分析化学---名词解释
分析化学专业-名词解释题目

色谱1.相对保留值:某一组分i的调整保留时间和标准物质s的调整保留时间之比,成为组分i相对于标准物质s的相对保留值。
2.吸附色谱法:利用各个组分在固定相(吸附剂)上的吸附能力强弱不同而得到分离的方法。
3.分配色谱法:利用各个组分在固定相(固定液)上的溶解能力大小不同而得到分离的方法。
4.基线宽度:色谱峰两侧拐点上切线在基线上截距间的距离。
5.保留值:样品各个组分在色谱柱内保留行为的度量,常用时间或者组分带出色谱柱所需流动相的体积来表示。
6.边缘效应:点于同一薄层色谱板上同一物质的斑点,在色谱展开过程中,靠近薄层边缘处的斑点的R f值与中心区域的斑点的R f值不同的现象。
7.薄层色谱法:利用混合物中各组分的物理化学性质的差别,在层析过程中,在不相溶的两个相中分布的不同,而达到分离目的的方法,称之为薄层色谱法。
8.保留比:将某一组分的流动速率和流动相的速度比较,得到组分的相对速度。
9.交换容量:每千克树脂中真正参加交换反应的基团数。
常用单位:mmol/g或mmol/mL10.比移值:在薄层色谱法中,比移值(R f)等于原点至组分半点中心的距离和原点至溶剂前沿的距离之比。
各个理想的R f在0.2~0.8之间。
11.相对比移值:样品的比移值和对照品的比移值之比。
12.保留时间:组分从进样开始到色谱柱后出现浓度极大值时所需要的时间。
13.调整保留时间:组分在固定相中滞留的时间,或保留时间扣除死时间。
14.死时间:不被固定相保留的组分从进样到出现峰最大值所需要的时间。
15.死体积:由进样器至检测器的流路中未被固定相占有的空间体积。
16.相比:在色谱柱中,流动相的体积和固定相体积之比。
17.分配系数:在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的浓度比。
18.分配比:又称保留因子(容量因子):在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量比。
又称分配比和容量因子。
19.绝对定量校正因子:单位峰面积或峰高所对应物质的量。
分析化学名词解释

分析化学名词解释边缘效应:殿宇同意薄层的同一物质的斑点,在色谱展开过程中,靠薄层边缘处斑点的Rf值大于中心区域斑点的Rf值有所不同百分吸光系数E1%1cm:指浓度为1%(即1g/100L),液层厚度为1cm的吸光度.保留时间t R:从进样开始到某个组分的色谱峰极大点所需要的时间磁全同/磁等价:化学等价的一组核,若它们每个核对组外任何一个磁核的耦合常数彼此也相同(即以相同的大小耦合),则称这组核为磁等价的核弛豫:高能态的核经过非辐射途径而恢复低能态的过程称为~磁等价:化学位移等价的一组核,若它们每个核对组外任何一个磁核的耦合常数彼此也相同(即相同的大小耦合)参比电极:电极电位在一定条件下恒定不变,仅提供Φ位测量来表示的分配系数:在一定温度和压力下,组分在固定相和流动相中平衡浓度的比值,用K 表示分离度R:指相邻两组分保留时间之差与两组份基线宽度平均值的比值.费米共振:当泛频峰位于某一强基频峰附近时,原来较弱的泛频峰的吸收强度被明显强化,有时还发生谱带裂分.这种泛频峰与基频峰之间的振动耦合合称~发色团:有机化合物分子结构中含有π-π*或n-π*跃迁集团,如C=C,C=0,N=N,-NO2,C=S等,或能在紫外可见光波长范围产生吸收的原子团分离度R:指相邻两组分保留时间的差值与两组分基线宽度平均值的比值,用以衡量两组分的分离程度分子离子:有机化合物分子失去一个价电子而形成的带正电荷的离子称~化学键合相:用化学反应的方式将固定液的官能团键合在载体表面上,所形成的填料称为~,简称键合相化学位移:质子或其他种类的核,由于在分子中所处的化学环境不同,在不同的共红移(长移):由于化合物结构改变或溶剂效应等引起的吸收峰向长波方向移动.红外非活性振动:当振动过程中分子的瞬间偶极距不发生变化时,不产生红外光的吸收.