九年级上册数学单元练习 概率初步 单元测试题3 含答案

合集下载

人教版九年级数学《概率初步》单元测试题(含答案)

人教版九年级数学《概率初步》单元测试题(含答案)

人教版九年级数学《概率初步》单元测试题一、选择题(每题3分,共18分):1.已知事件A :小明刚到教室,上课铃就响了;事件B :掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是( )A.只有事件A 是随机事件B.只有事件B 是随机事件C.都是随机事件D.都是确定性事件2.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个黄球,4个蓝球.若随机摸出一个球是蓝球的概率为13,则随机摸出一个球是红球的概率是( )A.14B.13C.512D.123.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天降雨的概率为40%”,表示明天有40%的时间都在下雨C.“篮球队队员在罚球线上投篮一次,投中”为随机事件D.“0a a ³是实数,”是不可能事件4.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率是( )A.310B.110C.19D.185.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1、2、3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( )A.13B.49C.12D.596.如图,ABC 是一块绿化带,将阴影部分修建为花圃.已知15,9,12,AB AC BC ===阴影部分是ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.6p C.8pD.5p二、填空题(每题3分,共18分):7.“任意画一个四边形,其内角和是360度”是 事件(填随机、必然或不可能).8.投掷一个骰子(六个面上分别标有数字1、2、3、4、5、6)一次,得到正面向上的数字为奇数的概率是 .9.同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是 . 10.在一个不透明的盒子中装有n 个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有球摇匀,然后随机摸出一个球后放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是 .11.020192,(1)---.把卡片背面朝上洗匀后,先随机抽取一张记下数字后放回,洗匀后再抽取一张,则两次抽到的数字互为相反数的概率是 .12.如图,随机地闭合开关12345S S S S S 、、、、中的三个,能够使21L 、L 两个小灯泡同时发光的概率是 .三、解答题(每题10分,共60分):13. 九(1)班从三名男生(含小明)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n 名.(1)当n 为何值时,男生小明被选中参加比赛是必然事件? (2)当n 为何值时,男生小明被选中参加比赛是不可能事件? (3)当n 为何值时,男生小明被选中参加比赛是随机事件?14.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.15.某市今年中考的理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B 和化学实验F (记作事件m )的概率是多少?16.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A .(2)先从袋子中取出m 个红球,再放入个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m 的值.17.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A 1,A 2),(B 1,B 2)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.18.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢,请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.五、解答题(每题12分,共24分):19.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.20.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.人教版九年级数学《概率初步》单元测试题(参考答案)一、选择题(每题3分,共18分):1.A2.A3.C4.B5.D6.B二、填空题(每题3分,共18分):7. 必然8.12 9.12 10. 10011. 1412. 15三、解答题(每题10分,共60分)13. (1)当n 为1时,男生小强参加是必然事件.(2)当n 为4时,男生小强参加是不可能事件.(3)当n 为2或3时,男生小强参加是随机事件.14. 1. 解:(1)解法一:画树状图如下:所有出现的等可能结果共有12种,其中满足条件的结果有2种. ∴P(恰好选中甲、乙两位同学)=212=16.(2)P(恰好选中乙同学)=13.15.解:(1)将100米、50米、引体向上、立定跳远分别用A ,B ,C ,D 表示,画树状图如解图:可得所有等可能选择的结果有四种,分别为:AC ,AD ,BC ,BD ;∴两人所选项目完全相同的概率为:P =416=14.16. 解:(1)(2)依题意,得6+m 10=45,解得m =2.17.(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋任取出一只,有A 1A 2,A 1B 2,B 1B 2,B 1A 2四种情况,恰好匹配的有A 1A 2,B 1B 2两种情况,∴P(恰好匹配)=24=12;(2)画树状图如下:所有可能的结果:A 1A 2,A 1B 1,A 1B 2;A 2A 1,A 2B 1,A 2B 2;B 1A 1,B 1A 2,B 1B 2;B 2A 1,B 2A 2,B 2B 1, 可见,从这四只拖鞋中随机地取出两只,共有12种等可能的情况,其中恰好匹配的有4种,分别是A 1A 2,A 2A 1,B 1B 2,B 2B 1,∴P(恰好匹配)=412=13.18.解:(1)∵在标号为1,2,3,4,5,6的六个小球中,标号数字为奇数的球有3个,∴摸到标号数字为奇数的小球的概率为:36=12;(2)画树状图如解图:如图,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲赢)=1836=12,P (乙赢)=1836=12,∴这个游戏对甲、乙两人是公平的.三、解答题(每题12分,共24分)19.(1)所有可能的两位数用列表法列举如下表:(2)由(1)知,所有可能的两位数共有16个,即16种等可能结果,其中算术平方根大于4且小于7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.20.(1)12;(2)解法一:(3)由树状图可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:(6分)比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.解法二:比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.。

