垂直于弦的直径教案20

合集下载

垂直于弦的直径教案

垂直于弦的直径教案

垂直于弦的直径教案
一、教学目标:
1. 学生能够理解并掌握垂直于弦的直径的定义和性质。

2. 学生能够熟练运用垂直于弦的直径定理解决相关问题。

3. 培养学生的空间想象能力和逻辑推理能力。

二、教学内容:
1. 垂直于弦的直径的定义:在圆中,过圆心且与弦垂直的线段称为该弦的直径。

2. 垂直于弦的直径的性质:垂直于弦的直径平分弦,并且平分弦所对的弧。

3. 垂直于弦的直径定理的应用:通过实例讲解如何运用垂直于弦的直径定理解决问题。

三、教学策略:
1. 导入新课:通过提问或展示相关图片,引导学生回顾圆的基本概念,为学习垂直于弦的直径做好铺垫。

2. 讲解新知:通过讲解和示范,让学生理解垂直于弦的直径的定义和性质,并通过实物模型或动画演示,帮助学生形象地理解垂直于弦的直径的概念。

3. 实践操作:设计一些实际问题,让学生运用垂直于弦的直径定理进行求解,提高学生的实际操作能力和问题解决能力。

4. 课堂小结:总结本节课的主要内容,让学生复述垂直于弦的直径的定义和性质,以及如何运用垂直于弦的直径定理解决问题。

四、教学资源:
1. 教材:《中学数学》
2. 实物模型:圆规、直尺、圆规等
3. 动画演示:利用电脑软件或PPT制作垂直于弦的直径的动画演示。

4. 练习题:设计一些关于垂直于弦的直径的问题,让学生进行实践操作。

五、教学评价:
1. 过程评价:观察学生在实践操作中的表现,了解学生对垂直于弦的直径的理解程度和应用能力。

2. 结果评价:通过课堂小结和课后作业,检查学生对垂直于弦的直径的定义、性质和定理的理解和应用情况。

《垂直于弦的直径》教案

《垂直于弦的直径》教案

《垂直于弦的直径》教案第一章:导入教学目标:1. 引导学生观察和思考圆中的垂直关系。

2. 激发学生对垂直于弦的直径的兴趣和好奇心。

教学内容:1. 引导学生回顾圆的基本概念和性质。

2. 引导学生观察和思考圆中垂直于弦的直径的特点。

教学活动:1. 引导学生观察和描述圆中的垂直关系。

2. 引导学生思考垂直于弦的直径的性质和特点。

教学评估:1. 观察学生对垂直于弦的直径的兴趣和参与程度。

2. 评估学生对垂直于弦的直径性质的理解和应用能力。

第二章:理论讲解教学目标:1. 帮助学生理解垂直于弦的直径的性质。

2. 引导学生通过几何推理证明垂直于弦的直径的性质。

教学内容:1. 介绍垂直于弦的直径的性质。

2. 引导学生通过几何推理证明垂直于弦的直径的性质。

教学活动:1. 引导学生观察和分析垂直于弦的直径的性质。

2. 引导学生运用几何推理证明垂直于弦的直径的性质。

教学评估:1. 观察学生对垂直于弦的直径性质的理解程度。

2. 评估学生运用几何推理证明垂直于弦的直径性质的能力。

第三章:实例解析教学目标:1. 帮助学生通过实例分析和理解垂直于弦的直径的性质。

2. 培养学生运用垂直于弦的直径性质解决实际问题的能力。

教学内容:1. 提供实例,引导学生分析和理解垂直于弦的直径的性质。

2. 引导学生运用垂直于弦的直径的性质解决实际问题。

教学活动:1. 引导学生分析和理解实例中垂直于弦的直径的性质。

2. 引导学生运用垂直于弦的直径的性质解决实际问题。

