基于单片机的锂电池智能充电器的设计

合集下载

基于单片机控制的锂电池充电器设计

基于单片机控制的锂电池充电器设计

基于单片机控制的锂电池充电器设计锂电池充电器是一种用于给锂电池进行充电的设备,可以帮助锂电池恢复电荷,延长其使用寿命。

在本文中,将设计一款基于单片机控制的锂电池充电器。

该充电器采用了单片机作为主控制器,能够对电池进行精确充电控制和状态监测,从而实现高效充电和安全使用。

首先,我们需要选择适合锂电池充电的充电电路。

在这里,我们选择了恒流恒压充电模式,这是一种最常见和最可靠的充电方式。

充电电路由电源、电流检测电阻、电流采样电路、电流反馈控制回路和电压反馈控制回路组成。

接下来,我们需要设计单片机控制电路。

为了实现对充电过程的精确控制,我们可以选择一款功能齐全且性能稳定的单片机,如STM32系列。

单片机将通过AD转换器读取电流和电压的值,并根据设定的充电算法计算出相应的控制参数,并通过PWM信号调节充电电路的输出。

同时,单片机还应该具备状态监测功能,以确保充电过程的安全性。

例如,单片机可以实时监测电压、电流和温度等参数,并根据预设的条件进行相应的保护措施,如断电、降功率或结束充电等。

此外,为了提高系统的可靠性和安全性,我们还可以添加一些辅助电路。

例如,过流保护电路可以通过检测输出电流是否超过一定的阈值来触发断电保护措施。

过热保护电路可以通过监测电池温度来触发降功率或断电保护。

短路保护电路可以通过监测电池和电路之间的电压差来触发断电保护。

最后,根据设计好的电路和程序,我们可以制作出实际的锂电池充电器原型。

在测试和调试的过程中,我们可以通过观察和记录充电电流、电压和温度等数据,来验证充电器的性能和可靠性。

综上所述,基于单片机控制的锂电池充电器设计是一个复杂而重要的工程。

通过合理的电路设计和程序编写,我们可以实现对锂电池的高效充电和安全使用,延长电池的寿命,为多种应用提供可靠的电源解决方案。

基于AT89C51单片机在锂离子手机电池充电器中的应用设计

基于AT89C51单片机在锂离子手机电池充电器中的应用设计

基于AT89C51单片机在锂离子手机电池充电器中的应用设计锂离子电池作为一种高能量密度、长寿命、无记忆效应的电池,已经广泛应用于手机、笔记本电脑等便携式电子设备中。

