人教版八年级数学上册14.3 因式分解 同步练习(无答案)

合集下载

人教版八年级数学上14.3因式分解-同步练习(1).docx

人教版八年级数学上14.3因式分解-同步练习(1).docx

初中数学试卷桑水出品(时间:90分钟,满分:100分)班级姓名一、填空(每空2分,共36分)1、分解因式:=++1442a a ,=-2ab a ,2、分解因式:=-+-y x y x )12()12(2,=---2222)()(a b y b a x 。

3、222b ab a +-、22b a -的公因式是。

4、+162x ( )2) (1=+, 2y])[()] (21[) (4122-+=-x x 5、分解因式:=-+222224)(b a b a 。

6、分解因式:=+----321963n n n y y y 。

7、分解因式:=-+222y xy x ,=+-652x x ,8、分解因式:=-+652x x , =+-3722x x 。

9、若)4)(2(2-+=++x x q px x ,则p =,q =。

二、选择(每小题3分,共18分)10、下列多项式的分解因式,正确的是( )(A ))34(391222xyz xyz y x xyz -=- (B ))2(363322+-=+-a a y y ay y a(C ))(22z y x x xz xy x -+-=-+- (D ))5(522a a b b ab b a +=-+11、下列各式不能继续因式分解的是( )(A )31x - (B )22y x - (C )2)(y x + (D )aa 22+ 12、多项式m x x +-4可以分解为)7)(3(-+x x ,则m 的值为( )(A )3 (B )-3 (C )-21 (D )2113、能用完全平方公式分解的是( )(A )2242x ax a ++ (B )2244x ax a +--(C )2412x x ++- (D )2444x x ++14、将多项式3222231236b a b a b a +--分解因式时,应提取的公因式是( )(A )ab 3- (B )223b a - (C )b a 23- (D )333b a -15、满足0106222=+-++n m n m 的是( )(A )3,1==n m (B )3,1-==n m(C )3,1=-=n m (D )3,1-=-=n m三、解答(每小题4分,共40分)16、因式分解:(1))3()3(2a a -+-(2)xy y x 81622-+ (3)352281216xz z xy y x -+-(4)n n n a a a 612-+++ (5)n m n m -+-3922(6)12422---y y x (7)20)3(8)3(222-+-+a a a a17、计算:(1))2()483(2-÷+-x x x (2)545323.154547.23⨯-⨯+⨯- 18、化简:n n 212)2(2)2(-+-+四、(每小题3分,共6分)19、已知:1=+y x ,21-=xy ,利用因式分解求:2)())((y x x y x y x x +--+的值。

