水利工程施工课程设计计算说明书
水利工程施工课程设计报告

水利工程施工课程设计说明书〔2014-2015年度第1学期〕学院:________XXXXXX___专业:农业水利工程班级:水利1142姓名:XX学号:11064212XX指导教师: XXX2014年09月19日目录一,根本资料11.1工程条件11.2水文、气象条件设计资料21.2.1水文气象条件21.2.2工程地质条件31.2.3天然建筑材料5二,施工导流与围堰设计52.1导流案的选择与时段划分52.2倒流建筑物级别划分表72.3施工设计洪水过程线72.4施工设计洪水分析与计算82.4.1确定围堰型式9三,截流设计与相关水力计算183.1、式:立堵法183.2、截流日期183.3、进展龙口泄量计算18四,基坑排水21五,工程量计算235.1、围堰工程量计算235.2、坝体工程量计算23六,课程设计心得体会24一,根本资料1.1工程条件鸽子洞水电站是以发电为主,结合防洪、工业及生活供水,兼顾灌溉等综合利用的小〔1〕型水利枢纽工程,枢纽建筑物包括蓄水池和电站。
蓄水池拦河坝为浆砌重力坝,坝顶长315.0m,最大坝高43.5m,总库容910万m3。
电站布置在蓄水池拦河坝下游河床右侧,装机容量520kW,装有2台单机容量分别为200kW和320kW的机组,水电站年平均发电量65.59万kW.h,通过电站尾水每年可向下游提供270万m3水量。
主要工程量:坝基砂卵等土开挖7.17万m3,明挖5.47万m3 ,洞挖0.04万m3,土回填6.09万m3,混凝土浇筑3.17万m3,平硐衬砌混凝土145m3,钢筋及钢材制安300t,C10混凝土砌块11.94万m3,M10砂浆砌条2.93万m3,砂浆砌块385m3,坝基固结灌浆4598m,坝基帷幕灌浆4374m。
金属构造设备安装各类型闸门7扇,启闭机7台,电站装设型号为HL160-WJ-50、HLA153-WJ-50的混流式机组各1台。
工程所在地对外交通条件较好,现有101国道从其下游通过,从坝址现有砂路3.5km在三道河子村附近与其相接。
水利工程施工课程设计

水利工程施工课程设计1.基坑排水设计根本资料:某水利要津工程拦河坝,采纳一次围堰明渠导流。
该坝的基坑为矩形基坑,长200m、宽100m。
依据导流设计,上游横向围堰为土石混合围堰,粘土铺盖斜墙防渗,粘土渗透系数为0.5m/昼夜,斜墙平均厚度为2m,下游横向围堰为木笼围堰,水泥帷幕灌浆防渗,上下游横向围堰根底均为砂砾覆盖层,平均厚度为4m,渗透系数10m/昼夜。
依据水工模型试验及实测水位~流量关系曲线,查得上游最大水深为10m,下游水深为3m。
由于明渠远离基坑,下游围堰防渗效果良好,故明渠及下游围堰的渗透流量不计。
初期排水时,相应时期日最大降雨量为40mm。
依据工期要求,围堰合拢闭气后5天排干基坑。
基坑积水总量为23000m3。
施工单位现有6BA12型及6BH9型水泵各4台。
设计确定总排水能力,是否需增加排水设备,增加水泵型号及数量。
2.井点排水某工程未降低前的地下水位位于地面以下2m,地面下14m为被粘土覆盖层的沙层,其渗透系数为0.0005s/m,故可视为相对不透水层。
基坑开挖要求疏干的基坑,边长为150m和60m,基坑深为6m,基坑底高出降低后的地下水位0.5m,所以基坑中心应下降的深度为〔6-2+0.5〕=4.5m,井点深达不透水层12m。
进行井点降水设计。
