《添括号法则》教学设计1
数学人教版八年级上册添括号法则教学设计

添括号法则教学设计(xx)一、教学目标(一)知识技能1、理解并掌握添括号法则2、会利用添括号法则灵敏应用乘法公式(完全平方公式、平方差公式)(二)能力训练目标1、通过对去括号法则探索得到添括号法则同时培养学生的逆向思维能力2、进一步使学生烂熟乘法公式体会公式中字母的含义(三)情感与价值观鼓励学生算法多样化培养学生多方位思考问题的习惯提高学生的合作交流意识和创新精神二、教学重点理解添括号法则进一步熟悉乘法公式的合理利用三、教学难点在多项式与多项式的乘法中合适添括号达到应用乘法公式解决问题的目的四、教学方法引导-探究相结合教师由去括号法则引入添括号法则并引导学生合适添括号变形从而达到熟悉乘法公式应用的目的五、教具准备多媒体课件六、教学过程(一)问题域情景师:随机抽取几名同学,上黑板完成乘法公式的默写。
进入今天的主题——添括号法则强调重难点1、复习巩固练习1:下面各式的计算是否正确?如果不正确,应当怎样改正?(1)x yx2y22(2)x yx2y22(3)x yx2xy y222(4)x yx2xy y22学生练习老师点评。
练习2:运用完全平方公式计算(1)x2y 22(2)2a5 22(3)2s t(4)3x4y复习巩固为后面教学打下基础。
2、探索新知探索发现:去括号:a+(b+c)=a+b+ca-(b+c)=a-b-c反过来,添括号a+b+c=a+(b+c)a-b-c=a-(b+c)你有什么发现?(教师由去括号法则类比得到添括号法则,培养学生总结概括能力)归纳新知:添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;添括号时,如果括号前面是负号,括到括号里的各项都改变符号.3、应用新知做一做:练习1.在括号内填入合适的项:(1) x²–x+1 = x²–( );(2) 2 x²–3 x–1= 2 x²+( );(3)(a–b)–(c–d)= a–( ).练习2.判断下面的添括号对不对:(1) a²+2ab+b²=a²+(2ab+b²) ( )(2) a²–2ab+b²=a²–(2ab+b²) ( )(3) a–b–c+d=(a+d)–(b–c) ( )(4) (a–b+c)(–a+b+c)=[+(a–b)+c][–(a–b)+c] ( )=[c–(–a + b)][c+(–a + b)] ( )学生多练习,熟悉添括号法则。
《添括号》教案1

《添括号》教案教学目标1、使学生掌握添括号的法则;2、使学生能够根据要求正确添括号;3、通过对添括号法则的探索,培养学生观察、分析、归纳能力.教学重点掌握添括号法则及根据要求正确地添括号.教学难点括号前面“-”号添括号,括号里各项要改变符号.教学过程一、复习提问:1、去括号的法则是什么?2、把下列各式去括号:(1))(c b a -+;(2))(c b a +-;(3)[])(c b a +--二、讲授新课上面是根据去括号法则,由左边的式子得到右边的式子,这种去括号是为了运算的需要.同样,为了代数的运算,有时还需要把一个多项式的几个项用括号括起来,表示这几项要先合并,这就是添括号.问题1:分别把前面去括号的(1)、(2)两个等式中等号的两边对调,并观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?问题2:随着括号的添加,括号内各项的符号有什么变化规律?问题3:通过观察与分析,试归纳添括号法则.说明:(1)通过观察与分析,添括号的负号不是原式某一项的符号;(2)去括号和添括号都是恒等变形,不因为去括号或添括号改变原多项式的值;(3)添括号时要特别强调括号前面的符号.做一做:在括号内填入适当的项:(1)-=+-221x x x ( );(2)222132x x x =--+( );(3)-=---a d c b a )()(( ).例1、用简便方法计算:(1)a a a 5347214++;(2)a a a 6139214--;注意:用去括号的方法检验.三、巩固练习观察课本73页的添括号过程.四、小结关键是要注意括号前面的符号,括号前的符号是括号内各项变不变号的依据.五、作业课本第74页的练习.。
添括号法则教案

