……………………………………………2分 =22221211x x x x x --+---+ ……………………………………………3分 =251x x -+………………………………………………………………………4分 当2514x x -=时,原式=2(5)114115x x -+=+= ……………………………………………5分22.解:(1)∵),1(b 在直线1+=x y 上,∴当1=x 时,211=+=b .……………………………………………3分 (2)解是⎩⎨⎧==.2,1y x …………………………………………………………………5分23.(1)画图正确; ………………………………………………………………………2分(2)111(4,3)A B C (1,5),(1,0),………………………………………………5分 24.证明:(1)在△ABC 和△ADC 中1234AC AC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC .………………………………………………………3分 (2)∵△ABC ≌△ADC∴AB =A D ……………………………………………………………………4分又∵∠1=∠2∴BO =DO …………………………………………………………………6分25.(1)画图正确……………… …………………………………………………………2分(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ;③画直线OE ,直线OE 即为∠AOB 的对称轴.………………………………6分 (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF …………………………………………………………………………1分 ∵E 为OB 的中点,F 为OC 的中点,∴OB =OC ……………………………………………………………………………2分 又∵∠A =∠D ,∠AOB =∠DOC ,△AOB ≌△DOC ………………………………………………………………4分 ∴AB=DC …………………………………………………………………………5分 (2)假 ………………………………………………………………………………6分 27.(1)B (2,2); ………………………………………………………………………2分 (2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P . ……………………………………3分把x =2代入122y x =-+,得y =1,∴点P 的坐标为(2,1)……………………………………………………………4分 (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=-……………………………………………6分 解得43m = 或4m =-…………………………………………………………7分∴点Q 的坐标为(43,43)或(4-,4)……………………………………8分(漏解一个扣2分)28.(1)1;…………………………………………………………………………………1分 (2)易得y 乙=50x -25…………………………………………………………………2分当x =5时,y =225,即得点C (5,225).由题意可知点B(2,60),……………………………………………………3分设BD所在直线的解析式为y=kx+b,∴5225,260.k bk b+=⎧⎨+=⎩解得55,50.kb=⎧⎨=-⎩∴BD所在直线的解析式为y=55x-50.………………………………………5分当y=300时,x=70 11.答:甲家庭到达风景区共花了7011h.……………………………………………6分(3)符合约定.…………………………………………………………7分由图象可知:甲、乙两家庭第一次相遇后在B和D相距最远.在点B处有y乙-y= -5x+25=-5×2+25=15≤15;在点D有y—y乙=5x-25=7511≤15.……………………………………………8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末综合试卷一、选择题1.△ABC ∽△A ‘B ’C ‘,且相似比为2:3,则对应边上的高的比等于【 】 A 、2:3 ; B 、3:2; C 、4:9; D 、9:4。