为了满足用户对于手机续航能力的需求,手机充电器的设计变得越来越重要。

本文将基于AT89C51单片机,探讨其在锂离子手机电池充电器中的应用设计。

首先,我们需要了解AT89C51单片机的基本特性。

AT89C51是一种高性能、低功耗的8位单片机,具有大容量存储器和多种外设接口。

其具备快速执行速度和低功耗特性,非常适合在充电器中使用。

在锂离子手机电池充电器中,我们需要实现以下几个主要功能:恒流充放大、过压保护、过流保护和温度保护。

首先是恒流充放大功能。

锂离子电池在充放大过程中需要控制其充放大速率以避免损坏。

我们可以通过AT89C51单片机来实现对恒流输出进行控制。

通过采集锂离子电池的当前状态和温度等信息,并根据预设的充放大曲线进行控制,可以保证充放大的速率在安全范围内。

其次是过压保护功能。

过压是指锂离子电池在充电过程中电压超过安全范围。

为了避免锂离子电池的损坏,我们可以在AT89C51单片机中设置一个过压检测模块。

当检测到锂离子电池的电压超过设定值时,单片机将自动停止充电,以保护锂离子电池的安全。

第三是过流保护功能。

过流是指锂离子电池在放大或者充大时产生的超出额定值的电流。

为了避免锂离子电池因为过流而损坏,我们可以通过AT89C51单片机来监测和控制输出的最大充放大电流。

当检测到输出电流超出设定值时,单片机将自动停止或者调整输出功率,以避免损坏。

最后是温度保护功能。

温度对于锂离子手机电池来说非常重要,在高温环境下使用可能导致其损坏甚至发生爆炸等危险情况。

因此,在手机充大器中,我们可以通过AT89C51单片机来监测和控制锂离子电池的温度。

当温度超过设定值时,单片机将自动停止充放大过程,以保护锂离子电池的安全。

综上所述,基于AT89C51单片机在锂离子手机电池充大器中的应用设计可以实现恒流充放大、过压保护、过流保护和温度保护等功能。

基于单片机技术的智能充电器设计

基于单片机技术的智能充电器设计

基于单片机技术的智能充电器设计1. 引言智能充电器是一种利用单片机技术实现智能控制的充电器,它能够根据充电设备的需求,自动调节充电电流和电压,实现高效、安全、快速的充电过程。

本文将详细介绍基于单片机技术的智能充电器设计,并探讨其在实际应用中的优势和挑战。

2. 智能充电器设计原理2.1 单片机控制基于单片机技术的智能充电器采用单片机作为控制核心,通过编程实现对充电过程中各种参数的监测和调节。

单片机具有高速、低功耗、易编程等优势,可以实现精确控制和智能化管理。

2.2 充放电管理智能充电器设计中重要一环是对锂离子等可再生储能设备进行精确管理。

通过监测储能设备的状态参数(如温度、容量等),可以根据设备需求自动调节输出功率,并确保安全快速地完成充放电过程。

3. 智能化算法设计3.1 全局最优算法为了最大限度地提高储能设备的利用率,智能充电器设计中应用了全局最优算法。

该算法通过对充电过程中的各种参数进行实时监测和分析,优化充电过程中的功率分配,使得充电器能够以最高效率完成充电任务。

3.2 自适应调节算法智能充电器设计中还应用了自适应调节算法,通过对设备需求的实时监测和分析,自动调节输出功率和电压。

该算法可以根据设备需求的变化进行动态调整,以提高充电效率和减少能量损耗。

4. 智能充电器设计实现4.1 硬件设计智能充电器硬件设计包括选择合适的单片机芯片、功率模块、传感器等元件,并进行合理布局和连接。

其中单片机芯片需要具备足够的计算性能和存储空间,以支持复杂的控制算法。

4.2 软件设计智能充电器软件设计包括编写控制程序、界面程序等。

控制程序需要实现对各种参数的监测、分析和控制,并根据设备需求进行动态调整。

界面程序可以提供用户友好的操作界面,并显示相关的充电信息。

5. 智能充电器的应用优势5.1 高效充电基于单片机技术的智能充电器能够根据设备需求智能调节输出功率和电压,以最高效率完成充电任务。

相比传统充电器,智能充电器可以大大缩短充电时间,提高储能设备的利用效率。

基于单片机的智能充电器设计

基于单片机的智能充电器设计

基于单片机的智能充电器设计本毕业设计主要目的是应用AT89S51单片机及MAX1898锂离子电池充电芯片结合利用PNP晶体管能够组成电锂离子实现高能效智能电池手机充电器。

MAX1898可以提供精确度很高的恒压/恒流充电。

电池电压能够调节的精度为±0.5%,电池的使用时间和寿命得到增长,性能大大的提高。

AT89S51单片机可以控制实现电池预充、快速充、满充、慢速充电保护、自行断电和慢充完成自动警示功能。

在软件设计方面,能够利用C语言编码为开发工具为系统提供更高的可靠、安全、稳定和经济性。

此智能充电器包括能够自行切换充电模式、检测锂电池充电电池的状态、短路保护充电器功能、检测充电状态显示的功能同时可以更加的维护电池的性能,使其的使用时间和寿命延长。

另外,在选择充电芯片时,也查阅了相关的资料,例如MAX1578、SMC401都可以作为充电芯片,但是相比较而言,MAX1898能更好的与51单片机相结合,功能也很强大,同时,MAX1578、SMC401更能适用于高档仪器,笔记本电脑,更重要的是MAX1898对于做毕业设计而言更经济实惠,性价比更高。