教学评估:1. 观察学生对实例中垂直于弦的直径性质的理解程度。

2. 评估学生运用垂直于弦的直径性质解决实际问题的能力。

第四章:练习与巩固教学目标:1. 帮助学生巩固对垂直于弦的直径的理解和应用能力。

2. 培养学生通过练习题解决问题的能力。

教学内容:1. 提供练习题,引导学生巩固对垂直于弦的直径的理解和应用能力。

教学活动:1. 引导学生独立完成练习题。

2. 引导学生与同伴交流讨论,共同解决问题。

《垂直于弦的直径》教案

《垂直于弦的直径》教案

《垂直于弦的直径》教案一、教学目标:1. 让学生理解垂直于弦的直径的概念,掌握其性质和判定方法。

2. 培养学生运用几何知识解决实际问题的能力。

3. 提高学生对数学美的感知,培养学生的逻辑思维和空间想象能力。

二、教学内容:1. 垂直于弦的直径的定义及性质。

2. 垂直于弦的直径的判定方法。

3. 应用垂直于弦的直径解决实际问题。

三、教学重点与难点:1. 教学重点:垂直于弦的直径的性质和判定方法。

2. 教学难点:垂直于弦的直径在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生探究垂直于弦的直径的性质和判定方法。

2. 利用几何画板软件,动态展示垂直于弦的直径的特点,增强学生直观感知。

3. 设计具有梯度的练习题,巩固所学知识,提高学生解决问题的能力。

五、教学过程:1. 导入:利用几何画板软件,展示一个圆和一条弦,引导学生思考:如何判断一条直径是否垂直于弦?2. 新课讲解:讲解垂直于弦的直径的定义、性质和判定方法。

3. 例题讲解:分析并解决一些关于垂直于弦的直径的例题,让学生掌握解题方法。

4. 课堂练习:设计一些具有梯度的练习题,让学生巩固所学知识。

5. 总结:对本节课的主要内容进行总结,强调垂直于弦的直径在几何学中的重要性。

6. 作业布置:布置一些有关垂直于弦的直径的练习题,让学生课后巩固。

7. 课后反思:对本节课的教学效果进行反思,为下一步教学做好准备。

六、教学评价1. 评价目标:通过评价,检查学生对垂直于弦的直径概念、性质和判定方法的掌握程度,以及运用所学知识解决实际问题的能力。

2. 评价方法:课堂提问:检查学生对垂直于弦的直径的基本概念的理解。

练习题解答:评估学生运用性质和判定方法解决问题的能力。

小组讨论:观察学生在团队合作中是否能有效沟通、共同解决问题。

3. 评价内容:学生是否能准确描述垂直于弦的直径的性质。

学生是否能运用判定方法判断一条直径是否垂直于弦。

学生是否能将垂直于弦的直径的知识应用于解决几何问题。

垂直于弦的直径的数学教案

垂直于弦的直径的数学教案

垂直于弦的直径教学目标:1. 理解垂直于弦的直径的概念。

2. 学会使用垂直于弦的直径定理解决问题。

3. 能够应用垂直于弦的直径定理证明几何问题。

教学内容:1. 垂直于弦的直径的定义2. 垂直于弦的直径定理3. 垂直于弦的直径的证明4. 垂直于弦的直径的应用教学准备:1. 教学课件或黑板2. 几何图形工具3. 练习题教学过程:一、导入(5分钟)1. 引导学生回顾圆的基本概念和性质。

2. 提问:你们知道什么是直径吗?直径有什么特殊的性质吗?3. 引导学生思考:直径与弦有什么关系?二、垂直于弦的直径的定义(10分钟)1. 介绍垂直于弦的直径的定义。