人教版八年级上册14.3因式分解同步测试含答案

人教版八年级上册14.3因式分解同步测试含答案

因式分解单元测试一. 选择题:(每题3分,共30分)1.把23)()(x a a x ---分解因式的结果为( ).(A ))1()(2+--a x a x (B ))1()(2---a x a x (C ))()(2a x a x +- (D ))1()(2---a x x a 2.2244b a b a +-和的公因式是( ).(A )22b a - (B)b a - (C)b a + (D)22b a + 3.下列从左到右的变形,属因式分解的有( ).(A )22))((a x a x a x -=-+ (B )3)4(342+-=+-x x x x(C ))8(8223-=-x x x x (D ))1(xyx y x +=+4.下列各式中,可分解因式的只有( ).(A )22y x + (B )32y x - (C )nb ma + (D )22y x +- 5.把3223y xy y x x --+分解因式,正确的结果是( ).(A )))((22y x y x -+ (B ))()(22y x y y x x +-+ (C )2))((y x y x -+ (D ))()(2y x y x -+ 6.下列各多项式中能用平方差公式因式分解的有( ). (1)22b a --;(2);4222y x -(3);422y x -(4);)()(22n m ---(5);12114422b a +- (6)22221n m +-.(A )1个 (B )2个 (C )3个 (D )4个 7.下列代数式中是完全平方公式的有( ).(1);442+-y y (2);2016922mn n m -+ (3)222224)5(;136)4(;144b ab a a a x x +++++- (A )1个 (B )2个 (C)3个 (D)4个 8.下列因式分解错误的是( ) . (A)(B)(C)(D )9.把代数式269mx mx m -+分解因式,下列结果中正确的是 ( ).22()()x y x y x y -=+-2269(3)x x x ++=+2()x xy x x y +=+222()x y x y +=+(第10题图)(A)2(3)m x + (B)(3)(3)m x x +- (C)2(4)m x - (D)2(3)m x -10.如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形)(b a >,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面 积,验证了一个等式是( ).(A)))((22b a b a b a -+=- (B)2222)(b ab a b a ++=+(C)2222)(b ab a b a +-=- (D)222))(2(b ab a b a b a -+=-+二. 填空题:(每题2分,共20分)11.多项式22)(c b a --有一个因式a+b-c,则另一个因式为___________. 12.因式分解:22)3()3(x b x a -+-=____________________. 13.已知 ,24552455,15441544,833833,3223222222⨯=+⨯=+⨯=+⨯=+, 若a ba b ⨯=+21010 符合前面式子的规律, 则b a += ___ ___.14.因式分解:412++a a =__________________.15.如果162++mx x 是一个完全平方式,则m=______. 16.因式分解:m mn n m 11112--+=___________________. 17.因式分解:ab b a 2922---=_____________________. 18.因式分解:1242--x x =_________________.19.若),4)(2)(2(162x x x x n +-+=-则n 的值为 .20.若2249100y kxy x ++能分解为2)710(y x -,则k 的值为 . 三.分解下列因式:(每题3分,共30分)21. )2(9)2(22m y m x -+- 22. 22a 16ab 9b --+23. 43244m m m ++ 24.()()2233y x y x ---25.9x 2-y 2-4y -4 26.b a ax bx bx ax -++--2227.310434422-+---y x y xy x 28. (x + y )2 + 4 (x + y ) - 2129.2224)1(x x -+ 30.(a -1)(a +1)(a +3)(a + 5) + 16 四.解答题:(每题4分,共20分)31.已知:,163,1==+xy y x 求32232xy y x y x +-的值.( ) 32.若0178222=+-++y y x x ,求xy 的值.( )33.若052422=++-+y x y x ,求20062006)2(y x +的值.( )34.(1)若一个三角形的三边长分别为c b a ,,,且满足0222222=--++bc ab c b a ,试判断该三角形是什么三角形,并加以说明.(2)已知在△ABC 中,三边长c b a ,,满足等式010616222=++--bc ab c b a , 求证:b c a 2=+.35.已知:222005200520042004;120052004+⨯-=-⨯=n m ,试比较n m ,的大小.五.附加题:(共20分) 36.求( 1 + 21)( 1 + 221)( 1 +421)( 1 +821) +1521的值.37. 根据以下10个乘积,回答问题:1129⨯ 1228⨯ 1327⨯ 1426⨯ 1525⨯ 1624⨯ 1723⨯ 1822⨯ 1921⨯ 2020⨯(1)试将以上各乘积分别写成一个“22-”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;(2)若乘积的两个因数分别用字母a b ,表示(a b ,为正数),请观察给出ab 与a b +的关系式.(不要求证明)(22a b ab +⎛⎫⎪⎝⎭≤)38.求值:)1)(1()1)(1)(1)(1(21616884422-+⋅++++x xx x x x x x x x x .39.如果b a ,是整数,且12--x x 是123++bx ax 的因式,求b 的值.40.若m y x y xy x ++---221145622可分解成两个一次因式的积,求m 的值并将多项式分解因式.因式分解单元测试一. 选择题:(每题3分,共30分)1.把23)()(x a a x ---分解因式的结果为( B ).(A ))1()(2+--a x a x (B ))1()(2---a x a x (C ))()(2a x a x +- (D ))1()(2---a x x a 2.2244b a b a +-和的公因式是( D ).(第10题图)(A )22b a - (B)b a - (C)b a + (D)22b a + 3.下列从左到右的变形,属因式分解的有( C ).(A )22))((a x a x a x -=-+ (B )3)4(342+-=+-x x x x(C ))8(8223-=-x x x x (D ))1(xyx y x +=+4.下列各式中,可分解因式的只有( D ).(A )22y x + (B )32y x - (C )nb ma + (D )22y x +- 5.把3223y xy y x x --+分解因式,正确的结果是( D ).(A )))((22y x y x -+ (B ))()(22y x y y x x +-+ (C )2))((y x y x -+ (D ))()(2y x y x -+ 6.