3.施工导流隧洞设计某水电站为土石坝要津,其主要建筑物为一级建筑物,相应的临时建筑物为Ⅳ级建筑物。
经论证,导流标准选定为频率P=1%,采纳全年导流,设计洪水流量Q=16000m3/s,洪水历时为4天,相应下游水位为151m,选定围堰最大高度为50m,这时相应上游水位为179m,要求确定隧洞的结构型式及其尺寸。
鉴于围堰高度较高,故设计中应考虑围堰所形成库容的调蓄作用。
起始库容取为70×106m3,大题对应于计算洪水时期的河道的常水位,围堰拦洪水位179m 对应的拦洪库容为1180×106m3。
《水利工程施工》课程设计计算说明书

流量Q(m3/s)
图 4 导流下泄流量和龙口流量与上游水位关系图 由上表 3 可得落差与导流洞下泄流量和落差与龙口流量关系图 5
水 5.00 位 4.00 Z(m)
3.00 Z——Qd 2.00 1.00 0.00 0 100 200 300 Z——Q
流量Q(m3/s)
400
图5
落差与导流洞下泄流量和龙口流量关系图
2
2 截流水力计算
已知上游水位泄流量关系, 上游水位减去河床高程即可得上游水深, ▽H 上=Z 上-951, 上下游落差 Z=▽H 上-▽H 下,继而可得出落差与泄流量之间的关系。一般情况下合龙中 戗堤设计流量 Q0 由四部分组成,即 Q0=Q+Qd+Qs+Qac 式中 Q——龙口流量 Qd——导流洞分流量 Qs——戗堤渗透流量 Qac——上游河槽中的调蓄流量 其中上游河槽中的调蓄流量 Qac 和戗堤渗透流量 Qs 可以忽略不计, 即 Q0=Q+Qd 由 Q0=Q+Qd 可得到落差 Z 与龙口流量 Q 之间的关系表如表 3。
由图 3 和图 4 可知,随着落差的增大,导流隧洞分流量是逐渐增大的,直到增大到 设计流量, 而龙口流量是逐渐减小的直到最后落差最大时龙口流量降为 0 但龙口流量和 导流洞分流量之和始终保持不变均为设计流量。
3.1 计算龙口流量
龙口泄水能力计算按照宽顶堰公式计算 水流通过束窄河床,其进口由于竖向收缩(有坎)或横向收缩(无坎)而形成宽顶 堰流时,视其出流是否淹没,分别按下式计算其泄流能力 Q。
4
1.5 龙口泄流能力按宽顶堰公式计算: Q mB 2 g H 0
①
式中 B ——龙口平均过水宽度; H0 ——龙口上游水头; 断面形状判断完需要判断是否为淹没流。
水利水电工程施工课程设计说明书

前言部分一、课程设计的目的:通过课程设计,使学生将在课堂所学的知识融会贯通,提高学生提出问题、分析问题并解决问题的能力。
通过课程设计,培养学生利用所学知识,独立工作、创造性的工作的能力。
通过课程设计,使学生熟悉现行水利水电工程建设项目实施的基本程序、基本规则和项目设计的基本要求与基本内容。
通过课程设计培养学生应用技术规范与规程、查阅文献资料、体会协作共事的能力。
二、课程设计的意义:课程设计是对水利水电工程专业的学生实现培养目标的综合性教学实践环节,学生必须按照本任务的要求独立完成设计任务。
通过课程设计升华课程所学的知识,培养工程实践能力,激发学生的创新潜能。
三、设计范围:本次课程设计只要求学生进行倒流施工的设计,不要求大坝的布置和引水发电隧洞的设计。
四、应达到的技术要求:要求确定导流施工的设计流量、确定出导流标准、并设计出导流建筑物的各个尺寸和高程、进行倒流施工的布置。
第一部分工程基本资料概述一、基本资料1、枢纽建筑物型式与组成二龙河挡水建筑物为均质土石坝,坝体横断面见附图。
坝顶高程527.5m,宽6m,坝长462m。
属于Ⅴ级建筑物。