本毕业设计,在一些现实的条件下,尽可能的是实现它快速充电,保护电池,报警提示,突出它的智能化高效能,即本毕业设计核心就是实现智能充电器的高能效的特点。

[关键词]:单片机AT89S51 MAX1898芯片智能充电器目录1 绪论 (3)1.1研究的背景 (3)1.2研究的主要内容 (3)1.3应解决的关键问题 (3)2 方案设计和论证 (4)2.1设计思路概述 (4)2.2方案设计与论证 (4)2.2.1 充电控制芯片的选择 (4)2.2.2 电池充电芯片的选择方案 (5)3 主要芯片介绍 (8)3.1MCS-51系列单片机简介 (8)3.1.1 MCS-51系列单片机功能概述 (8)3.1.2 MCS-51系列单片机引脚功能说明 (8)3.1.3 AT89S51单片机引脚说明与介绍 (9)3.2MAX1898简介 (10)3.2.1 MAX1898特性介绍 (10)3.2.2 MAX1898芯片介绍 (10)4 系统软件设计和调试 (11)4.1单元电路设计 (11)4.1.1单片机模块电路和报警电路设计 (11)4.1.2充电器电路充电控制电路设计 (12)4.2总电路设计 (13)5 系统程序设计 (14)5.1程序设计概述 (14)5.2程序流程图 (14)6 系统硬件设计和调试 (15)6.1电路图设计介绍 (15)6.2硬件电路制作 (16)6.3系统电路软件和硬件联合调试 (18)7 结束语 (19)附录A:系统原理图 (1)附录B:系统PCB图 (1)附录C:系统源程序 (2)1 绪论1.1研究的背景随着科技的发展,各种各样的便携式充电器都遍布市场,同时对充电器在轻重量、小尺寸及高性能的要求也更高。

基于单片机的智能手机充电器系统设计报告

基于单片机的智能手机充电器系统设计报告

基于单片机的智能手机充电器系统设计报告基于单片机的智能手机充电器设计报告一( 系统设计1.设计目的1) 熟悉并掌握单片机嵌入式系统的开发流程和应用方法。

2)做到对电池充电过程的实时监测。

3)做出智能化的充电器。

我发现在给手机充电的时候,往往不能知道电池还有多长时间能充满,而且经常忘记是什么时候开始充电的,因此很容易造成过充或充电不足,从而影响手机电池的使用寿命,还有可能出现危险。

于是我便萌生了设计一种可显示时间的手机充电器的想法2.功能简介1)可与锂电池中的芯片通信,得到电池组的容量、电压、电流等参数。

2)用LED显示电池的剩余充电时间。

3)具备防过充功能,在电池电压达到一定值后减小充电电流,直至电池充满。

3.应用能给各种锂离子电池充电并可以实时显示充电的剩余时间。

二(实验资源1)硬件:AVR开发板,Atmega16,LED七段数码管,电源2)软件:ICCAVR,AVRstudio三(实验原理1. 电路原理图注释:左下为AD模块,Mega16的PA口接AD,同时输出PWM,PB3接PWM进行充电控制;右下方为以TLC431为主的稳压源,接单片机的AREF端口。

2. 实验原理:锂电池的充电过程分为预充、快充、涓流三个步骤,我们的原理概括的讲,就是在预充阶段通过对电池进行扫描测出电池的容量,与程序中的库进行对应从而得出充电所需时间;再经过快充电池电压达到一定高的值,为防止由于充电过快引起的电池实际电压不足,最后再加上一定时间的涓流充电。

在整个过程中通过LED来实时显示剩余充电时间。

3. 软件设计流程图四(数据采集为使充电器能为不同容量的电池,需要做测试来采集大量的数据,反应电池在充电过程中电压、电流、时间之间的关系。

以下为几个具有代表性的测试图样:1. 容量为600mah的电池快充过程中I-t曲线图中X轴为时间(min),Y轴为电流(mA) 图中X轴为时间(min),Y轴为电流(mA)注:图中X轴为时间(min),Y轴为电流(mA)。