下列各多项式中能用平方差公式因式分解的有( D ). (1)22b a --;(2);4222y x -(3);422y x -(4);)()(22n m ---(5);12114422b a +- (6)22221n m +-.(A )1个 (B )2个 (C )3个 (D )4个 7.下列代数式中是完全平方公式的有( B ).(1);442+-y y (2);2016922mn n m -+ (3)222224)5(;136)4(;144b ab a a a x x +++++- (A )1个 (B )2个 (C)3个 (D)4个 8.下列因式分解错误的是( D ) . (A)(B)(C)(D )9.把代数式269mx mx m -+分解因式,下列结果中正确的是 ( D ).(A)2(3)m x + (B)(3)(3)m x x +- (C)2(4)m x - (D)2(3)m x -10.如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形)(b a >,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面 积,验证了一个等式是( A ).(A)))((22b a b a b a -+=- (B)2222)(b ab a b a ++=+(C)2222)(b ab a b a +-=- (D)222))(2(b ab a b a b a -+=-+二. 填空题:(每题2分,共20分)22()()x y x y x y -=+-2269(3)x x x ++=+2()x xy x x y +=+222()x y x y +=+11.多项式22)(c b a --有一个因式a+b-c,则另一个因式为___________. a-b+c12.因式分解:22)3()3(x b x a -+-=____________________.()()b a x +-2313.已知 ,24552455,15441544,833833,3223222222⨯=+⨯=+⨯=+⨯=+ , 若a b a b ⨯=+21010 符合前面式子的规律, 则b a += ___ ___.10914.因式分解:412++a a =__________________.221⎪⎭⎫ ⎝⎛+a15.如果162++mx x 是一个完全平方式,则m=______. 8±16.因式分解:m mn n m 11112--+=___________________.()()n m m --11 17.因式分解:ab b a 2922---=_____________________.()()b a b a --++33 18.因式分解:1242--x x =_________________.()()26+-x x 19.若),4)(2)(2(162x x x x n +-+=-则n 的值为 4 .20.若2249100y kxy x ++能分解为2)710(y x -,则k 的值为 -140 . 三.分解下列因式:(每题3分,共30分)21. )2(9)2(22m y m x -+- 22. 22a 16ab 9b --+)3)(3)(2()9)(2(22y x y x m y x m -+-=--= =1)3(2--b a =)13)(13(--+-b a b a23. 43244m m m ++ 24.()()2233y x y x ---=()2244m m m ++ =()()y x y x y x y x 3333+---+- =()222m m + =()()y x y x 2244+-=()()y x y x +-825.9x 2-y 2-4y -4 26.b a ax bx bx ax -++--22 =)23)(23(--++y x y x =()()12++-x x b a27.310434422-+---y x y xy x 28. (x + y )2 + 4 (x + y ) - 21=()()32132-++-y x y x =()()37-+++y x y x29.2224)1(x x -+ 30.(a -1)(a +1)(a +3)(a + 5) + 16 =()()2211-+x x =()2214-+a a四.解答题:(每题4分,共20分)31.已知:,163,1==+xy y x 求32232xy y x y x +-的值.()64332.若0178222=+-++y y x x ,求xy 的值.(-4)33.若052422=++-+y x y x ,求20062006)2(y x+的值.(2)34.(1)若一个三角形的三边长分别为c b a ,,,且满足0222222=--++bc ab c b a ,试判断该三角形是什么三角形,并加以说明.(配方法,等边三角形)(2)已知在△ABC 中,三边长c b a ,,满足等式010616222=++--bc ab c b a ,求证:b c a 2=+.(0)2)(8()1025()96(2222=+--+=+--++c b a c b a c bc b b ab a35.已知:222005200520042004;120052004+⨯-=-⨯=n m ,试比较n m ,的大小.(作差法,n m n ,2=->m )五.附加题:(共20分)36.求( 1 + 21)( 1 +221)( 1 +421)( 1 +821) +1521的值.原式=1584221)211)(211)(211)(211)(21-2(1+++++=15842221)211)(211)(211)(211(2++++-=1584421)211)(211)(211(2+++- =158821)211)(211(2++-=151621)211(2+-=151521212+-=2 37. 根据以下10个乘积,回答问题:1129⨯ 1228⨯ 1327⨯ 1426⨯ 1525⨯ 1624⨯ 1723⨯ 1822⨯ 1921⨯2020⨯(1)试将以上各乘积分别写成一个“22-”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;解:222222112920912282081327207⨯=-⨯=-⨯=-;;;221426206⨯=-; 221525205⨯=-;221624204⨯=-;222217232031822202⨯=-⨯=-;; 221921201⨯=-;222020200⨯=-.这10个乘积按照从小到大的顺序依次是:2020211922182317241625152614271328122911⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ (2)若乘积的两个因数分别用字母a b ,表示(a b ,为正数),请观察给出ab 与a b +的关系式.(不要求证明)(22a b ab +⎛⎫⎪⎝⎭≤)38.求值:)1)(1()1)(1)(1)(1(21616884422-+⋅++++x xx x x x x x x x x .解: 原式=}1)(1)(1)(1)(1)(1(16168844222x x x x x x x x x x x +++++-=)1)(1)(1)(1)(1)(1(1616884422xx x x x x x x x x x x x +++++-=313332321)1(xx x x x -=- 39.如果b a ,是整数,且12--x x 是123++bx ax 的因式,求b 的值.1)1)(1(232++=---bx ax x x ax (a=1,b= -2)40.若m y x y xy x ++---221145622可分解成两个一次因式的积,求m 的值并将多项式分解因式.(()()24352,10+--+-=y x y x m )。