左岸上依次设有溢洪道、泄洪隧洞、输水隧洞。
泄洪隧洞,洞长为155.0m,进口底高程为496.4m,孔口尺寸3.0×3.0m,洞身为城门洞形无压洞,断面尺寸3.5×4.31m。
隧洞出口后接明流段泻槽与河床相接,挑能消能。
2、地理位置二龙河水库位于武烈河流域头沟川支流上,坝址座落在承德县头沟镇大孤山村附近,距承德县市约44km,是一座以防洪供水为主,兼顾灌溉和发电等综合利用的水利枢纽工程。
水库总库容6724万m3,兴利库容3771万m3,控制流域面积547m2,占头沟川流域面积的75%。
3、工程坝址二龙河水库位于武烈河流域头沟川支流上。
头沟川上游段河道坡度陡,在上游河段建坝库容较小;下游段进入丘陵区,河道开阔,在下游河段建坝,侵滩面积较小,建坝条件差,且淹没及移民量大;中游大孤山村附近U型峡谷,河流在此地带形成大于90°蛇区,两岸地质条件良好,适合建坝。
水利工程计算手册

水利工程计算手册第一章:水文计算1. 流量计算水利工程中流量的计算是一个基础性的问题,受到流域特性、降雨情况、地形地貌等多种因素的影响。
根据不同情况,可以采用理论计算和实测方法来确定流量值,以保证设计的准确性和合理性。
2. 水位计算水位计算是水文计算中的一个重要部分,通过对水位的计算可以得出水库、河道等水体的水位变化情况,为工程设计和水资源管理提供依据。
3. 泄洪计算在水利工程中,泄洪是一种常见的处理水体过剩的方式,通过合理的泄洪设计可以有效的控制水体的水位,避免洪水灾害的发生。
4. 洪水频率计算洪水频率计算是水文计算中的一个重要内容,通过对历史洪水资料的分析和统计可以得出不同频率下的洪水量,为工程设计提供依据。
第二章:水力计算1. 水力特性计算在水利工程中,水体的水力特性对工程设计和运行有重要影响,通过水力特性的计算可以得出水体的流速、流态等参数,为设计提供依据。
2. 水轮机参数计算水轮机是水利工程中常见的动力设备,通过对水轮机的参数进行计算可以确定其性能和运行条件,保证工程顺利进行。
3. 水泵参数计算水泵在水利工程中也是一个重要设备,通过水泵的参数计算可以确定其性能和运行条件,为工程设计提供依据。
4. 水力管道计算水力管道是水利工程中重要的输水设施,通过对水力管道的计算可以确定管道的水压、流速等参数,为设计提供依据。
第三章:水文水资源计算1. 水资源评价水资源是水利工程设计和管理的基础,通过对水资源的评价可以确定水资源的利用潜力和限制条件,为水资源管理提供依据。
2. 水资源量计算水资源量计算是水文水资源计算中的重要部分,通过对水资源的量的计算可以确定水资源的供给能力和需求情况,保证水资源的合理利用。
3. 水质监测与评价水质监测是水利工程管理中的重要内容,通过对水质的监测和评价可以保证水体的水质符合国家标准和生态需求,保护水资源的安全和可持续发展。
第四章:防洪计算1. 防洪标准计算防洪标准是水利工程设计的基础,通过对不同区域的防洪标准计算可以确定防洪工程的设计要求和措施,保证防洪工程的安全性和有效性。
水利工程施工课程设计

水利工程施工课程设计一、项目背景水利工程施工是必不可少的一部分,涉及不同类型的水利工程建设,如大型水坝建设、水利枢纽工程建设等。
各种水利工程施工工艺和技术不断地在不断地发展,对工程施工管理和施工组织提出了更高的要求。
为了帮助学生更深度的了解水利工程施工,需要进行实践性的课程设计。
二、项目目的本课程设计旨在让学生通过实践掌握水利工程施工的实际操作技能,了解水利工程施工的基本流程、组织管理及技术细节。