化学等价:分子中两个相同的原子或基团处于相同的化学环境中,称它们化学等价,即化学位移相等化学键合相:用化学反应的方法将固定液的官能团键合在载体表面上,所形成的的填料称为化学键合相,简称键合相进动:核除绕自旋轴作自旋外,还要在垂直于外磁场的平面上作旋进运动,这种旋转称为~基频峰:是分子吸收某一频率的红外线后,振动能级由基态跃迁到第一激发态时产生的吸收峰检测限D:又称敏感度,是以检测器恰能产生3倍噪音信号时,单位时间引入检测器的组分量或单位体积载气中所含组分量来表示的简并:频率完全相同的振动在红外光谱中重叠,这种现象简称~交联度:表示离子交换树脂中交联剂的含量,通常以重量百分比表示交换容量:指每克干树脂中真正参加交换反应的基团数空白试验:在不加试样的情况下,按照与试样分析同样的操作和条件进行试验.蓝移(紫移):由于化合物结构改变或溶剂效应等引起的吸收峰向短波方向移动. lambent-beer定律:当一束平行单色光通过均匀吸光物质溶液时,溶液的吸收光度与溶液的浓度及液层厚度乘积成正比.(A=ε?C?l)灵敏度s:又称响应值或应和值,是用来评价检测器质量和其他类型检测器相比较的重要指标麦氏重排:当化合物中含有不饱和C=X(X为O、N、S、C)基团,而且与这个基团渡转移到X原子上,同时β键发生断裂脱掉一个中性分子摩尔吸光系数ε:指溶液浓度为1mol/L,液层厚度为1cm时的吸光度.浓色效应和淡色效应:由于化合物的结构改变或其他原因,使吸收强度增加的效应称浓色效应或增色效应;吸收强度减弱的效应称淡色效应或减色效应.能级分裂:在外磁场作用下,核磁距按一定方向排列,不同取向的核磁距的能级差随磁场强度的增大而增大此现象称~N律:凡不含N或含偶数个N原子的分子,其分子离子峰的质量数必为偶数,含奇数个N原子的分子,其分子离子峰的质量数必为奇数n+1律:某基团的H核与n个相邻的H核耦合时,将被分裂为n+1重峰,而与该基团本身H核数无关耦合常数J:在简单耦合中,由自旋耦合产生的谱线间的距离称~屏蔽效应:由于感应磁场的存在,使原子核实受磁场强度不同于外加磁场强度,稍有降低或增加的现象瑞利光/拉曼光:物质分子的电极与激发光光子相互作用时,分子受到瞬时变形,上升到非量子化能量区.在极短时间内,该分子向各个方向发射和激光相同的光,而回到原来能级,发射比激发光波长较长或较短的光.容量因子:在一定温度与压力下,组分在达到平衡时在固定相和流动相中的质量比,用K表示溶剂的极限波长:在某波长下,溶剂对光吸收,在此波长以上则无吸收,即溶液时透明的,该波长称~Rf比移值:指薄层色谱法中原点至斑点中心的距离与原点至溶剂前沿的距离的比值.RDA裂解:一个六元环烯化合物裂解一般都产生共轭二烯离子和一个中性分子,伸缩振动:指原子间的键长沿键轴方向发生周期性变化的一种振动调整保留时间t R↗:某组分由于溶解或被吸附于固定相,比不溶解或不吸附的组分在柱中多停留的时间吸收光谱:又称吸收曲线,是以波长λ(nm)为横标,以吸收光度A为纵坐标所绘制的曲线.吸附等温线:在一定温度下,组分在两相中达到平衡时,该组分在两相中浓度相对关系曲线,称~弯曲振动:指原子间键角发生周期性变化的一种振动,即原子垂直于价键方向的运动选择因子α:指难分离物质对的调整保留值之比.亚稳离子:在飞行过程中发生裂解的碎片离子助色团:本身不能吸收波长大于200nm的辐射,但与发色团相连时,可使发色团产生的吸收向长波长方向移动并使吸收强度增加的原子或原子团.如-OH,-NH2,-OR,-SH,-X等.指示电极:电极电位随待测组分浓度改变而变化,其值大小以指示待测组分浓度的电极振动耦合:分子中两个相同的基团靠的很近或者连接在同一个原子上时,由于其基本频率相同,形成振动相互作用,结果使频率发生改变,并使谱带分裂成双峰,其中一个高于原来的频率,另一个低于原来的频率,这种现象称为~自旋-自旋耦合:核自旋产生的核磁距间的相互干扰称作~自旋-自旋分裂:由自旋耦合引起的共振峰分裂的现象称~。
分析化学重点总结(人卫版)(仅供参考,切勿迷信)

红色字体是重点掌握,蓝色字体是熟悉内容。
第一章:绪论一、名词解释:分析化学(analytical chemistry)(P1):分析化学是关于研究物质的组成、含量、结构和形态等化学信息的分析方法及理论的一门科学。
定性分析:鉴定试样有哪些元素、离子、基团或化合物组成,即确定物质的组成的分析方法。
定量分析:测定试样某一组分或某些组分的量的分析方法。
化学分析:是利用物质的化学反应及其计量关系确定被测物质的组成及其含量的分析方法。
仪器分析:是使用较特殊仪器进行分析的方法,是以物质的物理或物理化学性质为基础的分析方法。
化学定量分析:根据分析化学反应中试样的用量,测定物质中各组分的相对含量。
