八年级数学上册因式分解的方法汇总

合集下载

因式分解常用方法(方法最全最详细)

因式分解常用方法(方法最全最详细)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a -b) = a 2-b 2 -----------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

因式分解的14 种方法

因式分解的14 种方法

因式分解的14 种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则:1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:3 .3 1. 2 . x . x . .x x . )分解因式技巧:1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法:⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留 1 把家守;提负要变号,变形看奇偶。

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典方法息县六中陈岳因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些基本的因式分解的方法。

下面列举了九种方法,希望对大家的学习能有所帮助。

【1】提取公因式这种方法比较常规、简单,必须掌握。

常用的公式有:完全平方公式、平方差公式等2x-3x=0例一:2解:x(2x-3)=0x=0,2x=3/21这是一类利用因式分解的方程。

总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式这对我们后面的学习有帮助。

【2】公式法将式子利用公式来分解,也是比较简单的方法。

常用的公式有:完全平方公式、平方差公式等注意:使用公式法前,建议先提取公因式。

例二:2x-4分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)【3】十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数21.a a 的积21.a a ,把常数项c分解成两个因数21.c c 的积21.c c ,并使1221c a c a 正好是一次项b ,那么可以直接写成结果例三: 把22x -7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3+2×1 =51 3╳2 11×1+2×3 =71 -1╳2 -31×(-3)+2×(-1) =-51 -3╳2 -11×(-1)+2×(-3) =-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式2ax +bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=21.a a ,常数项c 可以分解成两个因数之积,即c=21.c c ,把2121,,,c c a a ,排列如下:╳按斜线交叉相乘,再相加,得到1221c a c a +,若它正好等于二次三项式2ax +bx +c 的一次项系数b ,即1221c a c a +=b ,那么二次三项式就可以分解为两个因式1a x+c1与22c x a +之积,即2ax +bx+c=(1a x+1c )(2a x+2c ).这种方法要多实验,多做,多练。

人教版八年级上册数学因式分解

人教版八年级上册数学因式分解

人教版八年级上册数学因式分解人教版八年级上册数学因式分解大揭秘
亲爱的小伙伴们,今天咱们一起来聊聊人教版八年级上册数学里超级重要的因式分解!
一、因式分解到底是啥
因式分解呀,就像是给一个复杂的式子来个大变身,把它变成几个简单式子相乘的形式。

比如说,x^2 1 就可以变成 (x + 1)(x
1) ,是不是很神奇?
二、因式分解的方法
1. 提公因式法
这可是最基础的方法啦。

就像从一堆水果里挑出大家都有的那个品种。

比如,6x + 9 ,这里面都有 3 ,那就可以提出 3 ,变成
3(2x + 3) 。

2. 公式法
咱们有两个超级厉害的公式哦,平方差公式:a^2 b^2 = (a + b)(a b) ,还有完全平方公式:a^2 ± 2ab + b^2 = (a ± b)^2 。

遇到符合公式的式子,直接套用,简直不要太爽!
3. 十字相乘法
这个稍微有点难度,但是掌握了就会觉得超有趣。

比如说 x^2 + 5x + 6 ,咱们可以把 6 分解成 2 和 3 ,然后交叉相乘再相加正好等于 5 ,就可以分解成 (x + 2)(x + 3) 。

三、因式分解的应用
因式分解可不是光摆在那里好看的,它可有大用处呢!
在解方程的时候,通过因式分解可以把复杂的方程变得简单,一下子就能求出解啦。

还有在计算的时候,因式分解能让计算变得更轻松,节省好多时间呢。

因式分解是咱们数学学习中的一个重要武器,掌握好了它,数学的世界会变得更加精彩有趣!小伙伴们,加油哦!。

初中数学:因式分解常用的6种方法

初中数学:因式分解常用的6种方法

初中数学:因式分解常用的6种方法
分解因式技巧
1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

1、提取公因式
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

ab+ac=a(b+c)
2、公式法
a²-b²=(a+b)× (a-b)
(a+b)²=a²+2ab+b²
(a-b)²=a²-2ab+b²
3、分组分解法
ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y)
4、十字相乘法
x+(p+q)x+pq=(x+p)(x+q)
5、裂项法
bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
6、配方法
x²+3x-40
=x²+3x+2.25-42.25
=(x+1.5)²-(6.5)²
=(x+8)(x-5)。

八年级因式分解常见方法和经典题型(适合基础和提高)

八年级因式分解常见方法和经典题型(适合基础和提高)

西安乐童教育中心八年级数学 因式分解常见方法讲解和经典题型常见方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式 例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