同时希望学生能够在课程设计过程中,更好地认识到水利工程对于国家和地区的重要性,强化对水利工程的保护和治理意识。
三、项目步骤1. 确定课程设计主题主题可以由老师提供,也可以由学生自行选择。
主题应当紧密围绕水利工程施工的实际情况,可以选择一种类型的水利工程,如小型水库建设或者大型水坝建设,或者从施工过程入手,如基坑、混凝土浇筑、出土处理等方面进行选题。
2. 确定课程设计的学习目标根据主题,确定学习目标和任务,明确要求学生掌握的知识点和技能。
例如,学习测量测量等课程内容。
3. 制定课程设计方案根据主题和学习目标,制定课程设计方案。
方案应当包括教学内容、教学方法、课程安排等。
教学内容应当覆盖各个方面,如施工组织、机械安排、材料供应、人员管理等。
4. 分析水利工程施工过程中存在的问题针对实际情况,分析水利工程施工过程中存在的问题。
通过现场实习和参与工程管理,解决实际问题,如调整材料的规格、简化工序等。
5. 撰写实习报告学生需要在课程设计过程中,收集、整理、分析实习过程中的数据和信息,撰写实习报告。
学生应当通过实习报告,总结经验教训,记录工程施工过程中的问题及解决办法。
四、评分标准1.整个课程设计过程中,学生的参与度及积极度;2.学生对于水利工程施工管理、施工组织和技术细节的掌握程度;3.实习报告的质量。
五、结语本课程设计让学生通过实践锻炼自己的综合素质、实际操作技能,并且能够帮助学生更好地认识到水利工程的重要性以及技术难点,更好地融入到国家水利工程建设的复杂环境中,为未来就业打好坚实的基础。
水利工程施工课程设计

水利工程施工课程设计一、课程设计概述水利工程施工课程设计是水利工程专业的一门重要课程,旨在培养学生具备水利工程施工方案设计的能力。
本课程设计主要包括项目背景、项目建设目标、项目规划、方案设计和成果展示等几个方面。
通过本次课程设计,学生可以深入了解水利工程施工的各个环节,并通过实际操作提高自己的技能和综合素质。
二、项目背景本次课程设计的项目背景为某省级水库大坝加固工程。
该水库大坝建于上世纪60年代,已经服役50多年,由于长期受到洪水侵袭和自然风化作用,大坝存在较为严重的安全隐患。
因此,为了保障人民群众的生命财产安全,保护国家财产,必须对该水库大坝进行加固。
三、项目建设目标1.提高大坝抗震能力:加固后的大坝应具有较强的抗震能力,能够承受地震等自然灾害。
2.增强大坝稳定性:通过加固措施,增强大坝的稳定性和承载能力,确保大坝的安全运行。
3.延长大坝使用寿命:加固后的大坝应具有较长的使用寿命,减少维护和修缮成本。
4.提高工程质量:确保加固工程施工质量符合相关标准和规定,达到预期效果。
四、项目规划1.项目范围:本次课程设计主要涉及水库大坝加固工程施工方案设计。
2.项目时间:本次课程设计共计8周时间,包括方案设计、实际操作和成果展示等环节。
3.项目任务分配:根据学生专业背景和兴趣爱好等因素,将学生分为若干小组,并分配相应的任务。
每个小组需要完成方案设计、施工图纸绘制、材料采购等任务。
4.项目资源需求:本次课程设计需要使用一定数量的设备、材料和人力资源。
其中设备包括钻机、挖掘机等;材料包括水泥、钢筋等;人力资源包括施工人员和监理人员等。
五、方案设计1.方案概述:本次课程设计主要涉及水库大坝加固工程施工方案设计。
方案设计应包括施工工艺、施工流程、材料选用等内容。
2.施工工艺:根据大坝实际情况,选择合适的加固措施。