化学定性分析:根据分析化学反应的现象和特征鉴定物质的化学成分。
物理分析法:根据物质的某种物理性质,如相对密度、相变温度、折射率、旋光度、及光谱特征等,不经化学反应,直接进行定性、定量、结构和形态分析的方法。
二、简答1、分析化学的方法分类:分析任务(定性、定量、结构和形态);分析对象(有机和无机);测定原理(化学分析和仪器分析);试样用量(常量、半微量、微量和超微量);被测组分含量(常量、微量和痕量)2、分析过程和步骤:分析任务和计划;取样;试样的制备;测定;结果的计算和表达三、真题1、定性分析、定量分析(名解)第二章:误差和分析数据处理一、名词解释:准确度:测量值与真值接近的程度。
绝对误差:测量值与真值的差。
相对误差(P7):绝对误差与真值的比值称为相对误差。
精密度:平行测量的各测量值之间互相接近的程度。
偏差(P8):单个测量值与测量平均值之差称为偏差。
重复性:指在同样操作条件下,在较短时间间隔内,由同一分析人员对同一试样测定结果的接近程度。
中间精密度:在同一实验室内由于某些实验条件改变,如时间、分析人员、仪器设备等,对同一试样测定结果的接近程度。
重现性(P9):在不同实验室之间,有不同的分析人员对同一试样测定结果的接近程度。
中国药科大学-考研-分析化学名词解释

分析化学第一部分误差和分析数据处理Accuracy:准确度。
测最值与真实值接近的程度(用误差表示)。
Precision:精密度:测定条件相同时,一组平行测定值之间相互接近的程度(用偏差来表示)。
偏差:测量值与平均值之差。
Absolute error:绝对误差。
测量值与真实值之差。
方法误差:用于不适当的实验设计或所选方法不恰当所引起的误差。
仪器或试剂误差:由于仪器未经过校准或试剂不合规格所引起的误差。
操作误差:由于分析者操作不符合要求所造成的误差。
Relative error:相对误差。
绝对误差与以实值的比值。
Systematic error:系统误差。
由某种确定原因引起的误差,一般具有固定的方向和大小,重复测定时重复出现。
恒定误差:在多次测定中绝对值保持不变,但相对值随被测组分的含量增大而减少,这种系统误差叫恒定误差。
比例误差:在多次测定中,绝对值随样品量的增大而成比例的增大,但相对值保持不变,这样的系统误差叫做比例误差。
Accidental error:偶然误差。
也叫随机误差,是由于偶然的原因引起的误差。
Significant figure有效数字:指在分析工作中实际能测量到的数字(保留1位欠准数字)。
置信区间:在一定置信水平时,以测量结果为中心,包括总体均值在内的可信范围。
相关系数:描述两个变量间相关性的参数。
显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。
包括t检验和F检验。
第二部分容量分析法Titer滴定度:指每毫升标准溶液相当于的待测组分的质量。
酸碱:凡能给出质子的物质是酸,能接受质子的物质是碱。
酸的浓度:在一定体积的溶液中含某种酸溶质的量称为酸的浓度。
碱的浓度:在一定体积的溶液中含某种碱溶质的量称为碱的浓度。
酸度:溶液中氢离子的浓度,严格讲是氢离子的活度,用pH表示。
碱度:溶液中氢氧根离子的浓度,严格讲是氢氧根离子的活度,用pOH表示。
电荷平衡:指在一个化学平衡体系中正离子带电荷总和与负离子带电荷总和相同,即溶液是电中性的。
分析化学名词解释

分析化学名词解释第二章误差和数据处理Absolute error绝对误差:测量值与真值之差。
Relative error相对误差:绝对误差与真值的比值。
Systematic error系统误差(Determinate error可定误差):由某种确定的原因造成的误差。
Accidental error偶然误差(Random error随机误差):由偶然因素引起的误差。
Accuracy准确度:指测量值与真值接近的程度。
Precision精密度:平等测量的各测量值之间互相接近的程度。
Deviation, d偏差:单个测量值与测量平均值之差,可正可负。
Average deviation平均偏差:各单个偏差绝对值的平均值。
Relative average deviation相对平均偏差:平均偏差与测量平均值的比值。