人教版八年级上数学14.3 因式分解 同步练习及答案(含答案)

人教版八年级上数学14.3 因式分解 同步练习及答案(含答案)

第14章《整式乘除与因式分解》同步练习(§14.3)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.计算:103_________.a a ÷=2.计算: 3532(3)(0.5)_________.m n m n -÷-=3.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为______.4.一个三角形的面积是c b a 433,一边长为2abc ,则这条边上的高为______.5.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,… 根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+… (n 为正整数). 6.计算:2010232_______,________a a x x ÷=÷=7.使等式1)5(93=-+m 成立时,则m 的取值是_____.8.已知多项式3x 3+ax 2+3x +1能被x 2+1整除,且商式是3x +1,那么a 的值是 .9.已知10m =3,10n =2,则102m -n = .10.小宇同学在一次手工制作活动中,先把一张矩形纸片按图-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是_____.二、选择题(每题3分,共24分)11.下列计算中正确的是( )A .248x x x =÷B .55a a a =÷C .23y y y =÷D .224)()(x x x -=-÷-第一次折叠 图-1 第二次折叠 图-2 (第10题)12.若n 221623=÷,则n 等于( )A .10B .5C .3D .613.下面是小林做的4道作业题:(1)ab ab ab 532=+;(2)ab ab ab -=-32;(3)ab ab ab 632=⋅;(4)3232=÷ab ab .做对一题得2分,则他共得到( ) A .2分 B .4分 C .6分 D .8分14.(2008辽宁省大连市)若x =b a -,y =b a +,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a -15.如果8a 写成下列各式,正确的共有( )①44a a +;②42)(a ;③216a a ÷;④24)(a ;⑤44)(a ;⑥1220a a ÷;⑦44a a ⋅;⑧8882a a a =-A .7个B .6个C .5个D .4个16.已知2239494b b a b a n m =÷,则( ) A .3,4==n m B .1,4==n m C .3,1==n m D .3,2==n m17.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x 18.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+三、解答题(共46分)19.(8分)计算(1)2242)()(ab ab ÷; (2))4()7124(22333a b a b a a -÷-+-.20.(6分)先化简,后求值.x y x y x y x 2)])(()[(2÷--+-,其中5.1,3==y x21.(8分)小明与小亮在做游戏时,两人各报一个整式,小亮报的整式作为除式,要求商式必须为2xy ,(1)若小明报的是)2(23xy y x -,小亮应报什么整式?(2)若小明报23x ,小亮能报出一个整式吗?说说你的理由.22.(8分)已知:A =x 2,B 是多项式,小明同学是个小马虎,在计算A +B 时,误把B +A 看作了AB ÷,结果得x x 212+,求B +A 的值.23.(7分)一个单项式的平方与5632123y x y x --的积为,求这个单项式.24.(9分)我们约定:b a b a 1010÷=⊗,如1010103434=÷=⊗(1)试求:410312⊗⊗和的值.(2)试求:4319105212⊗⊗⨯⊗和(3)想一想,)()(c b a c b a ⊗⊗⊗⊗和是否相等,验证你的结论.参考答案一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n + 6.20085,a x 7.m =-3 8.1 9.92 10.1cm 二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)y x -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等。

2022-2023学年人教版八年级数学上册《14-3因式分解》同步练习题(附答案)

2022-2023学年人教版八年级数学上册《14-3因式分解》同步练习题(附答案)