具体包括钢筋混凝土加固、岩石锚杆加固等。
3.施工流程:根据施工进度和安全要求,制定详细的施工计划,并按计划进行操作。
水利水电工程施工课程设计计算说明书

《水利工程施工》课程设计计算说明书一、基本资料大渡河上某水电工程采用单戗立堵进占,河床的剖面图见图1。
戗堤处水位~流量关系见表1和图2。
戗堤端部边坡系数n=1,截流戗堤两侧的边坡为1:1.5。
截流材料采用当地的中粒黑云二长花岗岩,容重为26KN/m3。
该工程采用左右岸各布置一条导流洞导流,左、右导流隧洞联合泄流的上游水位和泄流流量关系见表2和图3。
图1 河床剖面图图2 戗堤处水位~流量关系曲线表1 戗堤处水位~流量关系图3 上游水位~泄流量关系曲线 表2 上游水位~泄流量关系每位同学按不同的设计流量进行无护底情况下截流水力计算,并确定相应的截流设计方案。
按以下公式确定截流设计流量Q=(300+3×学号的最后两位) m 3/s ,计算时不考虑戗堤渗透流量和上游槽蓄流量。
截流设计是施工导流设计重要组成部分,其设计过程比较复杂,目前我国水利水电工程截流多采用立堵截流,本次设计按立堵截流设计,有多种设计方法。
其设计分为:截流水力计算、截流水力分区和备料量设计。
截流设计流量的确定,通常按频率法确定,也即根据已选定的截流时段,采用该时段内一定频率的某种特征流量值作为设计流量。
一般地,多采用截流时段5%~10%的月平均或者旬平均流量作为设计标准。
截流的水力计算中龙口流速的确定一般采用图解法(详细见《水利工程施工》P39~42),以下对于图解法及图解法的量化法----三曲线法做如下介绍。
二、截流的水力计算1、计算下游水位下H 、戗堤高度B H 、戗堤水深0H由0Q =306s m /3,根据戗堤处水位~流量关系曲线,由内插法可知,下H =952.62m ; 由Q Q =0,上H =957.08m ,B H =底上H m H -+1=7.08m ;底下H H Z H -+=0=1.62m+Z.2、根据已知的泄流量d Q 与上游水位上H 关系绘制d Q ~Z 曲线0.00 150.00 300.00 410.00 800.00 1400.00953.00 955.40 957.03 958.00 960.66 964.120.38 2.78 4.41 5.38 8.04 11.503、绘制龙口泄水曲线Z Q ~由龙口泄水能力计算按照宽顶堰公式计算:1.52Q mB gH式中 m ——流量系数当0.3Z H <,为淹没流,01Z m H ⎛=- ⎝当0.3ZH ≥,为非淹没流,0.385m = B ——龙口平均过水宽度梯形断面:02B B B nH nH =-+ 三角形断面:0B nH =0H ——龙口上游水头梯形断面:0H Z Z =-上底三角形断面:()00.5B H Z Z nH B n =---上底 其中 Z ——龙口上下游水位差B H ——戗堤高度n ——戗堤端部边坡系数,取 1.0n =Z 上——龙口上游水位Z 底——河道底板高程由连续方程可得龙口流速计算公式为 : Q Bhυ=- 淹没流时:s h h =,s h ——龙口底板以上的下游水深 非淹没流时:c h h =,c h ——龙口断面的临界水深 即淹没出流时:对于梯形断面: s h h =对三角形断面:0.5B s nH Bh h n-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水利工程施工课程设计计算说明书第一章工程说明第一节工程概况某泵站工程为南水北调东线工程淮阴梯级站的单项工程,设计流量为100 m ³/s,该泵站作为第三梯级抽水站的组成部分,位于江苏省淮安市清浦区和平镇的淮阴一站南侧,与淮阴一站并列布置,如图1所示。