(Coefficient of variation变异系数)Relative standard deviation, RSD相对标准偏差:标准偏差与测量平均值的比值。
Significant figure有效数字:在分析工作中实际上能测量到的数字。
Confidence level置信水平:某一t值时,测定值x落在u+-tS范围内的概率。
P Significance level显著性水平:外,Repeatability重复性:在同样操作条件下,在较短时间间隔内,由同一分析人员对同一试样测定所得结果接近程度。
Intermediate precision中间精密度:在同一实验室内,由于某些试验条件改变,对同一试样测定结果的接近程度。
Reproducibility重现性:在不同实验室之间,由不同分析人员对同一试样测定结果的接近程度。
Normal distribution正态分布:对同一试样在相同条件下进行N次测定,当N很大时,测量值的波动情况符合正态分布。
Population mean总体平均值:在指定条件下,对试样进行无限次测量所得无限多个测量数据集合体的均值,表示测量值的集中趋势。
大学分析化学中的名词解释

大学分析化学中的名词解释引言分析化学是化学的重要分支领域之一,它涉及到许多基本概念和名词。
本文旨在通过解释一些大学分析化学中的重要名词来帮助读者更好地理解这个领域的核心概念。
一、浓度浓度是一个在分析化学中经常用到的重要概念,它指的是溶液中溶质的含量。
浓度可以用不同的单位来表示,如摩尔/升、克/升或百分比等。
浓度对于定量分析十分关键,它可以帮助我们准确计算物质在溶液中的含量。
二、滴定滴定是一种常用的分析化学技术,用于确定溶液中特定组分的含量。
滴定通常涉及到两种液体,分别为滴定试剂和待测溶液。
通过逐滴加入滴定试剂并观察其反应的终点,我们可以计算出待测溶液中的目标组分的浓度。
三、色谱法色谱法是一种基于物质在流动相和固定相之间的分配行为来分离和鉴定化合物的方法。
根据分离原理的不同,可以将色谱法分为气相色谱和液相色谱。
色谱法在分析化学领域具有广泛的应用,可用于分离和鉴定复杂混合物中的组分。
四、质谱法质谱法是一种用于分析化学和结构表征的重要技术。
它通过将化合物分子中的离子化,并根据其质量和相对丰度进行检测和鉴定。
质谱法可以提供关于化合物的分子量、分子结构和碎片离子信息,因此在化学分析和生物医学研究中得到广泛应用。
五、光谱法光谱法是一种基于物质与电磁辐射相互作用的分析技术。
根据电磁辐射的性质和与样品相互作用的方式,光谱法又可分为紫外-可见吸收光谱、红外光谱、拉曼光谱和核磁共振等。
这些技术可以用于分析物质的结构、确定化学键和识别化合物等。
六、灵敏度灵敏度是分析化学中一个重要的参数,指的是对于待测物质变化的相应程度。
灵敏度高的方法可以检测到低浓度物质的微小变化,而灵敏度低的方法则仅限于高浓度物质或大幅度变化的检测。
在分析化学中,我们需要根据具体要求选择合适的方法以达到所需的灵敏度。
总结以上是分析化学中的一些重要名词的解释。
通过对浓度、滴定、色谱法、质谱法、光谱法和灵敏度等名词的了解,我们可以更好地理解分析化学的基本原理和实际应用。
有机、无机、分析名词解释汇总
分析化学名词解释1、分析化学:是关于研究物质的组成、含量、结构和形态等化学信息的分析方法及理论的一门科学。
2、准确度(accuracy):是指测量值与真值(真实值)接近的程度。
3绝对误差(absolute error):测量值与真实值之差称为绝对误差。
此误差可正可负。
4、相对误差(relative error):绝对误差与真实值的比值称为相对误差。
5、精密度(precision):是平行测量的各测量值之间的接近程度。
6、系统误差(systematic error):也可以称为可定误差,是由某种确定的原因造成的误差,一般有固定的方向和大小,重复测定时重复出现。
7、偶然误差(accidental error):也称为随机误差,是由偶然因素引起的误差。
偶然误差的方向和大小都是不固定的,因此,不能用加校正值的方法减免。
8、有效数字(significant figure):是指分析工作中实际上能测量到的数字。
9、滴定分析法(titration analysis):是化学定量分析中重要的分析方法,这种方法是将一种已知准确浓度的试剂溶液(标准溶液),滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量关系定量反应为止,然后根据所加的试剂溶液的浓度和体积,计算出被测物质的量。
