精编圆锥曲线方程知识点总结
圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结圆锥曲线是平面上的一类曲线,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
其中A、B、C、D、E、F、G、H、I、J是常数,且A、B、C不全为0。
圆锥曲线包括椭圆、双曲线和抛物线等。
1. 椭圆:椭圆是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC < 0,则为椭圆。
椭圆是一个封闭的曲线,其特点是到两个焦点的距离和固定。
椭圆在几何中有重要的应用,如椭圆的焦点在天文学中用于描述行星和卫星的轨道。
2. 双曲线:双曲线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC > 0,则为双曲线。
双曲线有两个分支,其特点是到两个焦点的距离差固定。
双曲线在几何中也有广泛的应用,如描述光线在反射和折射中的路径。
3. 抛物线:抛物线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC = 0,则为抛物线。
抛物线是一个开口向上或向下的曲线,与焦点的距离等于到准线的距离。
抛物线在物理学、工程学和建筑学等领域中有重要的应用,如描述抛物面的形状。
4. 圆锥曲线的性质:(i) 对称性:圆锥曲线可以关于x轴、y轴、z轴和原点对称。
(ii) 焦点:圆锥曲线有1个或2个焦点,焦点是与曲线特定性质相关的重要点。
(iii) 准线:圆锥曲线有1条或2条准线,准线是与曲线特定性质相关的重要线。
(iv) 渐近线:双曲线有两条渐近线,抛物线有一条渐近线。
完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若为椭圆上任意一点,则有。
椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。
注:①以上方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。
例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。
(2)椭圆的性质①范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。
若同时以代替,代替方程也不变,则曲线关于原点对称。
所以,椭圆关于轴、轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。
在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。
同理令得,即,是椭圆与轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,且,即;④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。
∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。
当且仅当时,两焦点重合,图形变为圆,方程为。
2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。
注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。
圆锥曲线方程知识点总结

圆锥曲线方程知识点总结圆锥曲线是解析几何中的重要内容,它包括圆、椭圆、双曲线和抛物线四种曲线。
在学习圆锥曲线的方程时,我们需要掌握各种曲线的标准方程、一般方程以及一些重要的性质和定理。
接下来,我们将对圆锥曲线方程的知识点进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。
首先,我们来看圆的方程。
圆的标准方程是(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标,r为半径。
而圆的一般方程是x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
在解析几何中,我们需要掌握如何由标准方程转化为一般方程,以及如何由已知条件确定圆的方程。
其次,我们来看椭圆的方程。
椭圆的标准方程是(x/a)² + (y/b)² = 1,其中a和b 分别为椭圆在x轴和y轴上的半轴长。
椭圆的一般方程是Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E为常数。
在学习椭圆的方程时,我们需要了解椭圆的离心率、焦点、长轴、短轴等重要概念,以及它们之间的关系。
接着,我们来看双曲线的方程。
双曲线分为两种类型,一种是横轴为对称轴的双曲线,另一种是纵轴为对称轴的双曲线。
横轴为对称轴的双曲线的标准方程是(x/a)² (y/b)² = 1,而纵轴为对称轴的双曲线的标准方程是(y/b)² (x/a)² = 1。
双曲线的一般方程也是由这些标准方程推导而来,我们需要掌握如何进行转化和确定双曲线的方程。
最后,我们来看抛物线的方程。
抛物线分为两种类型,一种是开口向上的抛物线,另一种是开口向下的抛物线。
开口向上的抛物线的标准方程是y² = 2px,开口向下的抛物线的标准方程是y² = -2px。
抛物线的一般方程也可以由这些标准方程推导而来,我们需要了解抛物线的焦点、准线、顶点等重要性质。
圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是由平面上直线与一个定点及一定曲线相交而形成的曲线,分为圆、椭圆、双曲线和抛物线四种类型。
在高三数学中,学习圆锥曲线是必不可少的。
以下为圆锥曲线的相关知识点总结。
一、坐标系下的圆锥曲线方程式1.圆的方程所谓圆,是指平面上到定点距离等于定长的所有点的集合。
设圆心为$O({{x_0},{y_0}})$,半径为 $r$,则圆的方程为$${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$$3.双曲线的方程二、圆锥曲线的性质(1)对圆上任意一点,作圆的切线,它垂直于切点与圆心的连线。
(2)两个数轴上投影相等的两点与圆心之间的距离相等(称为圆的两点定理)。
(3)圆心为原点的圆,其半径为 $r$,横轴方程为 $x^2 + y^2 = r^2$,纵轴方程为$x^2 + y^2 = r^2$。
2.椭圆(1)椭圆的两个焦点与中心 $O$ 在一条直线上。
(2)椭圆的上下两支称为上半部和下半部,椭圆与 $x$ 轴的交点称为顶点。
(4)椭圆的到两个焦点分别距离和为定值,等于两倍的圆长轴长。
(2)双曲线的两支曲线称为左半支和右半支,曲线的两个交点称为顶点,与左右两支连接的两条直线称为渐近线。
4.抛物线(1)抛物线是关于顶点对称的曲线。
(2)抛物线与横轴交于顶点 $O$。
(3)抛物线与纵轴垂直。
三、曲线的参数方程如果把圆的中心移到原点,半径为 $r$,则圆的参数方程为$$\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}$$如果双曲线的中心移到原点,且 $a>b$,则双曲线的参数方程为$$\begin{cases}x=c\cosh \theta \\y=b\sinh \theta\end{cases}$$其中,$c=\sqrt{{a^2} + {b^2}}$,$\cosh \theta = \frac{{{e^\theta } + {e^{ - \theta }}}{2}}$,$\sinh \theta = \frac{{{e^\theta } - {e^{ - \theta }}}{2}}$。
圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点一、椭圆方程.1. 椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PFPFF F a PF PF F F a PF PF==+=+=+⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax=+.ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay=+.②一般方程:)0,0(122 B A By Ax =+.③椭圆的标准方程:12222=+by ax 的参数方程为⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ).⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:cax2±=或cay2±=.⑥离心率:)10( e ac e =.⑦焦点半径:i. 设),(00y x P 为椭圆)0(12222 b a by a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,FF 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002200201x a ex x cae pFx ex a cax e pF -=-=+=+=归结起来为“左加右减”.注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222abc ab d -=和),(2abc⑶共离心率的椭圆系的方程:椭圆)0(12222 b a by ax =+的离心率是)(22b ac ac e -==,方程t t by ax (2222=+是大于0的参数,)0 b a 的离心率也是ac e=我们称此方程为共离心率的椭圆系方程.⑸若P 是椭圆:12222=+by ax 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan 2θb (用余弦定理与aPFPF221=+可得). 若12,PF PF ⊥此三角形面积为2b ; 若是双曲线,则面积为2cot2θ⋅b .⇒-=+=0201,ex a PFex a PF⇒-=+=0201,ey a PFey a PF4.在椭圆22221(0)xy a b ab+=>>上存在点P ,使12PF PF ⊥的条件是c ≥b,即椭圆的离心率e 的范围是2;5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)xy a b ab +=>>的内部2200221x y ab⇔+<. (2)点00(,)P x y 在椭圆22221(0)xy a b ab+=>>的外部2200221x y ab⇔+>.6.椭圆的切线方程(1)椭圆22221(0)xy a b ab+=>>上一点00(,)P x y 处的切线方程是00221x xy y ab+=.(2)过椭圆22221(0)xy a b ab+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x xy y ab+=.(3)椭圆22221(0)xy a b ab+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.二、双曲线方程.1. 双曲线的第一定义:以无轨迹方程为双曲线21212121212121,222F F FF a PFPFF F a PF PF F F a PF PF==-=-=- ⑴①双曲线标准方程:)0,(1),0,(122222222 b a bx ay b a by ax =-=-.一般方程:)0(122 AC Cy Ax =+.⑵①i. 焦点在x 轴上:顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程cax2±= 渐近线方程:=±by ax 或2222=-by axii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:cay 2±=. 渐近线方程:=±bx ay或2222=-bx ay ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x .②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率ac e=.asin α,)bsin α)N 的轨迹是椭圆④准线距ca 22(两准线的距离);通径ab 22.⑤参数关系ac e b a c =+=,222.⑥焦点半径公式:对于双曲线方程12222=-by ax(21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)aex MFa ex MF -=+=0201 构成满足a MFMF 221=-M a ex F M '--='01aeyFM a ey F M aeyMFa ey MF -'-='+'-='+=-=02121⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为xy±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222by ax 与λ-=-2222by ax 互为共轭双曲线,它们具有共同的渐近线:2222=-by ax .⑸共渐近线的双曲线系方程:)0(2222≠=-λλby ax 的渐近线方程为2222=-by ax 如果双曲线的渐近线为0=±by a x 时,它的双曲线方程可设为)0(2222≠=-λλby ax .例如:若双曲线一条渐近线为xy 21=且过)21,3(-p ,求双曲线的方程?解:令双曲线的方程为:)0(422≠=-λλy x,代入)21,3(-得12822=-yx.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条; 区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:1.过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.2.若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号. ⑺若P 在双曲线12222=-by ax ,则常用结论1:从双曲线一个焦点到另一条渐近线的距离等于b.2:P 到焦点的距离为m 、n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PFdd 2121==nm .3.双曲线22221(0,0)xy a b ab-=>>的焦半径公式21|()|aPF e x c=+,22|()|aPF e x c=-.4.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)xy a b ab -=>>的内部2200221x y ab⇔->. (2)点00(,)P x y 在双曲线22221(0,0)xy a b ab-=>>的外部2200221x y ab⇔-<.5.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax⇒渐近线方程:22220xy a b-=⇔xab y ±=.(2)若渐近线方程为xab y ±=⇔0=±b y ax ⇒双曲线可设为λ=-2222by a x.(3)若双曲线与12222=-by ax有公共渐近线,可设为λ=-2222by ax(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).6.双曲线的切线方程(1)双曲线22221(0,0)xy a b ab-=>>上一点00(,)P x y 处的切线方程是00221x xy y ab-=.(2)过双曲线22221(0,0)xy a b ab-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab-=. (3双曲线22221(0,0)xy a b ab-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.7.焦点到渐近线的距离等于虚半轴的长度(即b 值)三、抛物线方程.3. 设0 p ,抛物线的标准方程、类型及其几何性质:注:①x c by ay =++2顶点)244(2ab ab ac --.②)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF+=.③通径为2p ,这是过焦点的所有弦中最短的. ④px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pty pt x 222(或⎩⎨⎧==222pty pt x )(t 为参数).5、过焦点弦长px x p x p x CD ++=+++=212122.对焦点在y 轴上的抛物线有类似结论。
高二数学知识点:圆锥曲线方程知识点总结

高二数学知识点:圆锥曲线方程知识点总结
为大家带来高中高二数学知识点:圆锥曲线方程,希望大家喜欢下文!