2022-2023学年人教版八年级数学上册《14.3因式分解》同步练习题(附答案)一.选择题1.下列等式中,从左到右的变形是因式分解的是()A.a(a﹣3)=a2﹣3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+)D.a2﹣9=(a+3)(a﹣3)2.4a2b3与2ab4c的公因式为()A.ab B.2ab C.2ab3D.2abc3.把多项式x2+2x﹣8因式分解,正确的是()A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)4.下列多项式中,不能用乘法公式进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+1 5.若x2+px+q=(x﹣3)(x﹣5),则p+q的值为()A.15B.7C.﹣7D.﹣86.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.a2(a2﹣1)﹣a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于08.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是()A.2B.5C.20D.99.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4B.2C.﹣2D.﹣410.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽12.如果△ABC的三边a、b、c满足ac2﹣bc2=(a﹣b)(a2+b2),则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形13.(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9二.填空题14.分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),乙看错b的值,分解的结果是(x﹣2)(x+1),则a=,b=.15.若实数x满足x2﹣3x﹣1=0,则2x3﹣5x2﹣5x﹣2020的值为.16.多项式8x2m y n﹣1﹣12x m y n中各项的公因式为.17.已知a+b=1,则代数式a2﹣b2+2b+9的值为.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.19.若a=12,b=109,则ab﹣9a的值为.20.如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a的正方形,两块是边长为b 的正方形,三块是长为a,宽为b的矩形(a>b).观察图形,发现多项式a2+3ab+2b2可因式分解为.21.已知多项式f(x)除以x﹣1,x﹣2,x﹣3的余数分别为1,4,5,则f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为.三.解答题22.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.23.把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.24.因式分解:(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2﹣2(x2+2x)﹣3(4)x3+3x2﹣4(拆开分解法)25.如图是L形钢条截面,请写出它的面积公式.并计算:当a=54mm,b=54.5mm,c=8.5mm时的面积.26.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.27.例题:已知二次三项式x2﹣4x+m中有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n).∴解得n=﹣7,m=﹣21.另一个因式为x﹣7,m的值为﹣21.仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.28.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1﹣2﹣3﹣…﹣2021)×(2+3+…+2022)﹣(1﹣2﹣3﹣…﹣2022)×(2+3+…+2021).参考答案一.选择题1.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.左到右的变形属于因式分解,故本选项符合题意;故选:D.2.解:4a2b3与2ab4c的公因式为2ab3,故选:C.3.解:x2+2x﹣8=(x﹣2)(x+4),故选:D.4.解:A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.5.解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故选:B.6.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.7.解:∵a2(a2﹣1)﹣a2+1=a2(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a2﹣1)=(a2﹣1)2,∴a2(a2﹣1)﹣a2+1的值不是负数.故选:A.8.解:∵c2﹣a2﹣2ab﹣b2=10,∴c2﹣(a2+2ab+b2)=10,∴c2﹣(a+b)2=10,∴(c+a+b)(c﹣a﹣b)=10,∵a+b+c=﹣5,∴c﹣a﹣b=﹣2,∴a+b﹣c=2,故选:A.9.解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.10.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.11.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.12.解:∵ac2﹣bc2=(a﹣b)(a2+b2),∴(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,即该三角形是等腰三角形或直角三角形.故选:D.13.解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.故选:C.二.填空题14.解:∵分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),∴x2+ax+b=x2+5x﹣6,故b=﹣6;∵乙看错b的值,分解的结果是:∴x2+ax+b=(x﹣2)(x+1)=x2﹣x﹣2,∴a=﹣1则a=﹣1,b=﹣6.故答案为:﹣1,﹣6.15.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴2x3﹣5x2﹣5x+2020=2x3﹣6x2+x2﹣3x﹣2x+2020=2x(x2﹣3x)+(x2﹣3x)﹣2x+2020=2x+1﹣2x+2020=2021,故答案为:2021.16.解:系数的最大公约数是4,各项相同字母的最低指数次幂是x m y n﹣1,所以公因式是4x m y n﹣1,故答案为:4x m y n﹣1.17.方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.18.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.19.解:因为a=12,b=109,所以ab﹣9a=a(b﹣9)=12×(109﹣9)=12×100=1200,故答案为:1200.20.解:根据图形得到长方形的面积为:a2+ab+ab+ab+b2+b2=a2+3ab+2b2,也可以为(a+b)(a+2b),则根据此图,多项式a2+3ab+2b2分解因式的结果为(a+b)(a+2b),故答案为:(a+b)(a+2b).21.解:∵(x﹣1)(x﹣2)(x﹣3)的结果是三次多项式,∴多项式f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为二次多项式,设这个余式为ax2+bx+c,由题意得:,解得:.∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为﹣x2+6x﹣4.∵﹣x2+6x﹣4=﹣(x﹣3)2+5,∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为5.故答案为:5.三.解答题22.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).23.解:(1)x2+3x﹣4=(x+4)(x﹣1);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;24.解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a2(2a﹣x)2﹣2a(2a﹣x)3=a(2a﹣x)2[a﹣2(2a﹣x)]=a(2a﹣x)2[a﹣4a+2x]=a(2a﹣x)2(﹣3a+2x);(3)(x2+2x)2﹣2(x2+2x)﹣3=[(x2+2x)﹣3][(x2+2x)+1]=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2;(4)x3+3x2﹣4=(x3+2x2)+(x2﹣4)=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)(x+2)(x﹣1)=(x+2)2(x﹣1).25.解:L形钢条的面积=ac+(b﹣c)c=ac+bc﹣c2=c(a+b﹣c);当a=54mm,b=54.5mm,c=8.5mm时,原式=8.5×(54+54.5﹣8.5)=850(mm2),即面积为850mm2.26.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.27.解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a),则2x2+3x﹣k=2x2+(a﹣10)x﹣5a,∴,解得a=13,k=65,故另一个因式为(2x+13),k的值为65.28.解:(1)①没有,设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步)=(x+1)4(第五步).故答案为:(x+1)4;②设x2﹣4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4;(2)设x=1﹣2﹣3﹣...﹣2021,y=2+3+ (2022)则1﹣2﹣3﹣…﹣2022=x﹣2022,2+3+…+2021=y﹣2022,x+y=1+2022=2023,所以原式=xy﹣(x﹣2022)(y﹣2022)=xy﹣xy+2022(x+y)﹣20222=2022×2023﹣20222=2022(2022+1)﹣20222=2022.。