拟建区北距淮安市区约30公里,南与洪泽县城高涧镇相距约10公里,西临淮沭新河二河段,原205国道与二河东堤共用。
工程建成后,使淮阴站入洪泽湖水量达300m³/s,通过河网和已建水利工程的联合运行调度,可实现向北调水的近期目标,同时提高供水区范围内的灌溉保证率、改善水环境,并提高输水河道航运保证率。
图1:拟建站地理位置图泵站工程包括:泵站及其引河、下游清污机桥、上游挡洪闸(设计流量260m ³/s),110kV/10kV、110kV/6kV室内变电所及管理设施。
泵站部分引河和挡洪闸工程、变电所工程、管理所及附属设施已先期实施完成。
本次设计的主要内容是泵站工程,包括站身及其上下游连接段、下游清污机桥、部分引河及堤防、机电设备安装等工程。
拟建站中心线与一站中心线相距156m,泵站上下游引河轴线呈2°交角,泵站中心与站下清污机桥中心相距250m,与挡洪闸相距576m。
引河开挖方量共约100万m³,开挖坡度可取2.0~2.5。
设计泵站上游引河堤顶高程为15.50m,河底高程为5.00m,堤顶设置10.00m宽平台,填筑坡度不大于15°(可取为15°) ;站下引河堤顶高程14.20m,河底高程为5.00m,堤顶设置10.00m宽平台,填筑坡度不大于15°(可取为15°),上下游引河设计开挖高程同站塘,见站身纵剖面图。
(填筑方量约11万m³,引河开挖方量约为50万方)泵型采用四台直径3.2m的直联贯流泵(型号HP1-3200.340),泵站结构采用整体块基型结构,站身进出水流道布置于站身底板范围内,采用平直管进出水流道,快速闸门断流,油压启闭机启闭闸门。
底板顶面高程 2.3m,叶轮中心安装高程4.40m。
站身底板顺水流向总长为37.20m,垂直水流向考虑四台机组布置总长54.82m(为了调整侧向不均匀系数,底板每边各悬挑1.6m),在垂直水流向居中设一条沉降缝将底板分为两块,每块底板平面尺寸为37.20m×27.31m。
站身上游侧出水流道顶部布置上游工作桥和站区交通桥(站区主通道),站身下游侧布置检修闸门工作桥。
站身中间段自下而上依次为进出水流道层、辅机层、主厂房层,主厂房内布置主钩750KN、付钩100KN桥机。
在主厂房南侧布置检修间,北侧布置控制楼。
下游检修闸门采用主厂房柱上的电动葫芦起吊,上游油压启闭机和闸门检修采用汽车吊启闭。
下游清污机桥采用整底板开敞式结构,总长109.8m。
共13孔,每孔净宽6m,其中7孔布置于河槽底宽范围,居中布置,其余6孔顺坡布置。
中间9孔布置回转式清污机,两侧边孔布置固定拦污栅。
污物通过皮带输送机送至堤侧,再由汽车转运。
第二节施工条件(一)施工工期主体工程工期暂定为1年半,工程计划在2016年上半年完成工程的筹备工作,10~11月份完成泵站主体招标工作,2016年底开工建设,至2017年7月底具备机泵安装条件,土建工程至2017年底完工,泵站工程工期约18个月。
(二)站址地形、地质及当地材料场地区在大地构造上位于扬子准地台苏北坳陷区洪泽湖——盐城坳陷的西部,下伏下第三系三垛组灰绿、棕红、棕灰色泥、砂岩构成的基岩,上覆150m 左右厚的上第三系土黄、棕黄、灰绿、紫灰等杂色泥砂岩(土)和100m左右厚的第四系灰黄、棕黄色松散土层。