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。

数学九年级上册《概率初步》单元测试题(附答案)

数学九年级上册《概率初步》单元测试题(附答案)
A. B. C. D.
二、填空题(每题3分,共24分)
11.从分别标有1,2,3,…,50的50张卡片中抽出2的倍数的卡片的可能性________抽出4的倍数的卡片的可能性(填”大于”“小于”或”等于”).
12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).
(5,4)
(5,5)
(5,6)
6
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
6.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是( )
A. B. C. D.
【答案】C
20.如图所示的转盘,分成三个相同的扇形,指针位置固定转动转到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).
(1)求事件”转动一次,得到的数恰好是0”发生的概率;
(2)写出此情景下一个不可能发生的事件.
(3)用树状图或列表法,求事件”转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.
【详解】设需要在这个口袋中再放入x个绿球,得: ,
解得:x=2.
所以需要在这个口袋中再放入2个绿球.故选C.
【点睛】本题考查了概率的知识点,解题的关键是熟练掌握求概率的公式:概率=所求情况数与总情况是之比.
9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
15.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.

人教版数学九年级上学期《概率初步》单元检测附答案

人教版数学九年级上学期《概率初步》单元检测附答案
故选择7获胜的可能性大.
故选A.
[点睛]本题考查用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
[答案]B
[解析]
分析:
详解:根据题意可得共有6种情况:①k=-1,m=1;②k=1,m=-1;③k=-1,m=2;④k=2,m=-1;⑤k=1,m=2;⑥k=2,m=1;符合题意的有①和③,则P(不经过第二象限)= ,故选B.
A. B. C. D.
[答案]D
[解析]
试题分析:好人牌有六张,共有9张牌,所以抽到好人牌的概率是 ,故选D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
A.7B.6C.5D.4
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
4.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取1张,那么小明抽到好人牌的概率是( )
A. B. C. D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
6.如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为( )