第2课时添括号法则◇教学目标◇【知识与技能】掌握乘法公式的结构特征及公式的含义,理解添括号法则,会正确地添括号运用这些公式进行计算.【过程与方法】通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感、态度与价值观】培养良好的分析思想和与人合作的习惯,体会数学的重要价值.◇教学重难点◇【教学重点】正确应用乘法公式(平方差公式、完全平方公式).【教学难点】对乘法公式的结构特征以及内涵的理解.◇教学过程◇一、情境导入教室里有a名同学,第一次有b名同学被老师喊到办公室去了,第二次有c名同学被老师喊到办公室去了,请你用代数式表示教室里现在有多少名学生?你能用两种形式表示吗?二、合作探究探究点1添括号法则典例1①5x+3x2-4y2=5x-();②-3p+3q-1=3q-().[解析]①5x+3x2-4y2=5x-(4y2-3x2).②-3p+3q-1=3q-(3p+1).[答案]4y2-3x2;3p+1探究点2添括号后用公式计算典例2计算:(a-2b+1)(a+2b-1).[解析](a-2b+1)(a+2b-1)=[a-(2b-1)][a+(2b-1)]=a2-(2b-1)2=a2-4b2+4b-1.:(3x+y+1)(3x+y-1).[解析](3x+y+1)(3x+y-1)=(3x+y)2-1=9x2+6xy+y2-1.探究点3用完全平方公式计算典例3计算:(a+2ab-1)2.[解析]原式=(a+2ab)2-2(a+2ab)·1+12=a2+4a2b+4a2b2-2a-4ab+1.a+2b-c)2.[解析]原式=(a+2b)2+c2-2c(a+2b)=a2+4ab+4b2+c2-2ac-4bc.探究点4代数式求值典例4先化简,再求值:(a+2b)(a-2b)+(a+2b)2+(2ab2-8a2b2)÷2ab,其中a=1,b=2. [解析]原式=a2-4b2+a2+4ab+4b2-4ab+b=2a2+b,∵a=1,b=2,∴原式=2a2+b=4.A=(x+1)2-(x2-4y).(1)化简多项式A;(2)若x+2y=1,求A的值.[解析](1)A=(x+1)2-(x2-4y)=x2+2x+1-x2+4y=2x+1+4y.(2)∵x+2y=1,由(1)得A=2x+1+4y=2(x+2y)+1,∴A=2×1+1=3.三、板书设计添括号法则添括号◇教学反思◇本节的内容是添括号法则,添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确,添括号能利用乘法公式简单计算,重在理解遇负全变,遇正不变的口诀.。
《添括号法则》教学设计(河北省县级优课)

课题:运用乘法公式计算一、学习目标1、利用添括号法则灵活运用运算律及乘法公式进行多项式的乘法运算2、让学生经历“类比乘法公式对乘法算式进行变形”的过程3、在合作学习中进一步提高与同伴交流的能力,学会倾听,敢于展示二、学习重难点:重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.三、教学过程(一)自主学习在下列()里填上适当的项。
题(4)和题(5)可以运用哪个乘法公式计算。
类比乘法公式,什么相当于公式当中的a和b。
(1)a+b+c-d=a+( )(2)a-b+c-d=a-( )(3)x+2y-3=2y-( )(4)(2x+3y)(2x-3y)=( )(5)(3a-2b)2=( )教学要求:独立完成,小组内交流,推荐大号同学讲解展示。
设计意图:复习添括号法则及乘法公式,为利用乘法公式计算做准备。
★教师精讲点评:完全平方公式不要丢了“±2ab”项。
(二)合作学习1、出示题1:计算(2a+b+c)(2a+b-c)教学步骤:学生独立思考3分钟,然后小组合作交流5---7分钟,由小组派代表到黑板上板演,其他同学独立完成(板演的同学号越大小组加分越多)3分钟内完成。
学生完成后本组成员点评。
并由学生做总结(怎样添括号,这样添的目的是什么,运用了什么乘法公式)教师适时做点评、点拨。
(设计意图:学生在没有见过这类习题的情况下,让学生经历观察、比较、归纳、提出猜想的过程,学生在发现规律后,通过小组解决,有助于学生合作精神的培养。
学生点评,激发学生的学习热情,唤起学生的求知欲望。
)★教师精讲点评:1、哪两项通过添括号可以变为一个整体,即公式中的a、b也可以表示多项式。
2、计算过程中运用哪一个乘法公式必须要准确。
2、出示题2:计算(2x+y+3)(2x-y-3)教学步骤:学生独立完成,指号(4-5号)板演,换组点评设计意图:在题1已经完成的情况下,通过观察,探究添括号的方法。
《添括号法则》教学设计(甘肃省县级优课)

5.组织学生做好展示的准备.
