离散数学考试题详细答案资料讲解

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

离散数学期末考试题(附答案和含解析3)

离散数学期末考试题(附答案和含解析3)

A一、单项选择题2.设集合A={1,2,3},下列关系R 中不是等价关系的是( D )A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式()F (x ,y )→( y )G (x ,y )中变元x 是( B )x ∀∃A .自由变元;(前面无∀或∃量词) B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词) D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}A ;C .{{4,5}}A ;D .∅∈A.⊆⊆5.设论域为{l ,2},与公式等价的是( A ))()(x A x ∃A.A (1)A (2); B. A (1)A (2); C.A (1)∧A (2);D. A (2)A (1).∨→→6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13;B.14 ;C.16 ;D.17 .//设一度结点数为n,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群。

离散数学期末考试题(附答案和含解析)

离散数学期末考试题(附答案和含解析)

一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。

6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。

//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。

//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。

//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。

//备注:二元运算为x*y=max{x,y},x,y ∈A 。

10.下图所示的偏序集中,是格的为 c 。

//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。

2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

离散数学期末考试试题与答案

离散数学期末考试试题与答案
这与结论 ∑ d(v) =2|E| Байду номын сангаас盾! 矛盾说明 T 不止 一片树叶。
12. (8分) (G, · )是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1· u-1· g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g· u-1· u=g· e=g e**g=u*g=u· u-1· g=e· g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u· g-1· u 这里, g-1是在代数运算· 下的逆元
13. (5分) G是一个群,H,K是G正规子群. 证明: H∩K是G正规子群.
证明: (1) (3分) a,b HK,就有a,b H, a,b K, 因为H, K是群G的子群, 所以,a*b-1H,a*b-1K,因此a*b-1 HK。故 HK是G的子群。 (2) (2分) 对于a HK, gG, 就有a H,aK。 因为H,K是群G的正规子群,所以 g*a*g-1H, g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
1. (6分) 已知 A={{a},a,b}, B={{b}, a}, 求 A×B, AB, P(A). 解: A×B={({a},{b}), ({a},a), (a, {b}), (a, a), (b, {b}), (b, a)} AB=(A-B) ∪(B-A)={{a}, b, {b}} P(A)={Ø, {a}, a, b, {{a}, a}, {{a},b}, {a,b}, A}.
2. (4分) 已知R1,R2是A上的对称关系, R1∘R2对称吗? 证明或 举反例说明.

离散数学习题答案解析

离散数学习题答案解析

离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。

离散数学期末考试试题及答案详解

离散数学期末考试试题及答案详解

离散数学期末考试试题及答案详解一、【单项选择题】(本大题共15小题,每题3分,共45分)在每题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,那么AB( )。

[A] 3,8 [B]3 [C]8 [D]3,83、假设X是Y的子集,那么一定有( )。

[A]X不属于Y [B]X∈Y[C]X真包含于 Y [D]X∩Y=X4、以下关系中是等价关系的是( )。

[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,以下表述中错误的选项是( )。

[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的.每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李获得好成绩,命题“除非小李努力学习,否那么他不能获得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},那么A到A的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,那么命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.那么G 的割(点)集是( )。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。

答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。

若命题P和Q等价,则记作P⇔Q。

蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。

若命题P蕴含Q,则记作P→Q。

2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。

答案:设x属于A∩B,即x同时属于A和B。

根据并集的定义,若元素属于A或B,则它属于A∪B。

因此,x属于A∪B。

由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。

3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。

在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。

4. 描述有限自动机的组成部分及其功能。

答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。

输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。

5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。

在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。

确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。

从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。

重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学考试题详细答案离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(⌝P⇄Q)∧(P⇄R∨S)b)我今天进城,除非下雨。

设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:⌝Q→P或⌝P →Qc)仅当你走,我将留下。

设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P2.用谓词逻辑把下列命题符号化a)有些实数不是有理数设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:∃x(R(x) ∧⌝Q(x)) 或⌝∀x(R(x) →Q(x))b)对于所有非零实数x,总存在y使得xy=1。