人教版数学九年级上册《概率初步》单元综合检测题含答案

人教版数学九年级上册《概率初步》单元综合检测题含答案

人教版数学九年级上学期《概率初步》单元测试(满分120分,考试用时120分钟)一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.学|科|网...学|科|网...学|科|网...23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.24.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有个,黄球有个,现从中任意摸出一个是白球的概率为.试求袋中蓝球的个数;第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.,两个口袋中,都装有三个相同的小球,分别标有数字,,,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从袋中随机摸一个球,同时小丽从袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表或画树状图加以说明.26.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:请估计:当很大时,摸到白球的频率将会接近于多少?摸球的次数摸到白球的次数摸到白球的概率假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?试估算口袋中黑、白两种颜色的球各有多少个?参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.【答案】D【解析】【分析】根据甲获胜的概率+和棋的概率+乙获胜的概率=1,求得乙获胜的概率,即可求得乙不输的概率.【详解】根据题意,乙获胜的概率是1-20%-40%=40%,∴乙不输的概率为::40%+40%=80%.故选D.【点睛】本题主要考查了概率的意义,根据“甲获胜的概率+和棋的概率+乙获胜的概率=1” 求得乙获胜的概率,是解决问题的关键.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.【答案】D【解析】试题分析:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.考点:概率公式.视频3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个【答案】B【解析】【分析】根据概率的意义依次判断后即可解答.【详解】①一事件发生的概率不可能大于1,正确,②大量试验中事件发生的频率就是事件发生的概率;不正确,概率是多次实验数据下的结果,频率只可近似的看作概率;③若一堆产品的合格率为95%,则从中任取100件就一定有95件合格品,5件次品,③错误,④用列举法求概率时列举出来的所有可能的结果应该是等可能的,正确.正确的有2个,故选B.【点睛】概率是反映事件的可能性大小的量.概率是大量实验数据下的结果,在小数据条件下,概率就失去意义了.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.【答案】B【解析】试题分析:偶数有2、4、6,则P(向上的一面的点数为偶数)=.考点:概率的计算5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看刚好能组成“细心”的情况占总情况的多少即可.【详解】画树状图:学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次【答案】B【解析】【分析】因为只有两种颜色,所以如果前两次取出的颜色不同,则第三次取出的一定与前两次中的某一次的颜色相同.【详解】若第一次取出的是蓝色,第二次取出的若与第一次的颜色不同,是白色,则第三次取出的若是蓝色,就与第一次取出的颜色相同,若是白色就与第二次取出的颜色相同.所以最多取3次就能保证取得同样颜色的一双袜子.故选B.【点睛】本题考查了概率的意义,利用只有蓝、白两种颜色,取出的两种颜色各占一半是解题的关键.7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定【答案】A【解析】【分析】列出图表,然后根据概率公式列式进行计算即可得解.【详解】列表如下:共有100种情况,连续两次随机数相同的有10种情况,所以,P(连续两次随机数相同)=.故选A.【点睛】本题考查概率的求法,熟知概率公式(概率=所求情况数与总情况数之比)是解决问题的关键.8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.【答案】C【解析】【分析】列举出所有情况,让甲的点数大于乙的情况数除以总情况数即为所求的概率.【详解】列表得:由表格可知,共有36种等可能的情况,甲的点数大于乙时,共有5+4+3+2+1=15种情况,甲获胜的机率是=.故选C.【点睛】本题考查了用列表法(或树状图法)求概率,列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果;当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利【答案】C【解析】试题分析:根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇,它们的和为奇,奇,偶,偶;由此可得:两人获胜的概率,进而得出答案.解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此和为奇数或为偶数概率都为;所以这是一个公平游戏.故选:C.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.视频10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.【答案】C【解析】【分析】由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数即可.【详解】∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是40×0.40=16个.故选C.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.解决本题的关键是根据频率之和为1计算出摸到白球的频率.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.