1.学生阅读教材,生成问题在小组内讨论.
2.小组合作、探究,确定中心发言人.
3.问题汇总,确定展示内容,每一个小组成员参与讨论、交流、质疑.
互助合作
展示交流
创设探究展示情景
1.【教师旁白】在理解乘法公式的同时,利用交换律和结合律,进行多形式乘法的计算
课堂教学设计
课题
完全平方公式(2)
上课时间
2017年11月22日
授课人
工作单位
授课班级
八(5)班
教材的地位和作用
去括号法则是在第二章出现的,学生对此法则较为熟悉,而添括号法则是讲去括号法则反过来理解和运用的,而添括号是本章的一个难点,今后学习因式分解,分式的运算及解方程等内容,经常会用到去括号和添括号的问题,所以一定要重视本节知识的教学,使学生掌握去括号和添括号法则,为今后学习打下基础。
学
习
目
标
知识技能:
1.进一步理解完全平方公式,能用公式进行计算;
2.学会运用去括号法则进一步掌握完全平方公式.
过程与方法:
1.学生经历探究、归纳、总结添括号法则的过程,培养学生观察、比较、概括的逻辑思维能力;
2.学生经历利用添括号法则解决多项式乘法运算的过程,培养学生综合运用所学知识解决问题能力.
情感与价值观:
3.激励评价体验学习法:学生亲身经历寻找解题的思路和解题技巧,自制并进行操作,领悟数学的奥秘.
学习
准备
教师准备:导学案、课件;
学生准备:双色笔..
预期的学生活动
创设情景
呈现目标
创设
感悟
情景
1.【教师诱导】激发学生兴趣.
《添括号法则》教学设计(湖北省县级优课)

§14.2乘法公式-----添括号一、教学内容和内容解析1、教学内容添括号2、内容解析添括号是对数学式子进行变形的重要方式.它是以第二章去括号法则为基础,添括号与去括号是互逆变形,可以相互检验.添括号法则也为今后学习因式分解、分式运算、解方程、简便计算等内容作铺垫,具有承前启后的作用.例5是平方差公式、完全平方公式的推广应用,是前两节所学内容的一个拓展与综合,其结果的规律性与平方差公式、完全平方公式是一致的.主要是运用添括号把其中的某几项看作一个整体,作适当的变形,转化为符合公式的结构特征,再利用公式,体现转化的数学思想.基于以上分析,确定本节课的教学重点是:添括号和对项数是三项的多项式乘法进行运算.二、教学目标和目标解析1、目标(1)了解添括号法则.(2)能应用添括号法则,结合乘法公式,对项数是三项的多项式乘法进行运算.2、目标解析达成目标(1)的标志是:学生经历添括号法则的产生过程,能根据添括号法则对整式进行正确变形,并且能用去括号检验添括号是否正确.达成目标(2)的标志是:学生在对例5的探索过程中,能够体验到添括号的作用,把复杂问题转化为简单问题,化未知为已知的研究问题的数学方法.能正确解答类似于例5的整式乘法运算.三、教学问题诊断分析在小学及七年级,学生在学习运用运算律进行简便运算等内容时,已对添括号有所了解和简单运用,因此添括号法则的形成过程,学生容易理解,但添括号是学生的一个易错点,特别是括号前是“-”时,括到括号内的项忘记变号.平方差公式、完全平方公式中的字母a、b可以表示具体的数、单项式、多项式等代数式.像例5这样表面上不符合公式结构征的整式乘法,对学生来说,找准谁相当于公式中的“a”,谁相当于公式中的“b”,把哪几项看作一个整体,有时会感到困难.解决这一困难还是要回到公式本身上,抓住公式的结构特征,引导学生利用添括号把整式作适当的变形,让其符合公式结构征.本节课的教学难点是:运用添括号法则对整式作适当的变形.四、教学过程设计一>、创设情景引入新课在前两节课中,我们学习了两个整式的乘法公式,同学们掌握的如何呢?请计算下列各题:(1) (3x+2)(3x-2)= (2)(2a+b)2=(3)(y-2)2=师生活动:学生口答追问1:你计算的依据是什么?