基于单片机的智能电池充电器的设计

基于单片机的智能电池充电器的设计

基于单片机的智能电池充电器的设计智能电池充电器是一种能够智能识别电池类型和状态,并能根据电池需求实现快充和慢充的充电器。

本文将介绍一种基于单片机的智能电池充电器的设计。

一、设计原理智能电池充电器采用了单片机作为控制核心,通过对电源和电池状态进行实时监测以及控制充电电流和电压等参数,从而实现对电池的智能化管理。

二、主要功能1.电池类型识别:通过检测电池的电压和电流波形,智能电池充电器能够自动识别电池的类型,包括锂电池、铅酸电池等等。

2.电池状态检测:充电器能够实时监测电池的电流、电压以及温度等参数,通过这些参数的变化,判断电池的充电、放电状态,从而保证电池的安全和寿命。

3.充电控制:智能电池充电器可以根据电池类型和状态,动态调整充电电压和电流,以实现快充和慢充的切换,从而提高电池的充电效率和安全性。

4.过充保护:当电池充电至预设的电压值时,充电器能够自动停止充电,防止过充,保护电池安全。

5.温度保护:当电池温度过高时,充电器会自动停止充电,保护电池不受损坏。

三、硬件设计智能电池充电器的硬件设计包括电源电路、电流电压检测电路、控制电路和显示电路四个主要部分。

1.电源电路:充电器所需的电源电压一般为DC12V或AC220V,通过整流和滤波电路将交流电转化为直流电,并通过稳压电路将电压稳定在适合电池充电的范围内。

2.电流电压检测电路:用于实时检测电池的电流和电压值,通常采用放大电路和模数转换电路将模拟信号转化为数字信号,以供单片机进行处理。

3.控制电路:包括单片机和相关外围电路,单片机根据检测到的电池类型和状态,通过控制电源电压和电流调整电池的充电方式和速度。

4.显示电路:用于显示电池的充电状态、电流、电压等相关信息,通常采用数码管、LCD等显示器件。

四、软件设计智能电池充电器的软件设计主要包括单片机的程序设计和算法设计。

1.程序设计:根据单片机的指令系统和硬件接口进行开发,程序主要包括电池类型识别、电池状态检测、充电控制和保护控制等功能。

基于单片机的锂离子电池充电系统设计方案

基于单片机的锂离子电池充电系统设计方案

基于单片机的锂离子电池充电系统设计方案
一、电池充电系统概述
锂离子电池充电系统是一种针对锂离子电池充电的系统,它是利用可
编程控制器或单片机技术的智能化充电系统。

