离散数学题库与答案

合集下载

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

离散数学复习题含答案

离散数学复习题含答案

离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。

请写出集合{1, 2, 3}和{2, 3, 4}的交集。

答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。

请判断复合命题“p且q”的真值。

答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。

请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。

答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。

请计算表达式(A∨B)∧(¬A∨¬B)的值。

答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。

答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。

若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。

答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。

8. 正则表达式正则表达式用于描述字符串的模式。

请写出匹配任意长度的数字串的正则表达式。

答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。

请判断命题p∨¬p和命题¬(p∧¬p)是否等价。

答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。

请简述后序遍历的步骤。

答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。

A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。

A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。

A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。

A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。

A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。

A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。

A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。

A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。

A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。

答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理逻辑部分选择、填空及判断✓下列语句不是命题的( A )。

(A) 你打算考硕士研究生吗? (B) 太阳系以外的星球上有生物。

(C) 离散数学是计算机系的一门必修课。

(D) 雪是黑色的。

✓命题公式P→(P∨⌝P)的类型是( A )(A) 永真式(B) 矛盾式(C) 非永真式的可满足式(D) 析取式✓A是重言式,那么A的否定式是( A )A. 矛盾式B. 重言式C. 可满足式D.不能确定✓以下命题公式中,为永假式的是( C )A. p→(p∨q∨r)B. (p→┐p)→┐pC. ┐(q→q)∧pD. ┐(q∨┐p)→(p∧┐p)✓命题公式P→Q的成假赋值是( D )A. 00,11B. 00,01,11C.10,11D. 10✓谓词公式)xxP∧∀中,变元x是 ( B )R,(x)(yA. 自由变元B. 既是自由变元也是约束变元C. 约束变元D. 既不是自由变元也不是约束变元✓命题公式P→(Q∨⌝Q)的类型是( A )。

(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 析取式✓设B不含变元x,)xx→∃等值于( A )A)((BA. B( D. BxxA→x∃)((∃ C. Bx∧A∃)( B. )∀)xA→x)(Ax(Bx∨✓下列语句中是真命题的是( D )。

A.你是杰克吗? B.凡石头都可练成金。

C.如果2+2=4,那么雪是黑的。

D.如果1+2=4,那么雪是黑的。

✓从集合分类的角度看,命题公式可分为( B )A. 永真式、矛盾式B. 永真式、可满足式、矛盾式C. 可满足式、矛盾式D. 永真式、可满足式✓命题公式﹁p∨﹁q等价于( D )。

A. ﹁p∨qB. ﹁(p∨q)C. ﹁p∧qD. p→﹁q✓一个公式在等价意义下,下面写法唯一的是( D )。

(A) 式 (B) 析取式 (C) 合取式 (D) 主析取式✓下列含有命题p,q,r的公式中,是主析取式的是( D )。

(A) (p ∧ q ∧ r) ∨ (⌝p ∧ q) (B) (p ∨ q ∨ r) ∧ (⌝p ∧ q)(C) (p ∨ q ∨ r) ∧ (⌝p ∨ q ∨ r)(D) (p ∧ q ∧ r) ∨ (⌝p ∧ q ∧ r) ✓ 设个体域是整数集合,P 代表∀x ∀y ((x <y )→(x -y <x )),下面描述正确的是( C )。

(A) P 是真命题 (B) P 是假命题(C) P 是一阶逻辑公式,但不是命题 (D) P 不是一阶逻辑公式✓ 对一阶逻辑公式((,)(,))(,)x y P x y Q y z xP x y ∀∀∧∧∃的说确的是( B ).(A) x 是约束的,y 是约束的,z 是自由的;(B) x 是约束的,y 既是约束的又是自由的,z 是自由的;(C) x 是约束的,y 既是约束的又是自由的,z 是约束的;(D) x 是约束的,y 是约束的,z 是约束的;✓ n 个命题变元可产生( D )个互不等价的布尔小项。