【答案】32【解析】【分析】已知小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,可得黄色球有40×20%=8个,而布袋中装有黄色、白色乒乓球共40个,所以口袋中白色球有40-8=32个.【详解】∵小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,∴黄色球有40×20%=8个,∵布袋中装有黄色、白色乒乓球共40个,∴口袋中白色球可能有40-8=32个.故答案为:32.【点睛】本题考查了利用频率估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.【答案】54【解析】【分析】利用大量反复试验下频率稳定值即概率,由估计出部分数目=总体数目乘以相应概率求出即可.【详解】∵在抛掷一个图钉的试验中,着地时钉尖触地的概率约为0.46,∴没有触地的概率是1-0.46=0.54.∴如果抛掷一个图钉100次,则着地时钉尖没有触地约为:100×0.54=54次.故答案为:54.【点睛】本题主要考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.【答案】5.【解析】试题解析:事件A发生的概率为0.05,大量重复做这种试验,则事件A平均每100次发生的次数为:100×0.05=5.考点:概率的意义.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)【答案】可能.【解析】试题解析:某同学期中考试数学考了100分,是随机事件,则他期末考试数学可能考100分,考点:随机事件.15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.【答案】【解析】【分析】从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,根据概率公式求解即可.【详解】∵从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,∴摸到的球不是红球的概率为.故答案为:.【点睛】本题考查了简单事件的概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.【答案】2【解析】【分析】根据概率的意义考虑出取得最后1粒的方法即可得解.【详解】根据游戏规则,先取的人第一次取2粒,然后保证第二次所取的粒数与另一人所取粒数之和为3即可取到最后1粒,从而使获胜的概率为1,所以,小明先取,要使小明获胜的概率为1,小明第一次应该取走2粒.故答案为:2.【点睛】本题考查了概率的意义,理解题目信息,判断出使两人所取的粒数之和是3是解题的关键.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.【答案】【解析】【分析】根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.【详解】根据题意分析可得:箱子里共有5个球,从箱子中任意摸出一个球是白球的概率是.故答案为:.【点睛】本题考查了简单事件概率的求法:①找出符合条件的情况数目;②找出全部情况的总数;二者的比值就是其发生的概率.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.【答案】【解析】【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽得卡片上数字的差的绝对值大于1的情况,再利用概率公式求解即可.【详解】画树状图得:∵共有9种等可能的结果,两次抽得卡片上数字的差的绝对值大于1的有2种情况,∴两次抽得卡片上数字的差的绝对值大于1的概率是:.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.【答案】一【解析】【分析】根据概率的求法,求出第一题使用“求助”小明顺利通关的概率及在第二题使用“求助”小明顺利通关的概率,再比较大小,即可判断出小明在第几题使用“求助”.【详解】第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.【点睛】本题主要考查了概率的意义和应用,解答本题的关键是分别求出第一题使用“求助”和第二题使用“求助”使小明顺利通关的概率.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.【答案】【解析】【分析】根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【详解】∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?【答案】(数字之和为);要使这个游戏对双方公平,乙胜一次得分应为分.【解析】【分析】(1)用树状图法求得所以等可能的结果,再求得两个数字和为5的结果,利用概率公式求解即可;(2)分别计算甲、乙二人获胜的概率,由此即可求解.【详解】共有种等可能的情况,和为的有,,共种情况,可得:(数字之和为);因为(甲胜),(乙胜),故甲胜一次得分,要使这个游戏对双方公平,乙胜一次得分应为:(分).【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.【答案】所有可能出现的结果见表格;(甲获胜),(乙获胜).【解析】【分析】(1)根据题意列出表格,即可求得所有可能出现的结果;(2)根据表格可知:积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,根据概率公式求解即可.【详解】所有可能出现的结果如图:从上面的表格(或树状图)可以看出,所有可能出现的结果共有种,且每种结果出现的可能性相同,其中积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,∴甲、乙两人获胜的概率分别为:(甲获胜),(乙获胜).【点睛】本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.【答案】参加一次这种游戏活动得到福娃玩具的概率是;估计袋中白球接近的概率为.【解析】【分析】(1)根据概率的频率定义进行计算即可;(2)设袋中共有x个球,根据摸到红球的概率列出方程,解方程求的x的值,再求袋中白球接近的概率即可.【详解】根据题意可得:参加这种游戏活动为人次,公园游戏场发放的福娃玩具为;故参加一次这种游戏活动得到福娃玩具的概率为,∴参加一次这种游戏活动得到福娃玩具的概率是;∵实验系数很大,大数次实验时,频率接近与理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是,设袋中白球有个,根据题意得:,解得:,经检验,是方程的解.∴估计袋中白球接近个,。