通常,它可以对电池进行分
析测试,检测电池的容量、温度,根据结果调整电流,充电电压等,以保
证电池充电过程的安全性,并可以提高电池的充放电效率,减少电量损耗。

二、电池充电系统基本组件
1.可编程控制器或单片机:主要用于系统的智能控制,可以根据电池
的充电状态进行充电电流和电压等参数的调整,以保证电池的充电安全性。

2.电池充电电路:由电源,半导体三极管控制器,负载和电流传感器
组成。

此充电电路用于提供充电电流和电压,检测电池参数,以确保电池
充电过程的安全性。

3.充电控制芯片:此芯片主要用于对电池状态和参数的监测,根据监
测结果,调整充电电流和电压,以提高充放电效率。

3.电压电流检测电路:可检测电池充电电流和电压,并将检测结果反
馈给可编程控制器或单片机,以实现充电控制。

4.电池温度检测电路:可检测电池内部的温度,以便调整温度,确保
电池的安全性。

三、电池充电系统的基本工作原理。

基于单片机的锂离子电池充电器设计

基于单片机的锂离子电池充电器设计

基于单片机的锂离子电池充电器设计摘要:锂离子电池充电器应用非常广泛,它用到了单片机模数转换采样技术。

除此之外,锂离子电池充电器在电路设计上用到了保护机制与应急处理机制,基准电压发生器和多充电模式设计方法。

关键词:充电充电器单片机随着笔记本电脑、移动电话机以及小体积高功率电器的广泛应用,锂离子电池也被广泛地用作供电电源。

本人利用单片机设计锂离子电子电池充电器,由于充电器的规格和功能不同,其结构和电路布线也会软件设计存在很大的不同。

锂离子电池充电器的设计分为硬件设计、锂离子电池充电器的设计分为硬件设计、软件设计两个部分。

本文重点介绍充电器的硬件设计。

1 充电器功能的描述按照目前市面上常用的手机电池,设计了一款通用的锂离子充电放电曲线与充电器的设计参器。

只要用户手机电池的特性参数和充、只要用户手机电池的特性参数和充、放电曲线与充电器的设计参数相同,就可以利用它来进行充电。

按照锂子电池的特性参数和充放电曲线完成充电器设计,经产品测试后,可以完成的功能如下:(1)电池充电功能。

完成基本的功能,能按电池的充电曲线,完成恒流/恒压充电。

(2)LED指示。

电池正在充电,充电器的LED指示灯显示为红色;充电后,LED指示灯为绿色。

(3)保护机制。

当电池和充电器的工作温度超出设定的范围,或者充电电压出现异常时,系统的红色LED 指示灯间隔0.5s 闪烁一次。

此外,对于过压和过流状况采取相应的保护措施,保证充电的正常进行。

(4)异常处理。

系统能在排除异常后,重新恢复充电。

重新恢复充电。

2 充电器硬件设计充电器硬件设计2.1 系统设计框架及技术参数系统设计框架及技术参数设计系统框架时,应考虑系统的可靠性和安全性。

为了保证充电不对电池造成永久性的损坏,在设计中必须考虑保护措施(包括过流保护,过压保护和温度保护)。

另外,充电器充电过程包括了恒流工作阶段和恒压工作阶段,且系统必须保证恒流、恒压的稳定性。

系统的设计框架,包括电压/温度采样模块、开关控制模块、保护机制模块和充电模块(实际设计中并没有严格按照这种顶层的模块划分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于AVR的锂电池智能充电器的设计与实现1 引言锂电池闲其比能量高、自放电小等优点,成为便携式电子设备的理想电源。

近年来,随着笔记本电脑、PDA,无绳电话等大功耗大容量便携式电子产品的普及,其对电源系统的要求也日益提高。

为此,研发性能稳定、安全可靠、高效经济的锂电池充电器显得尤为重要。

本文在综合考虑电池安全充电的成本、设计散率及重要性的基础上,设计了一种基于ATtiny261单片机PWM控制的单片开关电源式锂电池充电器,有效地克服了一般充电器过充电、充电不足、效率低的缺点,实现了对锂电池组的智能充电,达到了预期效果。

该方案设计灵活,可满足多种型号的锂电池充电需求,且ATtiny261集成化的闪存使其便于软件调试与升级。

2 锂电池充电特性锂电池充电需要控制它的充电电压,限制其充电电流。

锂电池通常都采用三段充电法,即预充电、恒流宽电和恒压充电。

锂电池的充电电流通常应限制在1C(C为锂电池的容量)一下,单体充电电压一般为4.2V,否则可能由于电聪过高会造成键电池永久性损坏。

预充电主要是完成对过放的锂电池进行修复,若电池电压低于3V,则必须进行预充电,否刚可省略该阶段。

这也是最普遍的情况。

在恒流阶段,充电器先给电池提供大的恒定电流,同时电池电压上升,当魄池电压达到饱和电压对,则转入憾压充电,充电电压波动应控制在50mV以内,同时充电电流降低,当电流逐渐减小到规定的值时,可结束充电过程。