2.不等式组⎩⎨⎧≥-->+021372x x x 的解集是……………【 】A x <8B x ≥2C 2≤x<8D 2<x <8 3.下列各式是分式的是……………【 】A.a 21. B.221ab +. C.4y -. D.xy 5421+. 4.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是【 】(A)4x (B)-4x (C)4x 4 (D)-4x 45.已知311=-y x ,则y xy x y xy x ---+55的值为【 】 A 、27-B 、27C 、72D 、72-6.甲、乙两组数据,它们都是由n 个数据组成,甲组数据的方差是 0.4,乙组数据的方差是0.2,那么下列说法正确的是【 】A .甲的波动比乙大B .乙的波动比甲大C .甲、乙的波动一样大D .甲、乙的波动的大小无法比较 7.如图,OE 是∠AOB 的平分线,CD ∥OB 交OA 于点C ,交OE 于点D, ∠ ACD=50°,则∠CDE 的度数是【 】A. 125°B. 130°C.140°D.155°。
113。
4 8.下列说法正确的是【 】A.两个等腰三角形相似B.两个直角三角形相似C.两个等腰直角三角形相似D.有一个角相等的两个等腰三角形相似 9.三角形的三边长分别为3,a 21-,8,则a 的取值范围是【 】 A .-6<a <-3 B .-5<a <-2 C .a <-5或a >2 D .2<a <510.如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是( )A.a <0B.a <-1C.a >1D.a >-1二、填空题11.因式分解:a3-a=________. 12.化简=-÷-ab ba b ab )(2__________ 。
13.关于x 的方程3k-5x=9的解是OCBEAD非负数,则k 的取值范围是 _______14.如图,A 、B 两点被池塘隔开,在 AB 外选一点 C ,连结 AC 和 BC ,并分别找出它们的中点 M 、N .若测得MN =15m ,则A 、B 两点的距离为 ___________ 15. 为了让学生适应体育测试中新的要求某学校抽查了部分初二男生的身高身高取整数).经过整理和分析,估计出该校初二男生中身高在160cm 以上(包括160cm )的约占80%.右边为整理和分析时制成的频率分布表,其中a =__________第16题16如图,在梯形ABCD 中,AD ∥BC,AC 交BD 于点O,9:1:=∆∆BO C AO D S S ,则=∆∆BO C DOC S S : 。
17.已知点C 是线段AB 的黄金分割点,且AC>BC ,AB=2,则BC= . 18、在一次“人与自然”知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案正确.要求学生把正确答案选出来.每道题选对得4分,不选或选错倒扣2分.如果一个学生在本次竞赛中的得分不低于60分,那么,他至少选对了___________道题. 三、解答题 19.(1)、 如图AB 和DE 是直立在地面上的两根立柱。
已知AB=5m ,某一时刻AB 在阳光下的投影BC=3m. ①请你在图中画出此时DE 在阳光下的投影;②在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE的长。
20.先化简,再求值:x x xx x x x ÷--++--22121222其中21=xA BCDOBAB CDFE21. 如图,已知:AC ∥DE ,DC ∥EF ,CD 平分∠BCA 求证:EF 平分∠BED. (证明注明理由)22. 如图,有一块三角形土地,它的底边BC=100m,高AH=80m.某单位要沿着底边BC 修一座底面积是矩形DEFG 的大楼,设DG=xm,DE=ym.1)求y 与x 之间的函数关系式;2)当底面DEFG 是正方形时,求出正方形DEFG 的面积。
23.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(2)请你就下列两个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看(分析谁的成绩好些); ②从平均数和命中9环以上的次数相结合看 (分析谁的成绩好些);24.某工程队要招聘甲、乙两种工种的工人150人,他们的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍。
设招聘甲种工种的人数为x ,工程队每月所付工资为y 元。
(1) 试求出x 的取值范围; (2) 试求y 与x 的函数关系,并求出x 为何值时,y 取最小值,最小值为多少?A DB EH FCG图1 M25.已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。