工程区自新第三纪以来的新构运动,表现为缓慢地上下振荡运动,区域地质稳定性较好。
站址处地震基本烈度为Ⅶ度。
站址处土质以砂壤土、砂性粘土互夹,地基土第1-2、3、5层砂性粘土,可作为工程的天然基础,因站址紧邻某河、某灌溉总渠,地基土富含地下水,且为承压水,承压水头较大。
(三)主要水文及水系场地区西北侧有某、某河、东南侧有某灌溉总渠,东北侧有入海水道。
淮河来水一部分出某闸经该灌溉总渠入黄海,一部分通过二河排入某河,一部分通过某河某闸经入海水道排入黄海。
区内灌溉水源主要是通过某河、灌溉总渠、大(里)运河引用某湖蓄水灌溉,在该水源紧张时,通过江都站抽取江水北送予以补充。
南水北调江苏省境内一期工程该湖蓄水位抬至13.50m,该湖在调水期的北调控制水位为11.90~12.50 m。
泵站特征水位如下:引水渠口总渠100年一遇设计洪水位11.46m,校核洪水位12.00m。
设计水位9.00m。
最低运行水位8.50m,最高运行水位9.50m,平均水位9.00m。
出水渠口某河100年一遇设计洪水位15.40m,300年一遇校核洪水位16.43m。
设计水位13.0m,最高运行水位13.50m,最低运行水位10.50m,平均水位11.78m。
站下设计水位8.82 m,最低运行水位8.32m,最高运行水位9.32m,平均水位8.82m。
站上设计水位13.10m,最低运行水位10.50m,最高运行水位13.60m,平均水位11.88m。
设计特征扬程:设计净扬程4.28m,最大净扬程为4.78m,平均扬程3.06m。
上游某河施工期最高运行水位13.50 m;下游总渠设计水位11.46m。
(四)土方平衡计算、施工力量及施工设备泵站工程总土方量约172万m3,主要采用机械施工。
包括上下游引河堤防填筑、导流河开挖、下游引河与某灌溉总渠连接处水下方、上游引河入二河口处水下方施工清除。
站塘土方开挖约21.5万方,机械开挖20.6万方,人工开挖1.9万方。
上、下游引河开挖土方约100万方。
上下游围堰水下方约17万方,计划3个月完成,需200m3/h绞吸式挖泥机船两艘。
技术设备限在施工单位已有的设备中选用,数量不限,三材由国家统一分配。
(五)混凝土工程本次混凝土工程设计主要是泵站站身。
(六)施工导截流本次泵站工程施工期间,挡洪闸已建成,已建站已恢复正常运行,不需要施工导流。
第三节施工部署与平面布置泵站施工工场根据工程区的场地条件和工程进度要求,施工场地分为:建设管理用地区、监理单位用地区、施工单位用地区;施工单位用地区分为生产区、生活区和现场办公区。
建设、监理用地区拟布置在现越闸翻水站的办公区,沿苏北灌溉总渠北堤布置。
利用现有站的办公用房。
施工单位生产区拟沿总渠北堤布置,生活区、办公区布置在一站上游引河北侧。
生活区建筑包括食堂、宿舍及服务设施;生产区主要的临时设施包括:临时码头一座,砼拌和楼、砼和台各一座,砼小构件预制场、钢筋、木加工场(厂)各一个、发电厂一个,水塔一座、机修车间、仓库和其他用房,砂石料场各一个。
生产区临时设施沿总渠北堤布置,主要有临时码头、砼拌和楼(台)、砂石料场和水塔等。
场区交通:初步计划场区内交通沿主站身呈环形布置。
主要进场道路有三条,一条沿挡洪闸上游围堰堤顶公路桥向南至砼生产场地区,一条过一站交通桥至施工区,另一条经下游原一站引水涵洞至施工场区。
利用现有越闸翻水站进站路,作为建设、监理和施工单位办公区的对外道路。