电池的大部分电能在惯流及恒压阶段从充电器流入电池。

曲上可知,充电器实际上是一个精密电源,其电流电压都被限制在所要求的范围之内。

3 硬件电路设计该系统在电路设计上主要由单片开关电源、控制电路及保护电路三部分组成。

3.1单片开关电源单片开关电源负责将电能转化为电池充电所需要的形式,构成了充电器的主要功率转换方式。

与传统线性充电器大损耗、低效率的缺点相比,由美国Power Integrations公司的TNY268P构成的单片开关电源,其输入电压范围宽(85265VAC)、体积小、重量轻、效率高,其有调压、限流、过热保护等功能,特别适合于构成充电电源。

其原理图如图1所示。

图1单片开关电源该电源采用配稳压管的光藕反馈电路实现15V的低压直流输出,当输出电压发生变化时,通过线性光藕PC817的发光管的电流发生相应的变化,使得TNY268P的EN脚流出电流也发生变化,从而控制其片内功率MOSFET的断、通、调节输出电压,使输压电压稳定。

具体反馈原理分析详见后文脉宽调制(PWM)的控制。

在电路结构上,线性光藕PC817,不但可以起到反馈作用还可起到隔离作用。

由PNP管Q2和电阻R9、R1O及R12组成的限流电路,则从源头上防止了过电流的问题。

由C6及R11构成的缓启电路,则有效抑止了电源上电瞬间的产生的电压尖峰。

而二极管D9则防止了电池组的反向放电。

此外,对整个充电系统而言,当因意外情况系统失控时,开关电源所提供的15V直流低压也在某种程度上起到了限制其最高电压的作用。

3.2控制电路单片机负责控制整个系统的运行,包括充电电流电压值的设定,电流电压的检测与调整,充放电状态的显示等。

与专用充电控制芯片相比,单片机控制系统不仅不受电池组容量大小的阻将电流转换为电压进行的,因此其PWM控制调整过程与恒限制,还可通过软硬件配合实现更灵活的综合控制,也便于进一步的后续开发。

系统控制选用Atmel公司的AVRATtiny261来实现,控制框图见图2。

ATtiny261采用AVR RISC 结构,其大部分指令执行时间仅为1个时钟周期.可达到接近1MIPS/MHZ的性能;11路lObitADC。

且15对具有可编程增益的ADC差分通道,精度高达2.5mV的内置2.56V基准源,3个独立PWM发生器,片上温度传感器,足以满足设计需求。

图2系统控制结构框图3.2.1志愿检测系统电压采样采用精密电阻分压方法,将测量电压范围转换成0-2.56V,然后通过1倍的差分ADC通道转换成数字信号,在充电过程中将测得的电压值与预先设定的值进行比较,再控制调整PWM占空比完成对充电电压的控制与调节。

3.2.2电流检测在系统电流的榆测上,由于选用ATtiny261的ADC差分通道,这就要求其正端输入电压必须大予负端输入电压。

困此,在电路设计上,通过串联在电流主回路中的高精度采样电阻RsenseB和RsenseA,经ADC2-ADCl和ADCl-ADC0两对32倍的ADC差分通道(参见图3),分别完成对充、放电电流的检测。

可见,差分ADC的选用,既保证了电流采样的精准,又避免了因电路中引入差分远放所带来的功率损耗问题,很好的满足了系统性能与功耗两方面的要求,充分体现了ATtiny261的优势。

图3电池保护电路3.2.3温度检测温度检测确保了安全充电步骤的执行。

系统中使用ATtiny261的毖上湿度传感器,通过ADCIl 进行温度检测。

测量电压与温度基本成线性关系,约lmv/°C的精度可提供充分精度的温度测量。

如欲获得更高精度的温度检测,可通过软件写入校准值的方法来实现。

3。

2。

4 PWM控制设计中,在前述稳压管反馈控制的摹础上,在反馈环节中引入PWM的方法控制充电。

其基本控制思想是利用单片机的PWM端口,在不改变PWM波周期的前提下,通过电流及电压的反馈,用软件的方法调整PWM占空比,从而使电流或电压按预定的充电流程进行。

因系统进入充电工作状态后,受锂电池终止充电电压的限制,其最高电压不得高于12.7V,所以开关电源中的稳压管Zl始终处于截止状态,充电过程完全由PWM的控制来实现。