人教版数学八年级上册14.3因式分解 同步测试卷

人教版数学八年级上册14.3因式分解 同步测试卷

A.

ሻ൅
B.
ሻ൅
C.


ሻ D.


11.下列从左到右的变形属于因式分解的是( )
A. a(x+y)=ax+ay
B. x2+2x+1=x(x+2)+1
C. x2﹣1=(x+1)(x﹣1) D. (x+2)(x﹣2)=x2﹣4
二、填空题(共 5 题;共 15 分)
12.分解因式: m2-3m=________。
个式子的值不变的方法称为“配方法”. 利用“配方法”,解决下列问
题:
(1)分解因式:
൅ ________;
(2)若△ABC 的三边长是 a,b,c,且满足
͸൅
,c 边的长为奇数,求△ABC 的周长的最小值;
(3)当 x 为何值时,多项式
有最大值?并求出这个
最大值.
21.对多项式(a2-4a+2)(a2-4a+6)+4 进行因式分解时,小亮先设 a2-4a=b,
(2)x4-16
四、综合题(共 3 题;共 38 分)
19.阅读下列因式分解的过程,再回答所提出的问题: 1+x+x(1+x)+x(1+x)2 =(1+x)[1+x+x(1+x)] =(1+x)[(1+x)(1+x)] =(1+x)3 (1)上述分解因式的方法是________(填提公因式法或公式法中的 一个); (2)分解因式:1+x+x(1+x)+x(1+x)2+x(1+x)3=________; 1+x+x(1+x)+x(1+x)2+…+x(1+x)n=________(直接填空); (3)运用上述结论求值:1+x+x(1+x)+x(1+x)2+x(1+x)3 , 其 中 x= ͸ ﹣1.

人教版八年级上册数学 14.3因式分解 同步练习(含解析)

人教版八年级上册数学 14.3因式分解 同步练习(含解析)