人教版数学九年级上册《概率初步》单元测试卷(附答案)

人教版数学九年级上册《概率初步》单元测试卷(附答案)

人教版数学九年级上学期《概率初步》单元测试【考试时间:90分钟分数:120分】一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 13.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 310.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.16.有些事情我们事先能肯定它一定不会发生叫________事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?23.不透明的口袋里装有红、白、蓝三种颜色的小球(大小、形状都相同),其中红球有个,蓝球有个,小王通过大量的反复实验(每次取一个球,放回搅匀后再取第二个),发现取出红球的频率稳定在左右.(1)请你估计袋中白球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用画树状图或列表法求两次都是蓝球的概率.24.小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?25.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4 .这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.26.(阅读解答题)阅读下面的解题过程:妈妈给小明一串钥匙,共有把,小明决定先试试哪把是防盗门的钥匙.如果不开门,你能说明他第一次试开就成功的概率有多大吗?写出用计算器或其他替代物模拟试验的方法.解:方法一:可以用一枚正四面体骰子,掷得点为试开成功;方法二:可以用张扑克,红桃,黑桃,方块,梅花各一张,摸到红桃为试开成功;方法三:可用计算器模拟,在之间产生一个随机数,若产生的是,则表示试开成功.你认为上述解法对吗?为什么?27.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.28. 端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.答案与解析一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球【答案】D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A、掷一次骰子,向上的一面是6点是随机事件,故A错误;B、打开电视机,正在转播足球比赛是随机事件,故B错误;C、地球上,向上抛的篮球会下落是必然事件,故C错误;D、从只有红球的袋子中,摸出1个白球是不可能事件,故D正确;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 1【答案】B【解析】【分析】由赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:;故选:B.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.3.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.【答案】C【解析】小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个【答案】A【解析】根据概率的定义,,解得n=10.考点:概率的计算点评:此题主要考查了求概率的问题,用到的知识点为:概率=所求情况与总情况数之比,得到所求的情况数是解决本题的关键.5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】列表得:1 2 31 1+1=2 2+1=3 3+1=42 1+2=3 2+2=4 3+2=53 1+3=4 2+3=5 3+3=6∴一共存在9种情况,数字之和等于4的有3种情况,∴随意从每组牌中各抽一张,数字之和等于4的概率是,故选:B.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.【答案】B【解析】【分析】可以认为分三次取球,第一次有10种可以选择,因而有10种情况,第二次剩余9个球,则第二次有9种情况可以选择,第三次有8种情况,因而可以得到三次取球得到的取法的种数,同理求得三次都是红球的取法,利用概率公式即可求解.【详解】任意取出3个球的情况有:10×9×8=720种;第一次取到红球的情况有7种,则取第二次,两次都是红球的情况有7×6种,第三次取球,三次都是红球的情况有7×6×5=210种.则这3个球都是红球的概率是.故选:B.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为【答案】C【解析】【分析】列举出所有情况,再把各选项事件的概率计算出来,加以比较即可.【详解】共有36种情况.1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知:点数之和为11的概率为,而不是,所以选项C不正确,故选:C.【点睛】本题考查了可能性大小以及概率求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.【答案】B【解析】将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:=.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 3【答案】D【解析】试题分析:据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.10.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖【答案】D【解析】【分析】根据必然事件,随机事件,概率的定义进行判断.【详解】A、在一定条件下必出现的现象叫必然事件,说法正确,故本选项错误;B、不可能事件发生的概率为0,说法正确,故本选项错误;C、在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,说法正确,故本选项错误;D、某种彩票中是随机事件,买100张该种彩票不一定会中奖,说法错误,故本选项正确.故选:D.【点睛】本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.【答案】从中任意摸出一个球是红球【解析】【分析】根据随机事件的概率是大于0小于1来设计即可.【详解】一种不透明的袋子中装有2个红球和3个白球,从中任意摸出一个球是红球;故答案为:从中任意摸出一个球是红球.【点睛】此题考查了模拟实验,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.【答案】【解析】【分析】让剩余黑球的个数除以剩余球的总数即为所求的概率.【详解】袋中有2个红球,3个白球和5个黑球,共10球,则每次摸出一只小球不放回,在连续2次摸出的都是黑球的情况下,第3次摸出黑球的概率是:.故答案为:.【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.【答案】(1). 随机(2). 0(3). 1【解析】【分析】天阴了就会下雨是________事件,其发生的可能性在________到________之间.【详解】天阴了就会下雨是随机0事件,其发生的可能性在0到1之间.故答案是:随机;0;1.【点睛】本题考查了随机事件的定义,掌握随机事件就是可能发生也可能不发生的事件.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【答案】.【解析】试题分析:画树状图如下:∴P(两次摸到同一个小球)==.故答案为:.考点:列表法与树状图法;概率公式.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.【答案】.【解析】试题分析:根据概率的求法,求出总人数17人,再求出男生的人数与总人数的比值就是其发生的概率.故答案是.考点:概率.106144216.有些事情我们事先能肯定它一定不会发生叫________事件.【答案】不可能【解析】【分析】根据不可能事件的定义直接解答即可.【详解】有些事情我们事先能肯定它一定不会发生叫不可能事件,故答案为:不可能.【点睛】本题考查了不可能事件的定义:不可能事件是指在一定条件下,一定不发生的事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).【答案】后【解析】【分析】根据相应概率判断即可.【详解】明天下雨的概率为80%大于后天下雨的概率为30%,运动会应选在下雨概率小的日子.故答案为:后.【点睛】本题考查了概率,解题的关键是理解概率是反映事件的可能性大小的量.18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)【答案】④【解析】【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.根据题意可知:①买10万张彩票一定不中奖,错误;②买30万张彩票一定中奖,错误;③买30万张彩票一定不中奖,错误;④买30万张彩票可能会中奖,正确.故答案为④.【点睛】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.【答案】【解析】【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解分式方程即可求得答案.【详解】根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.【答案】2000【解析】【分析】带标记鱼的频率近似等于概率.利用概率求出鱼塘中鱼的总数即可.【详解】设池中有x条鱼,带标记的鱼的概率近似等于,解得x=2000,故鱼塘中约有2000条鱼.故答案为:2000【点睛】本题考查利用频率估算概率,得到带标记的鱼的概率是解题关键.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.【答案】此游戏对小明有利.【解析】【分析】利用树状图法得出所有的可能,进而分别求出获胜的概率即可.【详解】如图所示:,所有的可能为;(正,正),(正,反),(反,正),(反,反),故爸爸获胜的概率为:,妈妈获胜的概率为:,小明获胜的概率为:,故此游戏对小明有利.【点睛】本题考查了游戏公平性,正确利用树状图法求概率是解题的关键.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?【答案】解:(1)画树状图得:∵共有12种等可能结果,甲得1分的情况有6种,∴P(甲得1分)。