1、椭圆:①方程 (a0)注意还有一个;②定义: |PF1|+|PF2|=2a ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;
2、双曲线:①方程 (a,b0) 注意还有一个;②定义: ||PF1|-|PF2||=2a ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或 c2=a2+b2
3、抛物线:①方程y2=2p_注意还有三个,能区别开口方向; ②定义:|PF|=d 焦点F( ,0),准线_=- ;③焦半径 ; 焦点弦=_1+_2+p;
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、 , . (1) ;(2) .
2、数量积的定义:已知两个非零向量a和b,它们的夹角为,则数量|a||b|cos 叫做a与b的数量积,记作ab,即
3、模的计算:|a|= . 算模可以先算向量的平方
4、向量的运算过程中完全平方公式等照样适用:。
(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。
圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年圆锥曲线方程知识点总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程2222(6)(6)8x y x y -+-++=表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如 (08宣武一模) 已知P 为抛物线221x y =上的动点,点P 在x 轴上的射影为M ,点A 的坐标是)217,6(,则PM PA +的最小值是 _____ (答:219)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程221Ax By +=表示椭圆的充要条件是什么?(A ,B ,同正,A≠B )。
如(1)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____(答:11(3,)(,2)22---);(2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:5,2)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。
方程221Ax By +=表示双曲线的充要条件是什么?(A ,B 异号)。
如(1)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断)如:22y x =焦点10,8⎛⎫ ⎪⎝⎭(1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。
如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(答:)23,1()1,( --∞)(2)双曲线:由x2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。
(3)不要思维定势认为圆锥曲线方程都是标准方程4.圆锥曲线的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。
如(1)若椭圆1522=+my x 的离心率510=e ,则m 的值是__(答:3或325); (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:22)(2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈; ②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:ce a=,双曲线⇔1e >,等轴双曲线⇔2e =,e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:by x a=±。
⑤双曲线焦点到渐近线的距离是b ,垂足恰好在准线上如(1)双曲线的渐近线方程是023=±y x ,则该双曲线的离心率等于______(答:132或133);(2)双曲线221ax by -=的离心率为5,则:a b =(答:4或14); (3)设双曲线12222=-by a x (a>0,b>0)中,离心率e ∈[2,2],则两条渐近线夹角θ的取值范围是________(答:[,]32ππ); (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-;⑤离心率:c e a=,抛物线⇔1e =。
如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________(答:)161,0(a); 5、点00(,)P x y 和椭圆12222=+by a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<6.直线与圆锥曲线的位置关系:(1)相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。
如(1)若直线y=kx+2与双曲线x 2-y 2=6的右支有两个不同的交点,则k 的取值范围是_______(答:(-315,-1)); (2)直线y ―kx ―1=0与椭圆2215x y m +=恒有公共点,则m 的取值范围是_______(答:[1,5)∪(5,+∞));(3)过双曲线12122=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB ︱=4,则这样的直线有___条(答:3)(2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;(3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离。
特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。
如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线; ④P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。
如(1)过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有______(答:2);(2)过点(0,2)与双曲线116922=-y x 有且仅有一个公共点的直线的斜率的取值范围为___(答:445,33⎧⎫⎪⎪±±⎨⎬⎪⎪⎩⎭);(3)过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条(答:3);(4)对于抛物线C :x y 42=,我们称满足0204x y <的点),(00y x M 在抛物线的内部,若点),(00y x M 在抛物线的内部,则直线l :)(200x x y y +=与抛物线C 的位置关系是_______(答:相离);(5)过抛物线x y 42=的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则=+qp 11_______(答:1); (6)设双曲线191622=-y x 的右焦点为F ,右准线为l ,设某直线m 交其左支、右支和右准线分别于R Q P ,,,则PFR ∠和QFR ∠的大小关系为___________(填大于、小于或等于) (答:等于);(7)求椭圆284722=+y x 上的点到直线01623=--y x 的最短距离(答:81313); (8)直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点。