(A) n (B) n 2 (C) 2n (D) 2n✓ 命题“没有不犯错误的人”符号化为( D )。

设x x M :)(是人,x x P :)(犯错误。

(A) ))()((x P x M x ∧∀ (B) )))()(((x P x M x ⌝→∃⌝(C) )))()(((x P x M x ∧∃⌝ (D) )))()(((x P x M x ⌝∧∃⌝✓ 下列命题公式等值的是( C )B B A A Q P Q Q P Q B A A B A A QP Q P ),()D (),()C ()(),()B (,)A (∧∨⌝∨∨⌝∨→→→⌝→→∨⌝∧⌝ ✓ 给定命题公式:)(R Q P ∧∨,则所有可能使它成真赋值为( B ),成假赋值为( C )。

(A) 111,011;000 (B) 111,011,100,101,110;(C) 000,010,001; (D) 000,110,011,001,100。

✓ 给定前提:R P Q S Q P ⌝∨→→,,)(,则它的有效结论为:( B )。

(A) S ; (B) S R →; (C) P ; (D) Q R →。

✓ 命题:“所有的马都比某些牛跑得快”的符号化公式为:( C )。

假设:)(x H :x 是马;)(x C :x 是牛;),(y x F :x 比y 跑得快。

(A) ))),()(()((y x F y C y x H x ∧∃∧∀; (B) ))),()(()((y x F y C y x H x →∃→∀;(C) ))),()(()((y x F y C y x H x ∧∃→∀; (D) ))),()(()((y x F y C x H x y ∧→∀∃。

✓ 设P :a 是偶数,Q :b 是偶数.R :a +b 是偶数,则命题“若a 是偶数,b 是偶数,则a +b 也是偶数”符号化为( C ).(A) P ∧Q ∧R (B) P ∧Q ⇔R (C) P ∨Q →R (D) P ∧Q →R✓ 表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( B ).(A) P (x ,y ) (B) P (x ,y )∨Q (z ) (C)R (x ,y ) (D)P (x ,y )∧R (x ,y )✓ 判断一个语句是否为命题,首先要看它是否为述句,然后再看它是否有唯一的真值。

✓ 命题公式(P ∨Q)→R 的只含联结词⌝和∧的等值式为:))((R Q P ⌝∧⌝∧⌝⌝⌝。

✓ B A B A ⇒∧→)(为假言推理规则。

✓ 在一阶逻辑中符号化命题“有会说话的机器人。

”设M(x):x 是机器人; S(x):x是会说话的;上述句子可符号化为: (∃x)(M(x)∧S(x)) 。

✓ 设p:我们爬山,q:我们划船,在命题逻辑中,命题“我们不能既爬山又划船”的符号化形式为¬(p ∧q ) .✓ 设p:小王走路,q:小王唱歌,在命题逻辑中,命题“小王边走路边唱歌”的符号化形式为 (p ∧q ) .✓ 量词否定等值式⇔⌝∀)(x xA )(x A x ⌝∃。

✓ 设F(x):x 是人,H(x,y):x 与y 一样高,在一阶逻辑中,命题“人都不一样高”的符号化形式为(()()(,))x y F x F y H x y ∀∀∧→.✓ 若含有n 个命题变项的公式A 是矛盾式,则A 的主合取式含 2n 个极小项。

✓ 取个体域为全体整数的集合,给出下列各公式:(1) ()()()()x y z x y z ∀∀∃-= (2) ()()x xy x ∀= (3) ()()(2)x y x y y ∃∀+= 其中公式 (1) 的真值为真,公式 (3) 的真值为假。

✓ 若含有n 个命题变项的公式A 是重言式,则A 的主合取式为 1或T 。

✓ 命题公式)(R Q P ∧∨的所有成假赋值为 000,001,010 。

✓ 谓词公式()()xP x xQ x ∀→∃的前束式为(()())x P x Q x ∃⌝∨。

✓ 在一阶逻辑中,将命题“没有不能表示成分数的有理数”符号化为 ✓ ))()((x G x F x ⌝∧⌝∃或))()((x G x F x →∀(设)(x F :x 是有理数;)(x G :x 能表示成分数。

)✓ 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为A (1)∨A (2)∨(B (1)∧B (2)) .✓ 设P ,Q 是两个命题,当且仅当P ,Q 的真值均为1时,Q P ↔的值为1。