2. 通过几何图形工具,展示垂直于弦的直径的例子。

3. 解释垂直于弦的直径的性质和特点。

三、垂直于弦的直径定理(10分钟)1. 介绍垂直于弦的直径定理。

2. 通过几何图形工具,展示垂直于弦的直径定理的证明过程。

3. 解释垂直于弦的直径定理的应用和意义。

四、垂直于弦的直径的证明(10分钟)1. 引导学生思考如何证明垂直于弦的直径。

2. 分组讨论,每组设计一个证明方案。

3. 展示各组的证明方案,并解释其合理性。

五、垂直于弦的直径的应用(10分钟)1. 介绍垂直于弦的直径在几何问题中的应用。

2. 通过示例,展示如何使用垂直于弦的直径定理解决几何问题。

3. 让学生尝试解决一些相关的练习题。

教学评价:1. 观察学生在课堂中的参与程度和理解程度。

2. 评估学生在练习题中的表现。

3. 收集学生的反馈意见,以便进行教学改进。

教学延伸:1. 进一步探讨垂直于弦的直径在其他几何问题中的应用。

2. 引导学生思考垂直于弦的直径与其他几何定理的联系。

3. 布置相关的课后作业,巩固学生对垂直于弦的直径的理解。

六、案例分析与问题解决(10分钟)1. 提供几个涉及垂直于弦的直径的实际问题,让学生独立解决。

2. 讨论解决问题的策略,引导学生运用垂直于弦的直径定理。

3. 分析问题解决过程中的关键步骤和思维方法。

数学《垂直于弦的直径》教案

数学《垂直于弦的直径》教案

数学《垂直于弦的直径》教案
《垂直于弦的直径》教案
一、教学目标
1. 了解垂直于弦的直径的概念及性质。

2. 掌握垂直于弦的直径的相关定理。

3. 能够应用垂直于弦的直径的相关定理解决实际问题。

二、教学重点
1. 垂直于弦的直径的概念及性质。

2. 相关定理的证明和应用。

三、教学难点
1. 单位圆和圆心角的概念。

2. 定理的证明过程。

四、教学方法
1. 讲授法。

2. 演示法。

3. 讨论法。

五、教学过程
1. 导入
教师用一张圆形卡片向学生展示,并询问学生对圆形的认识及性质。

2. 呈现问题
教师引导学生思考:“在圆内部任取一条弦,如何找到一条过
圆心的直径,使其垂直于弦?”
3. 探究证明
教师呈现“垂直于弦的直径定理”并进行证明过程讲解。

4. 案例分析
教师通过案例分析提出练习题目:在一个半径为R的圆内部,一条长为a的弦与圆心的距离为d(d<R),求证明存在一条
距离圆心为R-a/2的直径与该弦垂直。