10、化学计量点(stoichiometric point):当加入的滴定剂的量与被测物质的量之间,正好符合化学反应式所表示的计量关系时,称反应到达了化学计量点。
11、滴定终点(titration end point):在滴定时,滴定至指示剂改变颜色即停止滴定,这一点称为滴定终点。
12、滴定误差:滴定终点与化学计量点往往不一致,由这种不一致造成的误差称为滴定终点误差,简称终点误差。
13、基准物质(primary standard):是用以直接配制标准溶液或标定标准溶液浓度的物质。
14、滴定度(titer):是每毫升标准溶液相当于被测物质的量。
分析化学名词解释
名词解释:第二章分析数据的误差和统计处理1.系统误差:又称可定误差,是由某些确定的、经常性的原因造成的。
2.偶然误差:又称不可定误差,是由一些难以察觉和控制的、变化无常的、不可避免的偶然因素造成的。
3.精密度:表示一组平行测量数据中,各测量值之间相互接近的程度。
4.准确度:是指测量值与真实值接近的程度。
5.对照试验:采用被测试样分析方法对已知含量的标准试样进行测定,或用公认可靠的分析方法与选定方法对同一被测试样进行测定的一种试验。
6.空白试验:在不加试样的情况下,按照与测定试样相同的分析步骤和条件进行测定的一种试验。
7.回收试验:向试样中准确加入已知量的被测组分的纯物质,然后用同一方法进行测定,计算回收率。
8.有效数字:是指在分析工作中实际上能测量到的数字。
9.置信区间:指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ。
10.F检验:通过比较两组数据的方差,以确定他们的精密度是否存在显著性差异,即影响他们的随机误差是否显著不同。
11.t检验:将样本平均值与真值(标准值)进行比较,或将同一样品的两个样本的平均值进行比较,判断他们的测量数据是否准确或准确度是否存在显著性差异,即是否存在系统误差或系统误差的影响是否显著不同。
12.测量不确定度:表征合理地赋予测量值的分散性,是与测量结果相关的一个参数。
第三章重量分析法1.pH效应:溶液的pH影响沉淀溶解度的现象称为pH效应,又称酸效应。
2.配位效应:当难溶化合物的溶液中存在着能与构晶离子生成配合物的配位剂,则会使沉淀溶解度增大,甚至不产生沉淀,这种现象称为配位效应。
3.共沉淀:是指一种难溶化合物沉淀时,某些可溶性杂质同时沉淀下来的现象。
4.后沉淀:当溶液中某一组分的沉淀析出后,另一本来难以析出沉淀的组分,也在沉淀表面逐渐沉积的现象。
5.均匀沉淀法:也称均相沉淀法,是为了改进沉淀结构而发展的新的沉淀方法。
考研分析化学名词解释
考研分析化学名词解释考研分析化学,即考研化学分析学,是指在考研化学专业的学习和研究中,涉及到的与分析化学有关的名词的解释和理解的过程。
分析化学是化学中一门重要的学科,研究的对象是物质的组成、结构和性质,以及分析方法的开发和应用。
考研分析化学作为一门专业课程,常常会涉及到一些关键的名词和概念,下面将对其中的一些常见名词进行解释。
1. 分析化学(Analytical Chemistry)分析化学是一门研究化学物质和材料的组成、结构、性质及其变化规律的学科。
它通过定性和定量的方法,研究各种化学成分和它们之间的相互关系,并发展和应用各种分析方法。
2. 定性分析(Qualitative Analysis)定性分析是分析化学中一种通过观察和判断,确定物质是否含有某种成分的方法。
通过化学反应、形态学特征、颜色、形状等进行观察和分析,确认物质的成分。
3. 定量分析(Quantitative Analysis)定量分析是分析化学中一种通过测量和计算,确定物质中特定成分含量的方法。
通过仪器和方法的精确测量,可以得出物质的具体成分和含量。
4. 仪器分析(Instrumental Analysis)仪器分析是分析化学中一种利用仪器测量物质的成分和性质的方法。
通过使用各种分析仪器,如红外光谱仪、质谱仪、核磁共振仪等,可以对物质进行精确的分析和测量。
5. 质谱分析(Mass Spectrometry)质谱分析是一种通过对物质的化学成分进行质谱测量,确定其分子结构和组成的方法。