数学人教版八年级上册14.3因式分解----提公因式法、公式法的综合运用

数学人教版八年级上册14.3因式分解----提公因式法、公式法的综合运用

3
课后巩固
m m 2 ( 1 )p p
3 2 2 x 6 x 9 x
2 ( 3 ) 4 x 3 y 25 y 2
2 ( 4 ) x 4 16 x 2


2
4 2 ( 5 ) x 2 x 1
( 6 ) 4 a b a b
22 2

2 2

归纳总结
先提取公因式再平方差公式
例1.因式分解
(1) 4 -16a2
变式: 4 -64a4
(2) m3 (m-2)-4m(m-2)
变式: m ² (a-b)+4n2(b-a)
先提取公因式再完全平方公式
例2.因式分解:
1 3 变式: 1 a a a 4
5 4
1 2x 2x 2
2
2 7 x 14 x 7 x
因式分解的方法
(三)完全平方公式法:
x2+2xy+y2=(x+y)2 x2–2xy+y2=(x–y)2
一个多项式能用完全平方公式因式分解具备的特征: (1)有三项; (2)其中有两个平方项且符号相同 (3)有乘积的2倍;
下列多项式能否用完全平方公式因式分解?
(1) – x2 +2xy – y2 (2)x2+x+1 (3) – a2 –2a+1
(3)m(a – 2) –平方差公式法:
x2 – y2=(x+y)(x – y)
一个多项式能用平方差公式因式分解具备的特征: 有两个平方项,且符号相反。
下列多项式能否用平方差公式因式分解?
(1) – m2 – n2 (2) – m2n2 +1