数学九年级上册《概率初步》单元测试卷(带答案)

数学九年级上册《概率初步》单元测试卷(带答案)
16.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:
(1)朝上的点数有哪些结果?他们发生的可能性一样吗?
(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?
(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?
参考答案
一.选择题(共10小题,满分40分,每小题4分)
1.任意掷一枚骰子,下列情况出现的可能性比较大的是( )
A.面朝上的点数是6B.面朝上的点数是偶数
C.面朝上的点数大于2D.面朝上的点数小于2
【答案】C
【解析】
【分析】
根据题意与概率的计算公式,比较四个选项中包含的情况数目,比较可得答案.
【详解】解:A.面朝上的点数为6点的情况为1种;
13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.
14.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m2.
A. 小亮明天 进球率为10%
B. 小亮明天每射球10次必进球1次
C 小亮明天有可能进球
D. 小亮明天肯定进球
【答案】C

人教版九年级上册数学《概率初步》单元测试卷(含答案)

人教版九年级上册数学《概率初步》单元测试卷(含答案)

人教版九年级上册数学《概率初步》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,是二等品的概率等于()A.112 B.16C.14D.7122.学校从5位骨干教师中(含有甲)抽调3人组成,则甲一定抽调到的概率是()A.35 B.25C.45D.153.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。