它通过将物质分子离子化,并在质谱仪中对其进行分离和测量,从而得到物质的质谱图谱,进而确定其结构和组成。
6. 光谱分析(Spectroscopy)光谱分析是一种通过测量物质与电磁辐射相互作用的方式,来研究物质的成分和性质的方法。
根据物质的吸收、发射、散射等光谱特性,可以得到物质的光谱图谱,从而确定物质的结构和组成。
7. 脱附分析(Desorption Analysis)脱附分析是分析化学中一种通过将吸附在固体表面上的物质脱附出来,然后进行进一步的分析和测量的方法。
分析化学名词解释整理之欧阳德创编
第二章1绝对误差(Absolute error):测量值与真值之差。
2相对误差(Relative error):绝对误差与真值的比值。
3系统误差( Systematic error)(Determinate error可定误差):由某种确定的原因造成的误差。
一般有固定的方向和大小,重复测量重复出现。
4偶然误差( Accidental error,Random error随机误差):由偶然因素引起的误差。
5准确度(Accuracy):指测量值与真值接近的程度。
6精密度(Precision):平等测量的各测量值之间互相接近的程度。
7偏差(Deviation ):单个测量值与测量平均值之差,可正可负。
8平均偏差(Average deviation):各单个偏差绝对值的平均值。
9相对平均偏差(Relative average deviation):平均偏差与测量平均值的比值。
(Coefficient of variation变异系数)10相对标准偏差(Relative standard deviation, RSD):标准偏差与测量平均值的比值。
11有效数字(Significant figure):在分析工作中实际上能测量到的数字。
12重复性(Repeatability):在同样操作条件下,在较短时间间隔内,由同一分析人员对同一试样测定所得结果的接近程度。
13中间精密度(Intermediate precision):在同一实验室内,由于某些试验条件改变,对同一试样测定结果的接近程度。
14重现性(Reproducibility):在不同实验室之间,由不同分析人员对同一试样测定结果的接近程度。
15置信限(confidence limit):先选定一个置信水平P,并在总体平均值的估计值x的两端各定出一个界限。
16置信区间(confidence interval):两个置信限之间的区间。
17置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备 欢迎下载 名词解释 第二章 误差和分析数据处理: 准确度:分析结果与真实值接近的程度,其大小可用误差表示。 精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。 系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。包括方法误差、仪器或试剂误差及操作误差三种。 偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。 空白试验:在不加入试样的情况下,按与测定试样相同的条件和步骤进行的分析试验,称为空白试验。 有效数字:是指在分析工作中实际上能测量到的数字。通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。 t分布:指少量测量数据平均值的概率误差分布。可采用t分布对有限测量数据进行统计处理。 置信水平与显著性水平: 指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。 置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即 μ=x±uσ,式中uσ为置信限。分为双侧置信区间与单侧置信区间。 显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。包括t检验和F检验。 第三章 滴定分析法概论: 滴定度:是每毫升标准溶液相当于被测物质的质量(g或mg),以符号TT/B表示,其下标中T、B分别表示标准溶液中的溶质、被测物质的化学式。