设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为:∀x(R(x) ∧⌝E(x,0) →∃y(R(y) ∧E(f(x,y),1))))c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)⇄∀a(A(a)→∃b(B(b) ∧ E(f(a),b) ∧∀c(S(c) ∧ E(f(a),c) →E(a,b))))二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)(P→(Q→R))↔(R→(Q→P))⇔(⌝P∨⌝Q∨R)↔(P∨⌝Q∨⌝R)⇔((⌝P∨⌝Q∨R)→(P∨⌝Q∨⌝R)) ∧ ((P∨⌝Q∨⌝R) →(⌝P∨⌝Q∨R)).⇔((P∧Q∧⌝R)∨ (P∨⌝Q∨⌝R)) ∧ ((⌝P∧Q∧R) ∨(⌝P∨⌝Q∨R))⇔(P∨⌝Q∨⌝R) ∧(⌝P∨⌝Q∨R) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧R)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)a) T b) F3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。

(4分)∀x(F(x)→G(x))→(∃xF(x)→∃xG(x)) ⇔∀x(F(x)→G(x))→(∃yF(y)→∃zG(z))⇔∀x(F(x)→G(x))→∀y∃z(F(y)→G(z)) ⇔∃x∀y∃z((F(x)→G(x))→ (F(y)→G(z)))4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|a) 真命题。

因为(A⋃B)-C=(A⋃B)⋂~C=(A⋂~C)⋃(B⋂~C)=(A-C)⋃(B-C)b) 真命题。

因为如果f是从集合A到集合B的入射函数,则|ranf|=|A|,且ranf⊆B,故命题成立。

5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?a) 52 b) 5!=1206.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)图1B的最小元是b,无最大元、极大元是d和e、极小元是b、上界集合是{g}、下界集合是{a,b}、上确界是g、下确界是b.7.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)K[S]=n; K[P(S)]=n2; K[N]=ℵ0,K[N n]=ℵ0, K[P(N)]=ℵ; K[R]=ℵ, K=[R×R]= ℵ,K[{0,1}N]= ℵ三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)a) 证(1)B P(附加条件)(2)B→(A∧⌝S) P(3) A∧⌝S T(1)(2) I(4) A T(3) I(5) A→(B∧C) P(6) B∧C T(4)(5) I(7) C T(6) I(8) (E→⌝F)→⌝C P(9) ⌝(E→⌝F) T(7)(8) I(10) E∧F T(9) E(11) E T(10) I(12) B→E CPb) 证 (1) ∃x⌝R(x) P(2) ⌝R(c) ES(1)(3) ∀x(Q(x)∨R(x)) P(4) Q(c)∨R(c) US(3)(5) Q(c) T(2)(4) I(6) ∀x(P(x)→⌝Q(x)) P(7) P(c)→⌝Q(c) US(6)(8) ⌝P(c) T(5)(7) I(9) ∃x ⌝P(x) EG(8)2. 设R 1是A 上的等价关系,R 2是B 上的等价关系,A ≠∅且B ≠∅,关系R满足:<<x 1,y 1>,<x 2,y 2>>∈R ,当且仅当< x 1, x 2>∈R 1且<y 1,y 2>∈R 2。

试证明:R 是A ×B 上的等价关系。

(10分)证 任取<x,y >,<x,y >∈A ×B ⇒x ∈A ∧ y ∈B ⇒<x,x>∈R 1∧<y,y>∈R 2⇒<<x,y>,<x,y>>∈R ,故R 是自反的任取<<x,y >,<u,v>>,<<x,y >,<u,v>>∈R ⇒<x,u>∈R 1∧<y,v>∈R 2⇒<u,x>∈R 1∧<v,y>∈R 2⇒<<u,v>,<x,y>>∈R.故R 是对称的。

任取<<x,y >,<u,v>>,<<u,v>,<s,t>>∈R<<x,y >,<u,v>>,<<u,v>,<s,t>>∈R ⇒<x,u>∈R 1∧<y,v>∈R 2∧<u,s>∈R 1∧<v,t>∈R 2⇒(<x,u>∈R 1∧<u,s>∈R 1)∧(<y,v>∈R 2∧<v,t>∈R 2)⇒<x,s> R 1∧<y,t>∈R 2⇒<<x,y>,<s,t>>∈R, 故R 是传递的。

综上所述R 是A ×B 上的等价关系。

3. 用伯恩斯坦定理证明(0,1]和(a,b)等势。

(10分)证 构造函数f :(0,1]→(a,b),f(x)=22b x a +,显然f 是入射函数 构造函数g: (a,b)→(0,1],a b a x x g --=)(,显然g 是入射函数, 故(0,1]和(a,b)等势。