第二章工日分析第一节有效工日计算方法及原理工日分析是计算施工强度和论证施工进度的依据。
如已论证施工强度过大而工期不能改变,可以采用雨季或冬夏季施工措施,增加施工天数,减小施工强度,以保证计划实现。
Ⅰ.工日分析按下式进行月有效工日=日历天数-因雨雪、气温不能施工天数-其它原因停工天数其中其它原因停工天数,本设计不计入。
第二节基本设计资料(1) 站区各种降雨天数统计表(表3);(2)站区各种气温天数统计表(表4);(3) 法定假日:5.1、5.2、5.3、10.1、10.2、10.3、1.1、春节及星期六、星期天;(4) 各种工作因雨、气温停工标准见表1和表2。
表1 月因雨停工标准表2 因气温停工标准表3 站区各种日平均降雨量统计表(天)表4 站区各种日平均降雨量统计表(天)通过第二节数据列表5进行粘土施工有效工日分析,得出修正后的粘土施工有效工日。
因为在降雨量相同的条件下,粘土开挖相对于填筑停工时间较长,施工时间较短,因此降雨对粘土施工的影响以降雨对粘土开挖的影响为准。
表4 粘土施工天数统计表注:2016年7月进行防渗墙施工;8月至9月开始进行站塘开挖施工。
2017年1月至7月混凝土浇筑时进行上下游引河开挖施工。
3.混凝土施工有效工日分析通过第二节数据列表6进行混凝土施工有效工日分析,得出修正后的粘土施工有效工日。
其中,气温停工标准在12月、1月、2月以混凝土冬季施工标准为准,在其它月份以混凝土平常施工标准为准。
表5 混凝土施工天数统计表注:2017年1月至7月混凝土浇筑施工。
注:粘土开采中若因雨停工降雨量既有10~30,又有>30,则统计停加天数时,只统计降雨量大的一种情况。
在此基础上,编制完整的施工组织设计,主体工程施工分以下两部分进行设计。
第三章施工导截流本次泵站工程施工期间,挡洪闸已建成,淮阴一站已恢复正常运行,可以直接在泵站轴线进行平地施工以及进行上下游引河开挖,不需要施工导流。
第四章主体工程施工第一节土石方施工(一)基本设计资料泵站工程总土方量约172万m3,主要采用机械施工。
包括上下游引河堤防填筑、导流河开挖、下游引河与苏北灌溉总渠连接处水下方、上游引河入二河口处水下方施工清除。
站塘开挖的土方要弃置场外,待建站上、下游引河开挖土方主要用于站身及大堤填筑;其它土方本着就近挖填的原则,回填不足土方从场外取土区取土。
场地清基土方及上游引河水下方弃至场外弃土区。
站塘土方开挖约21.5万方,机械开挖20.6万方,人工开挖1.9万方。
上、下游引河开挖土方约100万方。
上下游围堰水下方约17万方,计划3个月完成,需200m3/h绞吸式挖泥机船两艘。
技术设备限在施工单位已有的设备中选用,数量不限,三材由国家统一分配。
(二)施工强度计算一.站塘开挖1.施工强度计算根据资料,现进行站塘开挖(21.5万m3),这部分土全部作为弃土,混凝土浇注同时进行上下游引河的开挖(100万m3),这部分土作为岸堤的填筑方量,调整后的挖方有效工日为106d,2.土方施工机械的选择表7:土石方施工强度计算表常用土方施工机械的适用性及可供选择的型号规格,见表8:由于开挖站塘的土方全部作为弃土,规范中要求弃土开挖后运输至距开挖处2km 范围以外处,考虑到运距的因素,采用挖掘机开挖土方配合自卸汽车运输弃土。
根据表8所提供的常用土方开挖机械可供选择的型号规格及适用范围,选择正向铲(用于开挖土、砂砾料、石渣并装车)进行站塘基坑开挖。
3.主要机械数量计算1).确定正向铲的生产率机械生产率可采用定额指标或计算方法确定。