人教版初二数学上册知识点归纳

人教版初二数学上册知识点归纳

人教版初二数学上册学问点归纳因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;留意:因式分解及乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法〞、“公式法〞、“分组分解法〞、“十字相乘法〞.3.公因式的确定:系数的最大公约数·一样因式的最低次幂.留意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a2-b2=〔a+ b 〕〔a- b 〕;(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的考前须知:〔1〕选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; 〔2〕运用因式分解公式时要特殊留意公式中的字母都具有整体性; 〔3〕因式分解的最终结果要求分解到每一个因式都不能分解为止; 〔4〕因式分解的最终结果要求每一个因式的首项符号为正; 〔5〕因式分解的最终结果要求加以整理;〔6〕因式分解的最终结果要求一样因式写成乘方的形式. 6.因式分解的解题技巧:〔1〕换位整理,加括号或去括号整理;〔2〕提负号;〔3〕全变号;〔4〕换元;〔5〕配方;〔6〕把一样的式子看作整体;〔7〕敏捷分组;〔8〕提取分数系数;〔9〕绽开部分括号或全部括号;〔10〕拆项或补项. 7.完全平方式:能化为〔m+n 〕2的多项式叫完全平方式;对于二次三项式x2+px+q , 有“ x2+px+q 是完全平方式 ⇔ q2p 2=⎪⎭⎫⎝⎛〞.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A的形式,假如B 中含有字母,式子B A叫做分式.2.有理式:整式及分式统称有理式;即⎩⎨⎧分式整式有理式. 3.对于分式的两个重要推断:〔1〕假设分式的分母为零,那么分式无意义,反之有意义;〔2〕假设分式的分子为零,而分母不为零,那么分式的值为零;留意:假设分式的分子为零,而分母也为零,那么分式无意义. 4.分式的根本性质及应用:〔1〕假设分式的分子及分母都乘以〔或除以〕同一个不为零的整式,分式的值不变;〔2〕留意:在分式中,分子、分母、分式本身的符号,变更其中任何两个,分式的值不变; 即分母分子分母分子分母分子分母分子-=-=-=---〔3〕繁分式化简时,采纳分子分母同乘小分母的最小公倍数的方法,比较简洁. 5.分式的约分:把一个分式的分子及分母的公因式约去,叫做分式的约分;留意:分式约分前常常须要先因式分解.6.最简分式:一个分式的分子及分母没有公因式,这个分式叫做最简分式;留意:分式计算的最终结果要求化为最简分式.7.分式的乘除法法那么:,bdac d c b a =⋅ bc ad c d b a d c b a =⋅=÷.8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法那么:〔1〕公式: a0=1(a ≠0), a-n=na 1(a ≠0);〔2〕正整指数的运算法那么都可用于负整指数计算;〔3〕公式:nna b b a ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-,n mm n a b b a =--;〔4〕公式: 〔-1〕-2=1, 〔-1〕-3=-1.10.分式的通分:依据分式的根本性质,把几个异分母的分式分别化成及原来的分式相等的同分母的分式,叫做分式的通分;留意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数·一样因式的最高次幂.12.同分母及异分母的分式加减法法那么:;cb ac b c a ±=±bd bcad bd bc bd ad d c b a ±=±=±.13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.留意:在字母方程中,一般用a 、b 、c 等表示数,用x 、y 、z 等表示未知数. 14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;留意:公式变形的本质就是解含有字母系数的方程.特殊要留意:字母方程两边同时乘以含字母的代数式时,一般须要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;留意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必需验增根;留意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母〔或分式方程的每个分母〕,假设值为零,求出的根是增根,这时原方程无解;假设值不为零,求出的根是原方程的解;留意:由此可推断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题及列整式方程解应用题的方法一样,但须要增加“验增根〞的程序. 数的开方1.平方根的定义:假设x2=a,那么x 叫a 的平方根,〔即a 的平方根是x 〕;留意:〔1〕a 叫x 的平方数,〔2〕x 求a 叫乘方,a 求x 叫开方,乘方及开方互为逆运算.2.平方根的性质:〔1〕正数的平方根是一对相反数; 〔2〕0的平方根还是0; 〔3〕负数没有平方根.3.平方根的表示方法:a 的平方根表示为a 和a -.留意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .留意:0的算术平方根还是0.5.三个重要非负数: a2≥0 ,|a|≥0 ,a ≥0 .留意:非负数之和为0,说明它们都是0.6.两个重要公式: 〔1〕 ()a a 2=; (a ≥0)〔2〕⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:假设x3=a,那么x 叫a 的立方根,〔即a 的立方根是x 〕.留意:〔1〕a 叫x 的立方数;〔2〕a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:〔1〕正数的立方根是一个正数; 〔2〕0的立方根还是0;〔3〕负数的立方根是一个负数.9.立方根的特性:33a a -=-. 10.无理数:无限不循环小数叫做无理数.留意:π和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:〔1〕⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0〔2〕⎪⎩⎪⎨⎧负实数正实数实数0.13.数轴的性质:数轴上的点及实数一一对应.14.无理数的近似值:实数计算的结果中假设含有无理数且题目无近似要求,那么结果应当用无理数表示;假如题目有近似要求,那么结果应当用无理数的近似值表示.留意:〔1〕近似计算时,中间过程要多保存一位;〔2〕要求记忆:414.12=732.13=236.25=.三角形几何B级概念:〔要求理解、会讲、会用,主要用于填空和选择题〕一根本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、协助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:1.三角形中,第三边长的推断: 另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.