请以证明的方式演示这
个问题。

5. 总结与归纳
教师对本节内容进行总结,重点强调垂直于弦的直径的概念、性质及相关定理的应用,加深学生的理解、记忆。

六、教学反思
垂直于弦的直径是圆的重要性质之一,具有广泛的应用,但是学生对单位圆和圆心角这些概念的理解可能会有困难,需要教师耐心讲解。

另外,在教学中要注意将证明思路讲清,让学生理清证明的逻辑,加深对相关定理的理解和应用。

垂直于弦的直径-教案

垂直于弦的直径-教案

教案:垂直于弦的直径第一章:引言教学目标:1. 了解垂直于弦的直径的概念。

2. 掌握垂直于弦的直径的性质。

教学内容:1. 引入垂直于弦的直径的定义。

2. 解释垂直于弦的直径的性质。

教学步骤:1. 引入垂直于弦的直径的概念,让学生初步了解。

2. 通过示例,解释垂直于弦的直径的性质,让学生理解并能够应用。

教学评估:1. 提问学生关于垂直于弦的直径的概念和性质的理解。

2. 让学生举例说明如何应用垂直于弦的直径的性质。

第二章:垂直于弦的直径的性质教学目标:1. 掌握垂直于弦的直径的性质。

2. 能够应用垂直于弦的直径的性质解决几何问题。

教学内容:1. 回顾垂直于弦的直径的定义。

2. 讲解垂直于弦的直径的性质。

教学步骤:1. 复习垂直于弦的直径的定义,让学生巩固记忆。

2. 讲解垂直于弦的直径的性质,并通过示例进行解释。

3. 让学生进行练习,巩固对垂直于弦的直径的性质的理解。

教学评估:1. 提问学生关于垂直于弦的直径的性质的理解。

2. 让学生解决一些应用题,检验其对垂直于弦的直径的性质的掌握程度。

第三章:垂直于弦的直径的证明教学目标:1. 能够理解和证明垂直于弦的直径的性质。

2. 能够运用证明来解决几何问题。

教学内容:1. 讲解垂直于弦的直径的证明方法。

2. 引导学生进行证明练习。

教学步骤:1. 讲解垂直于弦的直径的证明方法,让学生理解证明的过程。

2. 引导学生进行证明练习,让学生巩固证明方法。

教学评估:1. 提问学生关于垂直于弦的直径的证明方法的理解。

2. 让学生解决一些证明题,检验其对垂直于弦的直径的证明方法的掌握程度。

第四章:垂直于弦的直径的应用教学目标:1. 能够应用垂直于弦的直径的性质解决几何问题。

2. 能够运用证明来解决几何问题。

教学内容:1. 讲解垂直于弦的直径的应用方法。

2. 引导学生进行应用练习。

教学步骤:1. 讲解垂直于弦的直径的应用方法,让学生理解如何应用性质解决几何问题。

2. 引导学生进行应用练习,让学生巩固应用方法。

垂直于弦的直径的数学教案

垂直于弦的直径的数学教案

垂直于弦的直径教学目标:1. 理解垂直于弦的直径的概念。

2. 学会使用垂直于弦的直径定理解决问题。

3. 培养学生的观察能力、推理能力和解决问题的能力。

教学重点:1. 垂直于弦的直径的概念。

2. 垂直于弦的直径定理的应用。

教学难点:1. 理解垂直于弦的直径定理的证明过程。

2. 灵活运用垂直于弦的直径定理解决实际问题。

教学准备:1. 教学课件或黑板。

2. 几何图形工具,如直尺、圆规等。

教学过程:一、导入(5分钟)1. 引入圆的概念,复习圆的基本性质。

2. 提问:你们知道什么是直径吗?直径有什么特点?3. 引导学生思考:直径与弦有什么关系?二、新课讲解(15分钟)1. 讲解垂直于弦的直径的概念。

2. 通过几何图形演示垂直于弦的直径的特点。

3. 讲解垂直于弦的直径定理及其证明过程。

三、例题解析(15分钟)1. 给出例题,引导学生运用垂直于弦的直径定理解决问题。

2. 分析例题,解释解题思路。

3. 引导学生思考:还有其他解题方法吗?哪种方法更简洁?四、课堂练习(10分钟)1. 给出练习题,让学生独立解答。

2. 引导学生互相讨论,共同解决问题。

3. 讲解答案,解析解题思路。

2. 提问:你们认为垂直于弦的直径在解决圆的问题中有何作用?3. 鼓励学生提出疑问,解答学生的疑问。

教学延伸:1. 引导学生思考:垂直于弦的直径定理在实际生活中有哪些应用?2. 布置课后作业,巩固所学知识。

教学反思:六、深化理解(15分钟)1. 通过动画或实物模型展示,让学生更直观地理解垂直于弦的直径的运动特性。

2. 引导学生思考:在圆的不同位置,垂直于弦的直径的特点是否相同?3. 分析不同位置下的垂直于弦的直径的性质,得出结论。

七、拓展应用(15分钟)1. 给出一些实际问题,让学生运用垂直于弦的直径定理解决。

2. 引导学生思考:如何将实际问题转化为垂直于弦的直径的问题?3. 分析问题,解释解题思路,引导学生独立解决问题。

八、课堂讨论(10分钟)1. 提出一些关于垂直于弦的直径的问题,让学生进行课堂讨论。

《垂直于弦的直径》教案

《垂直于弦的直径》教案

《垂直于弦的直径》教案一、教学目标1. 让学生理解垂直于弦的直径的性质。

2. 培养学生运用几何知识解决实际问题的能力。

3. 提高学生的观察能力、推理能力和表达能力。

二、教学内容1. 垂直于弦的直径的性质。

2. 应用垂直于弦的直径的性质解决实际问题。

三、教学重点与难点1. 教学重点:垂直于弦的直径的性质及应用。

2. 教学难点:理解并证明垂直于弦的直径的性质。

四、教学方法1. 采用问题驱动法,引导学生观察、思考、推理。

2. 利用几何画板或实物模型,直观展示垂直于弦的直径的性质。

3. 组织小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入:通过一个实际问题,引发学生对垂直于弦的直径性质的思考。

2. 新课导入:介绍垂直于弦的直径的性质,引导学生观察、推理。

3. 实例讲解:利用几何画板或实物模型,展示垂直于弦的直径的性质。

4. 证明过程:引导学生尝试证明垂直于弦的直径的性质。

5. 练习巩固:布置一些相关练习题,让学生巩固所学知识。

6. 课堂小结:总结本节课的主要内容和垂直于弦的直径的性质。

7. 课后作业:布置一些拓展性作业,培养学生的应用能力。

六、教学评估1. 课堂提问:通过提问了解学生对垂直于弦的直径性质的理解程度。

2. 练习反馈:收集学生的练习作业,评估其掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解其合作能力和解决问题的能力。