以恒压充电为例,在充电电压调整之前,单片机先快速读取充电电压检测值,然后将设定的电压值与实际读取值进行比较,若实际电压偏高,则提高PWM占空比,使线性光耦PC817的发光二极管的电流1F增大,致使TNY268的EN脚置为低电平,其片内功率MOSFET关断,输出电压降低。

反之,则降低PWM占空比->IF减小->EN 脚为高电平,片内功率MOSFET接通,输出电压升高。

在预充电,恒流充电阶段对电流的调整,是通过采样电阻将电流转换为电压进行的,因此其PWM控制调整过程与恒压阶段完全类似。

当充电结束时,PWM 持续输出占空比为1的高电平,关断TNY268P的片内MOSFET,中断功率转换回路,实现充满后自动停充。

为保证采样的准确,尽量避免由于ADC的读数偏差和电源工作电压等引入的波纹干扰,所有采样点都经过阻容滤波处理,并在软件PWM的调整过程中采用了数字滤波技术。

您当前的位置:首页 > 应用 > 电源3.2.5 按键与显示充电器的功能按键响应由ATtiny261的外中断来实现,与LED显示相配合可获知池放电状况,并提醒系统即将终止。

系统充放电的每个状态都与相应LED显示对应。

可根据电压检测判断是否有电池装入及提供电池短路保护,并给出LED报警信号。

3.3保护电路由于锂电池的化学特性,在使用过程中,其内部进行电能与化学能相互转化的化学正反应。

但在菜蝗条件下.如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧则会严重影响锂电池的性能与使用寿命,甚至会引起爆炸而导致安全问题,因此锂电池保护电路显得至为重要。

如图3所示,该电路选用精工的多节锂电池保护芯片S8233构成,可对电池电压和回路电流进行有效监测,并通过对MOS管FET-A或FET-B的控制在某些条件下关断究、放电回路以防止对电池发生损害。

与其它电池保护芯片如S8254相比较,S8233还可通过外接MOS管FET1,FET1及FET3来保证锂电池组的充电平衡,这是其它类似芯片所不具备的优点。

通过单片机对S8233芯片CTL端子的控制,可实现对锂电池的故障保护。

4 软件设计系统软件采用汇编语言编写,并在AVR Studio4环境下编译调试完成。

整个系统软件内充电主程序和中断服务子程序组成。

主程序主要完成系统、变量及看门狗定时器的初始化.控制系统实现充电功能。

单片机完成初始化后,根据电池状况判断应该进入哪一个充电阶段,然后通过AD采样与中断响应完成PWM的调整,实现相应阶段的控制。

主程序流程见图4。

程序中通过AD中断子程序来改变PWM占空比,定时中断子程序来控制最大充电时间,外中断来判断电池组放电状态。

图4 主程序流程5 实验测试结果实验中采用750mA恒流对3节1500mAh的锂电池组进行充电,充电电流.电压测试曲线如图5所示。

实验结果她示,由单片开关电源实现AC-DC的转换,通过ATtiny261与S8233保护芯片的相互配合与控制所实现的锂电池充电器,满足了3节锂电池组的充电要求,取得了较好的充电效果。

图5 电池充电测试热线6 结束语由于AVR ATtiny261良好的性价比,使得产品的智能性与应用性大大提高,且缩短了开发时阔.降低了开发成本。

并且,系统采用综合控制的软件算法,避应了不同型号及容量的锂电池需求机电路集成度高,结构简单,性能可靠,经济轻便,具有很大的实用价值。

此外,在系统现有功能实现的基础上,充分利用ATtiny261的片内外资源,通过其所具有的12C通信功能,可以很方便的升级为智能电源管理系统,直接成用于各种便携式电子设备。

本文作者创新点:采用PWM控制的单片开关电源实现充电,大大提高系统效率;基于AVRATtiny261的控制核心搜综合控制的软件算法,使系统控制更加灵活,便于进一步升级开发。

相关文档
最新文档