由于22122221⎪⎭⎫ ⎝⎛+++≥+++r m m m r m m m r r ΛΛ,所以22r n r s ≥4. 设R 是集合A 上的等价关系,A 的元素个数为n ,R 作为集合有s 个元素,若A 关于R 的商集A/R 有r 个元素,证明:rs ≥n 2。

(10分)证 设商集A/R 的r 个等价类的元素个数分别为m 1,m 2,…,m r ,由于一个划分对应一个等价关系,m 1+m 2+…+m r =n , s m m m r =+++22221Λ 由于22122221⎪⎭⎫ ⎝⎛+++≥+++r m m m r m m m r r ΛΛ(r 个数的平方的平均值大于等于这r 个数的平均值的平方),所以22rn r s ≥,即2n rs ≥四、 应用题(10分)在一个道路上连接有8个城市,分别标记为a,b,c,d,e,f,g,h 。

城市之间的直接连接的道路是单向的,有a →b, a →c, b →g, g →b, c →f, f →e, b →d, d →f.对每一个城市求出从它出发所能够到达的所有其他城市。

解 把8个城市作为集合A 的元素,即A={a,b,c,d,e,,f,g,h},在A 上定义二元关系R ,<x,y >∈R 当且仅当从x 到y 有直接连接的道路,即R={<a,b>,<a,c>,<b,g>,<g,b>,<c,f>,<f,e>,<b,d>,<d,f>}那么该问题即变为求R 的传递闭包。

利用Warshal 算法,求得t(R)=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0000000001111010000100000000000000110000001100000111100001111110 那么从城市x 出发能到达的城市为})(,|{}])[{)((y x R t y x y x I R t A ≠∧>∈<=-,故有},,,,,{}])[{)((g f e d c b a I R t A =-},,,{}])[{)((g f e d b I R t A =-},{}])[{)((f e c I R t A =-},{}])[{)((f e d I R t A =-}{}])[{)((e f I R t A =-},,,{}])[{)((f e d b g I R t A =-φ=-=-}])[{)((}])[{)((e I R t e I R t A A离散数学 考试题答案一、 命题符号化(共6小题,每小题3分,共计18分)1. 用命题逻辑把下列命题符号化a) 设P 表示命题“上午下雨”,Q 表示命题“我去看电影”,R 表示命题“在家里读书”,S 表示命题“在家看报”,命题符号化为:(⌝P ⇄Q )∧(P ⇄R ∨S)b) 设P 表示命题“我今天进城”,Q 表示命题“天下雨”,命题符号化为:⌝Q →P或⌝P →Qc) 设P 表示命题“你走”,Q 表示命题“我留下”,命题符号化为: Q →P2. 用谓词逻辑把下列命题符号化a) 设R(x)表示“x 是实数”,Q(x)表示“x 是有理数”,命题符号化为:∃x(R(x) ∧⌝Q(x)) 或 ⌝∀x(R(x) →Q(x))b) 设R(x)表示“x 是实数”,E(x,y)表示“x=y ”,f(x,y)=xy, 命题符号化为: ∀x(R(x) ∧⌝E(x,0) →∃y(R(y) ∧E(f(x,y),1))))c)设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)⇄∀a(A(a)→∃b(B(b) ∧ E(f(a),b) ∧∀c(S(c) ∧ E(f(a),c) →E(a,b))))二、简答题(共6道题,共32分)1.(P→(Q→R))↔(R→(Q→P))⇔(⌝P∨⌝Q∨R)↔(P∨⌝Q∨⌝R)⇔((⌝P∨⌝Q∨R)→(P∨⌝Q∨⌝R)) ∧ ((P∨⌝Q∨⌝R) →(⌝P∨⌝Q∨R)).⇔((P∧Q∧⌝R)∨ (P∨⌝Q∨⌝R)) ∧ ((⌝P∧Q∧R) ∨(⌝P∨⌝Q∨R))⇔(P∨⌝Q∨⌝R) ∧(⌝P∨⌝Q∨R) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧R)2.a) T b) F3.∀x(F(x)→G(x))→(∃xF(x)→∃xG(x)) ⇔∀x(F(x)→G(x))→(∃yF(y)→∃zG(z))⇔∀x(F(x)→G(x))→∀y∃z(F(y)→G(z)) ⇔∃x∀y∃z((F(x)→G(x))→ (F(y)→G(z)))4.a) 真命题。

相关文档
最新文档