TT/B=mB /VT,单位为g/ml或mg/ml 分布系数:是溶液中某型体的平衡浓度在溶质总浓度中所占的分数,又称为分布分数以δi表示。 化学计量点:滴定剂的量与被测物质的量正好符合化学反应式所表示的计量关系的一点。 滴定终点:滴定终止(指示剂改变颜色)的一点。 滴定误差:滴定终点与化学计量点不完全一致所造成的相对误差。可用林邦误差公式计算。 滴定曲线:描述滴定过程中溶液浓度或其相关参数随加入的滴定剂体积而变化的曲线。 滴定突跃和突跃范围:在化学计量点前后±0.1%,溶液浓度及其相关参数发生的急剧变化为滴定突跃。突跃所在的范围称为突跃范围。 指示剂:滴定分析中通过其颜色的变化来指示化学计量点到达的试剂。一般有两种不同颜色的存在型体。 指示剂的理论变色点:指示剂具有不同颜色的两种型体浓度相等时,即[In]=[XIn]时,溶液呈两型体的中间过渡颜色,这点为理论变色点。 指示剂的变色范围:指示剂由一种型体颜色变为另一型体颜色时溶液参数变化的范围。 标准溶液:浓度准确已知的试剂溶液。常用作滴定剂。 基准物质:可用于直接配制或标定标准溶液的物质。 第四章 酸碱滴定法: (1)混合指示剂:两种或两种以上指示剂相混合,或一种指示剂与另一种惰性染料相混合。利用颜色互补原理,使终点颜色变化敏锐。 (2)滴定反应常数(Kt):是滴定反应平衡常数。强碱(酸)滴定强酸(碱):Kt=1/Kw=1014;强碱(酸)滴定弱酸(碱):Kt=Ka(b) /Kw。Kt值越大,该滴定反应越完全,滴定突跃越大。 (3)滴定曲线:以滴定过程中溶液pH值的变化对滴定体积(或滴定百分数)作图而得的曲线。 (4)滴定突跃:化学计量点附近(±0.1%)pH的突变。 (5)滴定误差:滴定终点与化学计量点不一致引起的误差,与指示剂的选择有关。 (6)质子溶剂:能给出质子或接受质子的溶剂。包括酸性溶剂、碱性溶剂和两性溶剂。 (7)无质子溶剂:分子中无转移性质子的溶剂。包括偶极亲质子溶剂和惰性溶剂。 学习必备 欢迎下载 (8)均化效应和均化性溶剂:均化效应是指当不同的酸或碱在同一溶剂中显示相同的酸碱强度水平;具有这种作用的溶剂称为均化性溶剂。 (9)区分效应和区分性溶剂:区分效应是指不同的酸或碱在同一溶剂中显示不同的酸碱强度水平;具有这种作用的溶剂称为区分性溶剂。 第五章 配位滴定法: 酸效应:由于H+的存在,在H+与Y之间发生副反应,使Y参加主反应能力降低的现象称作酸效应。 稳定常数:为一定温度时金属离子与EDTA配合物的形成常数,以KMY表示,此值越大,配合物越稳定。 逐级稳定常数和累积稳定常数:逐级稳定常数是指金属离子与其它配位剂L逐级形成MLn型配位化合物的各级形成常数。将逐级稳定常数相乘,得到累积稳定常数。 副反应系数:表示各种型体的总浓度与能参加主反应的平衡浓度之比。它是分布系数的倒数。配位剂的副反应系数主要表现为酸效应系数αY(H) 和共存离子效应αY(N)系数。金属离子的副反应系数以αM表示,主要是溶液中除EDTA外的其他配位剂和羟基的影响。 金属指示剂:一种能与金属离子生成有色配合物的有机染料显色剂,来指示滴定过程中金属离子浓度的变化。 金属指示剂必须具备的条件:金属指示剂与金属离子生成的配合物颜色应与指示剂本身的颜色有明显区别。金属指示剂与金属配合物(MIn)的稳定性应比金属-EDTA配合物(MY)的稳定性低。一般要求KMY'>KMIn'>102。 最高酸度:在配位滴定的条件下,溶液酸度的最高限度。 最低酸度:金属离子发生水解的酸度。 封闭现象:某些金属离子与指示剂生成极稳定的配合物,过量的EDTA不能将其从MIn中夺取出来,以致于在计量点附近指示剂也不变色或变色不敏锐的现象。 第六章 氧化还原滴定法: 条件电位:在一定条件下,氧化态与还原态的分析浓度均为1mol/L或它们的浓度比为1时的实际电位。其电位值只有在一定条件下,才是一个常数,故称为条件电位。 第七章 沉淀滴定法和重量分析法: 共沉淀:当某种沉淀从溶液中析出时,溶液中共存的可溶性杂质也夹杂在该沉淀中一起析出的现象。 酸效应:是溶液的酸度改变使难溶盐溶解度改变的现象。 同离子效应:是当沉淀反应达到平衡后,增加适量构晶离子的浓度使难溶盐溶解度降低的现象。 第八章 电位法和永停滴定法: 相界电位:将金属插入含有该金属离子的溶液中,在金属与溶液两相界面上,由于带电质点的迁移形成了双电层,双电层间的电位差称为相界电位。 