留意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:假设CD ⊥AB ,BE ⊥CA ,那么CD ·AB=BE ·CA.4.三角形能否成立的条件是:最长边<另两边之和. 5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形. 7.如图,双垂图形中,有两个重要的性质,即: 〔1〕 AC ·CB=CD ·AB ; 〔2〕∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角. 9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形. 11.几何习题中,“文字表达题〞须要自己画图,写、求证、证明. 12.符合“AAA 〞“SSA 〞条件的三角形不能断定全等. 13.几何习题常常用四种方法进展分析:〔1〕分析综合法;〔2〕方程分析法;〔3〕代入分析法;〔4〕图形视察法. 14.几何根本作图分为:〔1〕作线段等于线段;〔2〕作角等于角;〔3〕作角的平分线;〔4〕过点作直线的垂线;〔5〕作线段的中垂线;〔6〕过点作直线的平行线. 15.会用尺规完成“SAS 〞、“ASA 〞、“AAS 〞、“SSS 〞、“HL 〞、“等腰三角形〞、“等边三角形〞、“等腰直角三角形〞的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;留意:每步作图都应当是几何根本作图. 17.几何画图的类型:〔1〕估画图;〔2〕工具画图;〔3〕尺规画图. ※18.几何重要图形和协助线: 〔1〕选取和作协助线的原那么:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作协助线必需符合几何根本作图.A BC EDA B CD12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) (x y)(x y 2xy) (xy 1)(xy 1)
(4) 1999 x2 (1999 2 1)x 1999
(5) (x y 2xy)( x y 2) (xy 1)2
(6) (2x 3y)3 (3x 2 y)3 125(x y)3
(1)解:
设:x 2 5x a
五、常用到的式子:
ab b a 1 (a 1)(b 1) a4 4 (a2 2a 2)(a2 2a 2)
a2 b2 c2 2ab 2ac 2bc (a b c) 2
a3 b3 c3 3abc (a b c)(a2 b2 c2 ab bc ac)
= a2 2ab b2 1
(a b 1)(a b 1)
(4)原式= 1999x2 1999x2 x 1999
1999x(x 1999) (x 1999)
(1999x 1)(x 1999)
(5)原式= (x y)2 2(x y) 2xy(x y) 4xy (xy)2 2xy 1
解法四:添加两项 x2 x2
对应练习
例题:(分解因式)(第12届“五羊杯”竞赛 题)
(x4 x2 4)(x4 x2 3) 10
x4 x2 a
解:设
(a 4)(a 3) 10
a2 a 2
(a 2)(a 1)
ห้องสมุดไป่ตู้
同步练习:分解因式
(1) (x2 5x 2)( x2 5x 3) 12 (2) (x 1)(x 2)(x 3)(x 6) x2
则原式=
(a 2)(a 3) 12 a2 5a 6
(a 6)(a 1)
(2)解: 原式= (x2 7x 6)( x2 5x 6) x2
(x2 6x 6 x)( x2 6x 6 x) x2
(x2 6x 6)2
(3)设x+y=a,xy=b,则原式 =a(a+2b)+(b+1)(b-1)
因式分解是多项式乘法的逆运算。在多项式乘法 运算时,整理、化简将几个同类项合并为一项, 或将两个仅符号相反的同类项相互抵消为零。在 对某些多项式分解因式时,需要恢复那些被合并 或相互抵消的项,即把多项式中的某一项拆成两 项或多项,或者在多项式中添上两个仅符号相反 的项,前者称为拆项,后者称为添项。
因式分解的方法
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法; 七、配方法; 八、待定系数法。
方法一:提分因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察等分解的代数式,尽可能地找出它 们的分因数(式)
方法二:公式法
(x y xy)2 2(x y xy) 1 (x y xy 1)2 (x 1)2 ( y 1)2
(6)原式= (2x 3y)3 (3x 2y)3 [5(x y)]3 (2x 3y)3 (3x 2y)3 [(2x 3y) (3x 2y)]3 15(x y)(2x 3y)(3x 2y)
例题:分解因式: x3 9x 8
解法一:将常数项8拆成-1+9 原式= x3 9x 1 9
(x3 1) 9(x 1) (x 1)(x2 x 1) 9(x 1) (x 1)(x2 x 8)
解法二:将一次项-9x拆成-x-8x
解法三:将三次项 x3 拆成 9x3 8x3
方法三:十字相乘法
对二次三项式的系数进行分解,借助十字 交叉图分解,即:
x2 ( p q)x pq (x p)(x q)
例题:用十字交叉法分解下列多项式:
x2 7x 10
x2 x 6
x2 2x 3 x2 7x 10
方法四、换元法
对结构比较复杂的多项式,若把其中某 些部分看成一个整体,用新字母代替 (即换元),则能使复杂问题简单化、 明朗化,在减少多项式项数,降低多项 式结构复杂程度等方面有独到作用。
一、平方差公式: 二、完全平方公式:
a2 b2 (a b)(a b) a2 2ab b2 (a b)2
三、立方和(差)公 式:
a3 b3 (a b)(a2 ab b2 )
a3 b3 (a b)(a2 ab b2 )
四、完全立方和(差) 分式:
a3 3a2b 3ab2 b3 (a b)3
叫分组分解法。
分组除具有尝试性外,还具有目的性,或者分组后能 出现公因式,或者能运用分式。分组分解法是因式分 解的基本方法,体现了化整体为局部,又有全局的思 想。如何分组是解题的关键。常见的分组方法有:
(1)按字母分组:把相同的字母的代数式写在一起;
(2)按次数分组:把多项式写成某一个字母的降幂 排列,再分组;
(3)按系数分组:把系数相同的项写在一起进行分 组。
在分组分解法时有时要用到拆项、添项的技巧。
例题1(上海市竞赛题)多项式
x2 y y2z z2x x2z y2x z2 y 2xyz
因式分解后的结果是
解:将原式重新整理成关于x的二次三 项式,则
原式=
( y z)x2 ( y2 z2 2 yz)x (zy 2 z2 y)
方法五、分组分解法
(1)形如:
am+an+bm+bn=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(a+b)(m+n)
(2)形如:
x2 y2 2x 1
(x2 2x 1) y 2
(x 1)2 y 2
(x y 1)(x y 1)
把多项式适当的分组,分组后能够有公因 式或能运用公式,这样的因式分解的方法
( y z)[x2 ( y z)x yz]
(y z)(x y)(x z)
例题2(重庆市竞赛题)分解因式:
4x2 4x y2 4y 3
解:原式= (4x2 4x 1) (y 2 4y 4) (2x 1)2 (y 2)2 (2x y 3)(2x y 1)
方法六、拆项、添项法
相关文档
最新文档