追问2:你能用字母表示这个公式吗?(教师板书公式)追问3:公式中的字母a、b可以表示什么?【设计意图】以诊断题的形式引导对平方差公式、完全平方公式复习回顾,同时检查学生对两公式的掌握情况,承前启后,为本节内容的学习作铺垫.想一想:(4)(5)两小题可以直接用乘法公式来计算吗?为什么?(4)( x+2y -3) (x-2y +3)(5) (a + b +c ) 2【设计意图】用例5的两小题为学生设疑,激发学生的求知欲,同时促进学生对平方差公式、完全平方公式的特征和适用范围进行反思,抓住例5与公式的不同之处.不能直接用乘法公式来计算,我们就要另劈途径,自然引入新课.(教师板书课题、出示目标)二>、逆向思考得到法则1、用“>、<、=”填空:(1)4+5+2 ____ 4+(5+2)(2)4 -5-2 ____4 -(5+2)(3) a+b+c____ a+(b+c)(4) a-b-c____ a-(b+c)师生活动:学生口答追问1:你在对(3)(4)两小题作判断时,使用了什么法则?追问2:你能说一下去括号法则的内容吗?(教师板书“去括号”)【设计意图】以诊断题的形式引导学生回顾去括号法则,设计的题由具体到抽象,为添括号法则的形成奠定基础.追问3:请同学们观察以上等式,从左边到右边形式上有何变化?追问4:我们把以上从左边到右边形式上的这种变化叫做添括号(教师板书“添括号”),那么你认为该如何添括号应?于是得到添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.【设计意图】让学生经历从具体——抽象的过程,即经历观察、比较每个等式的左边和右边形式上的不同,抽象、概括出添括号法则的过程,从中体会到研究数学问题的基本方法:从具体到抽象,从特殊到一般.追问5:添括号法则与去括号法则是什么关系?(教师用“”板书在“添括号”与“去括号”之间)【设计意图】加强知识间的相互联系,促进学生大脑中知识网络图的形成.2、基础练习加深理解①在等号右边的括号内填上适当的项:(1) a + b– c = a + ( ); (2) a – b – c = a –( ) ;(3)a– b + c = a – ( ); (4) a + b + c = a–( ).题后反思:思考:怎样检验添括号是否正确?②判断下列运算是否正确,不正确的请改正.(1)2a-b-2c=2a -(b -2c)(2)m-3n+2a-b=m+(3n+2a-b)(3)2y2-3y+2=-(2y2+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)师生活动:教师出示问题,学生先独立思考,然后填空、判断、改错,并回答为什么这样做?【设计意图】通过填空、正误辨析及改错,让学生加深对添括号法则的理解与运用.三>、合作探究拓展运用例5 运用乘法公式计算:(1)( x-2y-3) (x-2y + 3) ;师生活动:教师板书例题并提问,学生观察后回答,(1)此题如何计算?(2)这道整式乘法算式符合公式的结构特征吗?(3)你能不能利用添括号把它转化成符合乘法公式的结构特征呢?【设计意图】引导学生深入分析能用平方差公式解决的题应具备什么样的结构,明确公式中a、b所代表的内容,通过此过程突出添括号的作用,渗透转化思想,突破本节课的难点.本例题为课本例题的引例,降低难度,引出方法.变式一:( x+2y-3) (x-2y + 3) ;(学生演板,学生互评)变式二:( x+2y-3-m) (x-2y + 3-m);(只让学生添括号,学生有不同意见,小组讨论,达成共识)【设计意图】通过改变引例题的符号,让其变为课本例题,同时与课前导入中的设疑相呼应,变式二在变式一的基础上又增加一项,阶梯式的设计变式题,循序渐进,对学生进行题变而方法不变或稍变的通性通法、举一反三思维训练,让学生体会数学的本质.