液接电位:在两个组成不同或组成相同而浓度不同的电解质溶液互相接触的界面间所产生的电位差,称为液体接界电位,简称液接电位,又称扩散电位。 原电池:是一种将化学能转变为电能的装置。 残余液接电位:用“两次测量法”测溶液pH时,饱和甘汞电极浸入标准溶液与浸入待测溶液中所产生的液接电位不可能完全相等,二者差值即为残余液接电位,其电位值约相当于±0.01pH单位。 指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。 参比电极:在一定条件下,电极电位基本恒定的电极。 膜电位:跨越整个玻璃膜的电位差。 不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。 酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。 碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。 学习必备 欢迎下载 转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。 离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。 电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。 可逆电对:电极反应是可逆的电对。 第九章 光谱分析法概论: 电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。 磁辐射性质:波动性、粒子性 电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。 光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。利用物质的光谱进行定性、定量和结构分析的方法称光谱法。 非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。 原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。为线状光谱。 分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级跃迁)所产生的分子光谱为基础的定性、定量和物质结构分析方法。为带状光谱。 吸收光谱法:物质吸收相应的辐射能而产生的光谱,其产生的必要条件是所提供的辐射能量恰好满足该吸收物质两能级间跃迁所需的能量。利用物质的吸收光谱进行定性、定量及结构分析的方法称为吸收光谱法。 发射光谱法:发射光谱是指构成物质的原子、离子或分子受到辐射能、热能、电能或化学能的激发跃迁到激发态后,由激发态回到基态时以辐射的方式释放能量,而产生的光谱。利用物质的发射光谱进行定性定量及结构分析的方法称为发射光谱法。 第十章 紫外-可见分光光度法: 末端吸收:只在图谱短波端呈现强吸收而不成峰形的部分。 透光率(T):透过样品的光与入射光强度之比。T=It/I0 吸光度(A):透光率的负对数。A=-lgT=lg(I0/It) 吸光系数(E):吸光物质在单位浓度及单位厚度时的吸光度。根据浓度单位的不同,常有摩尔吸光系数ε和百分吸光系数之分。 电子跃迁类型: (1)σ-σ* 跃迁:处于σ成键轨道上的电子吸收光能后跃迁到σ* 反键轨道。饱和烃中电子跃迁均为此种类型,吸收波长小于150nm。 (2)π-π* 跃迁:处于π成键轨道上的电子吸收光能后跃迁到π* 反键轨道上,所需的能量小于σ-σ* 跃迁所需的能量。孤立的π-π* 跃迁吸收波长一般在200nm左右,共轭的π-π* 跃迁吸收波长 >200nm,强度大。 (3)n-π* 跃迁:含有杂原子不饱和基团,其非键轨道中的孤对电子吸收能量后向π* 反键轨道跃迁,这种吸收一般在近紫外区(200-400nm),强度小。 (4)n-σ* 跃迁:含孤对电子的取代基,其杂原子中孤对电子吸收能量后向σ* 反键轨道跃迁,吸收波长约在200nm。 以上四种类型跃迁所需能量σ-σ* > n-σ* ≥ π-π* > n-π* (5)电荷迁移跃迁和配位场跃迁 生色团:有机化合物分子结构中含有π-π* 或n-π* 跃迁的基团,能在紫外-可见光范围内产生吸收的原