( × ) ✓ 谓词公式A 是q q p ∧→⌝)(的代换实例,则A 是重言式。

( × ) ✓ 重言式的主析取式包含了该公式的所有的极小项。

( √ ) ✓ 命题公式A →(B →C)与(A ∧B)→C 等价。

( √ ) ✓ 设A ,B ,C 为命题公式,若,A B B C ⇒⇒,则A C ⇒。

( √ )✓ 在一阶谓词公式中,同一变元符号不能够既约束出现又自由出现。

( × ) ✓ 在一阶逻辑中,公式的前束式是唯一的。

( × )计算✓ 求命题公式(((p ∨q)∧¬p)→q)∧r 的主析取式。

答案:m 1∨m 3∨m 5∨m 7✓ 用等值演算法求公式(())P Q R P ∨→∧⌝的主析取式,并由主析取式求主合取式。

解:主析取式:013(())()()()()()()()()P Q R PP Q R PP P Q P R P P Q R P Q R P Q R P Q R m m m ∨→∧⌝⇔∨⌝∨∧⌝⇔∧⌝∨⌝∧⌝∨∧⌝⇔⌝∧⌝∧⌝∨⌝∧⌝∧∨⌝∧⌝∧∨⌝∧∧⇔∨∨主合取式为:24567M M M M M ∧∧∧∧✓ 求公式(P ∧Q )∨(﹁P ∧R )的主析取式,并由主析取式求主合取式。

解:(﹁P ∧﹁Q ∧R )∨(﹁P ∧Q ∧R )∨(P ∧Q ∧﹁R )∨(P ∧Q ∧R )主合取式为:(P∨R∨Q)∧(﹁Q∨P∨R)∧(﹁P∨Q∨R)∧(﹁P∨Q∨﹁R)✓化公式))]}xyyAyxyyx→B∧∃∀⌝为前束式。

→∃A∀∀x),((((),[)xBx(y){,,(y解:原式))]}xyxyByyxx→∀⌝∃⇔⌝∃∨∧∀∃AyA),([((y),)(,Bx(yx)(,{xyxyAyx→yxBy∃∃∃⇔∧∀∃∨⌝⌝A((),,)y,(())]}[Bx(yx){,)(uyxyAwx→vuBv∃∃∃⇔A∀∃∨⌝⌝∧((),,)w,(())]}uB[(wu)){,(xx→yAvB⌝wuy∀∃⇔u∃∧⌝∃∃∨v(),((,))]}()[,uw)AB,u({wvyuux→ByxA∃∃∃⇔v∀∃∨⌝∧⌝w((),,)A,(())]}Bu[u{w),(w(或))]}uyx⌝vBxA∧y∃∃⇔)u∃∀⌝∧∃∨w()v((,,()[,u)ABw,({wu证明✓构造下面推理的证明:任何自然数都是整数;存在着自然数。

所以存在着整数。

个体域为实数集合R。

证明:先将原子命题符号化:设()G x:x为整数。

则F x:x为自然数,()前提:(()())x F x G x∀→,()∃xF x结论:()∃xG x①()∃前提引入xF x②()F c① ES规则③(()())∀→前提引入x F x G x④()()F cG c→③ US规则⑤()G c②④假言推理⑥()∃⑤ EG规则xG x✓用自然推理系统中,证明下列推理:(∀x)(A(x)→B(x)) ⇒ ((∀x)A(x)→(∃x)B(x))证明:①(∀x)A(x) 附加前提引入②A(c) ①-∀③(∀x)(A(x)→B(x)) 前提引入④A(c)→B(c) ③-∀⑤B(c) ②④假言推理⑥(∃x)B(x) ⑤+∃⑦(∀x)A(x)→(∃x)B(x) ①⑥CP 规则⑧t ⑤⑥假言推理✓ 在自然推理系统P 中构造下面推理的证明:前提:q p r q p ,),(→→结论:s r ∨证明:○1)(r q p →→ 前提引入 ○2p 前提引入 ○3r q → ○1○2假言推理 ○4q 前提引入 所以 (∀x)(A(x)→B(x)) ⇒ ((∀x)A(x)→(∃x)B(x))✓ 判断下面推理是否正确,并证明你的结论。

相关文档
最新文档