(1)如图(1)AB ∥EF,BC ∥DE.∠1与∠2的关系是:____________ 证明:(2)如图(2)AB ∥EF,BC ∥DE. ∠1与∠2的关系是:____________ 证明:(3)经过上述证明,我们可以得到一个真命题:如果_______________________,那么__________________________________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?26.在Rt △ABC中,. ∠C=90°,AC=20cm,BC=15cm. 现有动点P从点A出发, 沿AC向点C方向运动,动点Q从点C出发, 沿线段CB也向点B方向运动. 如果点P的速度是4cm /秒, 点Q的速度是2cm /秒, 它们同时出发,当有一点到达所在线段的端点时,就停止运动。
设运动的时间为t秒求:(1)用含t的代数式表示Rt △CPQ的面积S;(2)当t=3秒时,这时,P、Q两点之间的距离是多少? (3)当t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?图1C第17周周末学案答案一、二、11.a (a +1)(a -1);12.ab 2;13.k ≥3;14.30m ;15.0.2;16。
1:3;17。
53-;18。
1919.①如图所示,过点A 、C 画直线AC ,过点D 画直线DF ∥AC ,交直线EC 于点F 。
线段EF 即为所求 ②∵DF ∥AC ∴∠DFE=∠ACB ∵DE ⊥EC ,AB ⊥EC ∴∠DEF=∠BAC=Rt ∠ △DEF ≌△BAC ∴BC EFAB DE = 365=DE DE=10m答:DE 的长为10m 20.解:原式=x x x x x x x 12)2()1()1)(1(2⨯--+--+…………………………2分 =111+-+x x =111--++x x x =12-x x 把21=x 代入上式得原式=12-x x =2121212-=-⨯21. 证明:∵ AC ∥DE(已知),∴∠BCA=∠BED (两直线平行,同位角相等)即∠1+∠2=∠4+∠5∠1=∠3(两直线平行,内错角相等)…………………………(2分) ∵DC ∥EF(已知)AB CDFE∴∠3=∠4(两直线平行,内错角相等)…………………………(4分) ∴ ∠1=∠4(等量代换)∠2=∠5(等式性质) ∵CD 平分∠BCA(已知)∴∠1=∠2(角平分线的定义)…………………………(6分) ∠4=∠5(等量代换)∴EF 平分∠BED. (角平分线的定义)…………………………(8分) 22. 1,矩形DEFG 中,DA ∥BC, ∴∠ADG=∠B, ∠AGD=∠C ∴△ADG ∽△ABC∵AM 和AH 分别是△ADG 和△ABC 的高 ∴AHAMBC DG = ∵BC=100m ,AH=80 m ,DG=xm,DE=ym.∴8080100y x -= 解得x y 5480-=……………………………(6分)2、当底面是正方形时。
x=y即x x 5480-=解得,m x 9400= ∴正方形DEFG 的面积=22811600009400m =⎪⎭⎫⎝⎛23.解:(2 ①从平均数和方差相结合看;因为二人的平均数相同,s 家<s 乙,甲的成绩好些②从平均数和命中9环以上的次数相结合看;因为二人的平均数相同,甲为1次,乙为3次,乙的成绩好些。
…………………………(10分)24.解:(1)由题意得,150-x ≥2x, 解得, x ≤50因为正数,因此x >0因此x 的取值范围是0<x ≤50;…………………………(5分) (2)由题意得,y=600x+1000(150-x)即:y=-400x+150000当x=50时,y 取最小值,最小值为y=130000(元) …………………………(10分)25.(1)如图(1)AB ∥EF,BC ∥DE.∠1与∠2证明:如图(1) ∵AB ∥EF,BC ∥DE ∴∠1=∠3,∠2=∠3(两直线平行,内错角相等) ∴∠1=∠2(等量代换)…………………………(4分)(3) 如图(2)AB ∥EF,BC ∥DE. ∠1与∠2的关系是:(4) 证明:延长DE 至点M, ∵AB ∥EF,BC ∥DE ∴∠1=∠3,∠4=∠3(两直线平行,内错角相等)∴∠1=∠4(等量代换) ∵∠2+∠4=180°(平角定义)∴∠1+∠2=180°(等量代换)…………………………(8分)(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?设一个角为x °,由(3)中的命题可得出: x=2x-30°或 x+2x-30=180解得:x=30 或 x=70因此,这两个角分别是30°,30°或70°,110°…………………………(12分)26、解: 解:(1)、由题意得AP=4t,CQ=2t,则 CP=20-4t因此Rt △CPQ的面积为S=24202)420(21t t t t -=⨯-⨯ cm 2…………………………(3分)(2)当t=3秒时,CP=20-4t=8cm ,CQ=2t=6cm由勾股定理得PQ=cm CQ CP 10682222=+=+…………………………(6分)(3)分两种情况1)当Rt △CPQ∽Rt △CAB 时,CB CQ CA CP =,即15220420tt =-,解得t=6秒。