市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.13B.23C.16D.194.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16 B.13C.12D.235.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6.如下图,大厅中铺了3种地砖(除了颜色外无其他差别),一种宠物在地板上自由地走来走去,它最后停留在哪种地砖上的概率较大?()A、砖 B 、砖 C 砖 D 、砖或砖. 7.下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 8.下列事件是必然事件的是( )A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛 C.射击运动员射击一次,命中十环 D.若a 是实数,则0a 9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425 B .525 C .625 D .925二 、填空题(本大题共5小题,每小题3分,共15分)11.为迎接2024年奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球,则摸到印有奥运五环图案的球的概率是 .987655432112.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.13.从1-,1,2三个数中任取一个,作为一次函数3=+的k值,则所得一次函数y kx中y随x的增大而增大的概率是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是( ) A .两条线段可以组成一个三角形 B .400人中有两个人的生日在同一天 C .早上的太阳从西方升起D .打开电视机,它正在播放动画片2.2016年3月,某市举办了首届中学生汉字听写大会,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )A.12B.13C.14D .1 3.下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.袋子里有10个红球和若干个蓝球,这些球除颜色外其余均相同,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球大约有( )A .20个B .30个C .40个D .50个5.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.126.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5167.在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y =x -2图象上的概率是( )A.12B.13C.14D.168.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a ,如果投掷一枚硬币,正面向上的概率为b ,关于a ,b 大小关系的正确判断是( )A .a >bB .a =bC .a <bD .不能判断第8题图 第10题图9.有一箱子装有3张分别标示4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出的第1张牌的号码为十位数,第2张牌的号码为个位数.若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1210.如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916二、填空题(每小题3分,共24分)11.用“必然事件”“不可能事件”“随机事件”填空:(1)明天要下雨___________;(2)小明身高3.5m____________;(3)两直线平行,同位角相等___________.12.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为_______.第12题图 第13题图13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是________.14.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6,7,11,-2,5,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是______.6711 -2515.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 的值大约是_______.16.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是________.17.一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是________.18.天水市某校从三名男生和两名女生中选出两名同学作为“伏羲文化节”的志愿者,则选出一男一女的概率为_________.三、解答题(共66分)19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(4分)(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.20.(8分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;(2)随机选取2名同学,求其中有乙同学的概率.21.(8分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标;(2)求点Q在x轴上的概率.22.(10分)有四张背面完全相同的纸牌A,B,C,D,其中正面分别画有四个不同的几何图形(如图),小华将这四张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.23.(10分)如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为;(4分)(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.24.(10分)甲、乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲、乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲、乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲、乙双方是否公平?并说明理由.25.(12分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.答案1.B2.C3.A4.B5.C6.C7.D8.B9.A 10.B 解析:列表如下:共有16种等可能结果,而落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2)共7种可能情况,所以落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是716.故选B.11.随机事件 不可能事件 必然事件 12.37 13.13 14.35 15.10 16.12 17.316 18.35 19.解:(1)4 2,3(4分)(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2.(8分)20.解:(1)13(3分)(2)画树状图如下:(6分)共有12种等可能的结果,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率P =612=12.(8分)21.解:(1)画树状图如下:(2分)共有6种等可能的结果,点Q 的坐标为(0,-2),(0,0),(0,1),(-2,-2),(-2,0),(-2,1);(4分)(2)点Q 在x 轴上的情况有(0,0),(-2,0)两种,所以点Q 在x 轴上的概率P =26=13.(8分) 22.解:(1)画树状图如下:则共有16种等可能的结果;(5分)(2)∵既是中心对称又是轴对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为416=14.(10分)23.解:(1)12(4分)(2)画树状图如下:∵共有4种等可能情况,两只蚂蚁开始爬行后会“触碰到”的有(右,左)(右,右)2种情况,∴两只蚂蚁开始爬行后会“触碰到”的概率为24=12.(10分)24. 乙积甲1 2 3 1 1 2 3 2 2 4 6 33699,共9种;(5分)(2)该游戏对甲、乙双方不公平,理由如下:其中积为奇数的情况有4种,偶数有5种,∴P (甲)<P (乙),则该游戏对甲、乙双方不公平.(10分)25.解:(1)14(3分) (2)16(6分)(3)锐锐每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,(8分)画树状图如下:(10分)共有6种等可能的结果,锐锐顺利通关的只有1种情况, ∴锐锐顺利通关的概率为16.(12分)。

相关文档
最新文档