14.3因式分解同步练习一.选择题(共10小题)1.下列从左到右的变形是因式分解的是()A.ma+mb﹣c=m(a+b)﹣cB.﹣a2+3ab﹣a=﹣a(a+3b﹣1)C.(a﹣b)(a2+ab+b2)=a3﹣b3D.4x2﹣25y2=(2x+5y)(2x﹣5y)2.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1983.关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是()A.﹣6B.±6C.12D.±124.把多项式﹣2x3+12x2﹣18x分解因式,结果正确的是()A.﹣2x(x2+6x﹣9)B.﹣2x(x﹣3)2C.﹣2x(x+3)(x﹣3)D.﹣2x(x+3)25.下列分解因式正确的是()A.a2﹣9=(a﹣3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2﹣2a+1=a(a﹣2)+16.分解因式:4﹣12(a﹣b)+9(a﹣b)2=()A.(2+3a﹣3b)2B.(2﹣3a﹣3b)2C.(2+3a+3b)2D.(2﹣3a+3b)2 7.下列因式分解中:①x3+2xy+x=x(x+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(y﹣x);④x3﹣9x=x(x﹣3)2,正确的个数为()A.1个B.2个C.3个D.4个8.已知a,b,c为△ABC三边,且满足ab+bc=b2+ac,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定9.已知多项式6x3+13x2+9x+2可以写成两个因式的积,又已知其中一个因式为3x2+5x+2,那么另一个因式为()A.2x﹣1B.2x+1C.﹣2x﹣1D.﹣2x+110.已知x﹣5是多项式2x2+8x+a的一个因式,则a可为()A.65B.﹣65C.90D.﹣90二.填空题(共5小题)11.因式分解:(1)m2﹣4=.(2)2x2﹣4x+2=.12.因式分解:4a2﹣9a4=.13.如果x2+Ax+B因式分解的结果为(x﹣3)(x+5),则A+B=.14.分解因式:=.15.多项式4x3y2﹣2x2y+8x2y3的公因式是.三.解答题(共3小题)16.分解因式:(1)3x2﹣6x+3;(2)2ax2﹣8a.17.因式分解:(1)2ax2﹣8a;(2)a3﹣6a2b+9ab2;(3)(a﹣b)2+4ab.18.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.参考答案1.解:A、没将一个多项式化成几个整式的乘积的形式,不是因式分解,故本选项不符合题意;B、提公因式变号错误,不是正确的因式分解,故本选项不符合题意;C、不是因式分解,是整式的乘法,故本选项不符合题意;D、符合因式分解定义,是因式分解,故本选项符合题意;故选:D.2.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.3.解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴a=±12.故选:D.4.解:﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.故选:B.5.解:A、原式=(a+3)(a﹣3),不符合题意;B、原式=3a(2a+1),不符合题意;C、原式=(a+3)2,符合题意;D、原式=(a﹣1)2,不符合题意.故选:C.6.解:原式=[2﹣3(a﹣b)]2=(2﹣3a﹣3b)2.故选:D.7.解:①x3+2xy+x=x(x2+2y+1),故原题分解错误;②x2+4x+4=(x+2)2,故原题分解正确;③﹣x2+y2=y2﹣x2=(x+y)(y﹣x),故原题分解正确;④x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3),故原题分解错误;正确的个数为2个,故选:B.8.解:∵ab+bc=b2+ac,∴ab﹣ac=b2﹣bc,即a(b﹣c)=b(b﹣c),∴(a﹣b)(b﹣c)=0,∴a=b或b=c,∴△ABC是等腰三角形,故选:C.9.解:设另一个因式为(mx+n),根据题意得:6x3+13x2+9x+2=(3x2+5x+2)(mx+n)=3mx3+(5m+3n)x2+(2m+5n)x+2n,∴2n=2,2m+5n=9,解得:m=2,n=1,所以另一个因式为2x+1,故选:B.10.解:设多项式的另一个因式为2x+b.则(x﹣5)(2x+b)=2x2+(b﹣10)x﹣5b=2x2+8x+a.所以b﹣10=8,解得b=18.所以a=﹣5b=﹣5×18=﹣90.故选:D.11.解:(1)原式=(m+2)(m﹣2);(2)原式=2(x2﹣2x+1)=2(x﹣1)2.故答案为:(1)(m+2)(m﹣2);(2)2(x﹣1)2.12.解:原式=a2(4﹣9a2)=a2(2+3a)(2﹣3a).故答案为:a2(2+3a)(2﹣3a).13.解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15,∴A+B=2﹣15=﹣13.故答案为:﹣13.14.解:原式=(x2﹣x+)=(x﹣)2.故答案为:(x﹣)2.15.解:多项式4x3y2﹣2x2y+8x2y3的公因式是2x2y,故答案为:2x2y.16.解:(1)原式=3(x2﹣2x+1)=3(x﹣1)2;(2)原式=2a(x2﹣4)=2a(x+2)(x﹣2).17.解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=a(a2﹣6ab+9b2)=a(a﹣3b)2;(3)原式=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.18.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.。

人教版八年级数学上册《14.3因式分解》同步测试

人教版八年级数学上册《14.3因式分解》同步测试

人教版八年级数学上册《14.3因式分解》同步测试10.把多项式m2(a-2)+m(2-a)因式分解,结果正确的是( ) A.(a-2)(m2-m) B.m(a-2)(m+1)C.m(a-2)(m-1) D.m(2-a)(m-1)二、填空题11.已知多项式可分解为,则______ ,______ .12.分解因式得______ .13.若,,则的值为______ .14.计算______ .15.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成(x-1)(x-9),另一位同学因看错了常数项而分解成(x-2)(x-4),则这个二次三项式为16.若多项式能用完全平方公式因式分解,则m的值为______.17.分解因式:______18.已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是.19.把a2(x﹣3)+(3﹣x)分解因式的结果是.20.若ab=2,a-b=-1,则a2b-ab2的值等于.三、解答题21.把下列各式因式分解.22.已知,,求的值.23.△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.24.已知a+b=-3,ab=1,求a3b+a2b2+ab3的值.答案:1. B2. D3. A4. A 5.B.6.D 7.A 8.B 9.A 10.C11. 1;12. 13. 14. 9999000015. x2-6x+9 16. 7或3 17.18.等腰三角形19.答案为:(x﹣3)(a+1)(a﹣1).20..-221. 解:原式;原式;原式;原式.2.当、时,原式.23.解:△ABC是等腰三角形,理由:∵a+2ab=c+2bc,∴(a-c)+2b(a-c)=0.∴(a-c)(1+2b)=0.故a=c或1+2b=0.显然b≠-12,故a=c.∴此三角形为等腰三角形.24.解∵a+b=-3,ab=1,∴a3b+a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=×1×(-3)2=.。