七、教学拓展1. 引导学生思考:垂直于弦的直径性质在实际问题中的应用。

2. 推荐相关阅读材料:为学生提供一些关于垂直于弦的直径性质的深入研究文章或书籍。

八、教学反思1. 总结本节课的教学效果:回顾教学过程,评估学生的学习成果。

2. 发现问题与改进措施:分析教学中存在的问题,提出改进措施。

九、课后作业1. 巩固练习:布置一些关于垂直于弦的直径性质的练习题,让学生巩固所学知识。

2. 拓展应用:让学生尝试解决一些实际问题,运用垂直于弦的直径性质。

十、课程资源1. 教学课件:制作精美的课件,辅助教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合分析
学生对圆的轴对称性理解比较深刻,定理及推论引出会比较容
易。定理及推论的真正运用需要很强的逻辑思维能力,会有一些
困难。
自主学习单
课题名称
24.1.2 垂直于弦的直径(1)
学习目标与任务
1、知识与技能目标:
①理解圆是轴对称图形,任何一条直径所在直线都是它的对称轴. ②掌握垂径定理及其推论.
③学会运用垂径定理及其推论解决一些有关证明、计算和作图问题.
(2)、 如图(2),AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,CD=1, 求弦AB的长。
学习自测与困惑
为了检测学生对本课教学目标的达成情况,,我设计了分别用代数和几何方法进一步加强定理的应用训练反馈题,针对学生解答情况,及时查漏补缺。
1、如图,圆弧形桥拱的跨度AB=12米,
拱高CD=4米,求拱桥的半径。
2、如图, 圆弧形蔬菜大棚的剖面如图所示,
AB=8m,∠CAD=30°,求大棚高度CD。
3、如图,在⊙O中,AB、AC是互相垂直的两条弦,
OD⊥AB于D,OE⊥AC于E,且AB=8cm,AC=6cm,
那么⊙O的半径OA长为
采用的方法
根据教学目标及我所教班级学生的知识基础,我选用引导发现法和直观演示法。让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验一观察一猜想一证明”的活动。最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一-的原则。同时,在教学中,我充分利用教具和课件,提高教学效果,在实验演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑。培养学生直党思维能力,这符合新课程理念下的直观性与可接受性原则。
2、过程与方法目标:
经历探索发现圆的对称性,证明垂径定理及其推论的过程,锻炼学生的思维品质,学习几何证明的方法.
3、情感与态度目标:
在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识.
学习内容与方法
(一) 创设情境,提出问题
赵州桥求半径问题
(二)动手操作,探究圆的对称性
(四)、定理的应用:
为了及时巩固,帮助学生对所学定理的理解与使用,讲完定理及变式后,我依据本班学生的实际情况及他们的心理特点,首先设计了一个补充例题1,(出示例1)
例题1:如图所示,在⊙O中,OC⊥AB于C, OA= 2cm,OC=1cm,求弦AB的长。
练习:(学生演板)
(1)、如图(1),在⊙O中,弦AB的长为8,圆心O到AB得距离为3,求⊙O的半径。
教师演示:用纸剪一个圆,沿着圆的任意一条直径对折,重复几次,你发现了什么?由此你得到什么结论?
结论:圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(三)、讲解ቤተ መጻሕፍቲ ባይዱ课---探求新知:
首先通过刚才让学生实验、观察得出猜想:垂直于弦的直径平分弦,并且平分弦所对的两条弧。然后让学生小组合作讨论上述猜想的条件和结论,并将文字语言转化为符号语言,接下来再引导学生写出已知、求证。由于在分清定理的题设和结论教学时作好了铺垫,从而达到解决难点的目的。最后师生共同演示、验证猜想的正确性,同时利用动画得出证明方法,从而解决本节课的又一难点——叠合法的证题方法。此时再板书垂径定理的内容,强调“垂”与“径”缺一不可,最后进行定理变式为了强调定理及定理变式中的条件,我出示训练一,让学生抢答。
学习起点分析与自主学习单
学习起点分析
分析学情因素
1.学生已学过轴对称图形的概念及其性质;数的范围已经扩充到实数,能灵活运用勾股定理解决实际问题.
2.学生在第24.1.1节学习了圆的定义和弦、弧、等弧等概念.
3.学生已具备动手操作、观察思考和合作交流的能力,初步具备了运用建模思想将实际问题转化为数学数学问题的能力.
相关文档
最新文档