人教版八年级上册14.3《因式分解》同步练习卷 含答案

人教版八年级上册14.3《因式分解》同步练习卷   含答案

人教版2020年八年级上册14.3《因式分解》同步练习卷一.选择题1.下列多项式能用平方差公式分解的是()A.a2+a B.a2﹣2ab+b2C.x2﹣4y2D.x2+y22.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+13.把2x2﹣2x+分解因式,其结果是()A.2(x﹣)2B.(x﹣)2C.(x﹣1)2D.(2x﹣)2 4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20B.﹣16C.16D.205.若x+y=﹣1,则x2+y2+2xy的值为()A.1B.﹣1C.3D.﹣36.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n27.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2+5a﹣6D.a2﹣5a﹣68.多项式6ab2+18a2b2﹣12a3b2c的公因式是()A.6ab2c B.ab2C.6ab2D.6a3b2c二.填空题9.分解因式:6xy2﹣8x2y3=.10.在实数范围内分解因式:ab3﹣5ab=.11.因式分解a(b﹣c)﹣3(c﹣b)=.12.把多项式3ax2﹣12a分解因式的结果是.13.把多项式ax2﹣4ax+4a因式分解的结果是.14.若实数a、b满足a+b=﹣2,a2b+ab2=﹣10,则ab的值是.15.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是.三.解答题16.把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.17.因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.18.分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)19.已知△ABC的三边长分别是a、b、c(1)当b2+2ab=c2+2ac时,试判断△ABC的形状;(2)判断式子a2﹣b2+c2﹣2ac的值的符号.20.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.(2)x2﹣2xy+y2﹣9.21.对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册14.3 因式分解同步练习
题号一二三四五总分
得分
一、选择题(本大题共6小题,共18分)
1.下列从左到右的变形是因式分解的是()
A. (x−3)(3+x)=9−x2
B. 6x2y2=3xy·2xy
C. 4yz−2y2z+2yz=2yz(2−y)
D. −8x2+8x−2=−2(2x−1)2
2.下列多项式,在实数范围内不能分解因式的是()
A. x2+y2+2xy−2
B. x2−y2+4x+4y
C. x2−y2+4y−4
D. x2+y2+2x+2y
3.把a2−2a分解因式,结果是().
A. a(a−2)
B. a(a+2)
C. a(a2−2)
D. a(2−a)
4.多项式ax2−a与多项式ax2−2ax+a的公因式是()
A. a
B. x−1
C. a(x−1)
D. a(x2−1)
5.多项式4x−x3分解因式的结果是()
A. x(4−x2)
B. x(2−x)(2+x)
C. x(x−2)(x+2)
D. x(2−x)2
6.如图所示,从边长为a的大正方形中挖去一个边长是
b的小正方形,小明将图a中的阴影部分拼成了一个
如图b所示的矩形,这一过程可以验证()
A. a2−b2=(a+b)(a−b)
B. a2+b2+2ab=(a+b)2
C. 2a2−3ab+b2=(2a−b)(a−b)
D. a2+b2−2ab=(a−b)2
二、填空题(本大题共9小题,共27分)
7.分解因式:4mx+6my=_____.
8.因式分解:(2a+b)2−2b(2a+b)=________.
9.因式分解:m3−4mn2=______.
10.分解因式:m2+4m+4=______.
11.若x2+kx+9是完全平方式,则k=__________.
12.因式分解:9x2−y2−4y−4=_____.
13.分解因式:x2−7x+12=____________________________.
14.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是
______ .
15.因式分解:9−a2−b2−2ab=______ .
三、解答题(本大题共5小题,共55分)
16.把下列各式分解因式:
(1)2x2−4x+2
(2)x2−3x−28
(3)16(m−n)2−9(m+n)2.
第1页,共2页
17.已知x2+x=1,求x4+2x3−x2−2x+2020的值.
18.将如图一个正方形和三个长方形拼成一个大长方形,
再据此图写出一个多项式的因式分解.
19.已知多项式x2−4x+m分解因式的结果为(x+a)(x−6),求2a−m的值.
20.已知△ABC的三边为a,b,c.
(1)说明代数式(a−c)2−b2的值一定小于0;
(2)若满足a2+b2=12a+8b−52,而c是△ABC最长边,求c的范围.。

相关文档
最新文档