培养学生思维迁移能力.题后反思:思考:对于只有符号不同的两个三项式(三项以上)相乘,如何计算?【设计意图】促进学生对解题方法的归纳与总结,培养数学思维,形成数学能力.让学生体会转化思想在数学中的作用.(2) (a + b +c ) 2.师生活动:教师板书例题并提问,学生观察后回答,(1)此题如何计算?(2)这道整式乘法符合乘法公式的结构特征吗?(3)你能不能利用添括号把它转化成符合乘法公式的结构特征呢?(4)哪位同学还有不同的解决办法?(三位学生说出自己的方法后同时演板,学生点评)解法一:解法二:解法三:【设计意图】引导学生深入分析能用完全平方公式解决的题应具备什么样的结构,明确公式中a、b所代表的内容.采用一题多解,拓宽学生思路,培养学生思维发散能力.题后反思:思考:1、当平方的底数有三项式时,你如何计算?2、观察(a + b +c ) 2= a2+b2+c2 +2a b+2bc +2a c等号两边,你有什么发现?【设计意图】引导学生对能用完全平方公式解决的整式乘法的方法总结、归纳,培养学生善于反思的习惯.突破本节课的难点.四>、总结归纳 梳理新知师生活动:学生谈这节课学习的主要内容和体会,互相补充,教师点评后出示:1.一条法则---添括号法则.2.一种方法---整体代换法.3.一种思想---转化思想.【设计意图】通过总结梳理,使学生更好地把握本节的重点---添括号法则和对特殊的复杂的整式乘法通过适当的变形,让其能使用乘法公式计算.对数学思想方法的再次回顾,为今后学习积累经验.五>、当堂检测 反馈矫正1.下列变形是否正确?( )( )( ) 【设计意图】考查学生对添括号法则的理解与运用.2.对式子(x-y+z)(x+y+z)变形正确,并能用乘法公式进行计算的是( )A.[x-(y+z)][x+(y+z)]B.[(x-y)+z][ (x+y)+z]C.[(x+z)-y] [(x+z)+y]D.[x-(y-z)][x+(y+z)]【设计意图】考查学生对类似于例5第(1)小题的理解情况和巧用平方差公式解题方法的掌握情况.3. 下列将式子(a + 2b – 1 ) 2变形不正确的是( ).A.[a +(2b-1)]2B.[(a +2b)-1]2C.[(a -1)+2b]2D.[a -(2b-1)]2【设计意图】考查学生对类似于例5第(2)小题的理解情况和巧用完全平方公式解题方法的掌握情况.4.运用乘法公式计算.(1)(a – b – 3 ) (a – b + 3 ) (2) (a + b – 1 ) 2【设计意图】考查学生对本节课重点内容的掌握情况.六>、作业布置 巩固新知1.上交作业:课本第112页 3(2)(3)2.课后作业:①若x 2-y 2=4,那么(x-y)2(x+y)2=____.②已知x+y=-7,xy=12,求x 2-xy+y 2的值.【设计意图】加强对本节所学内容的巩固,促进学有余力的学生进一步对平方差公式、完全平方公式进行拓展,提升能力. )54()2(542)3()232(232)2()2(222)1(---=+--++--=+---=--c b a c b a y x y x c b a c b a。
2.2添括号法则教学设计-2022-2023学年人教版数学七年级上册
2.2 添括号法则教学设计-2022-2023学年人教版数学七年级上册一、教学目标•理解并掌握添括号法则的概念和运算规则。
•能够运用添括号法则进行简单的数学运算。
•发展学生的逻辑思维和解决问题的能力。
二、教学准备•教师准备:课件、白板、黑板、彩笔、练习题等。
•学生准备:课本、笔、本子。
三、教学过程步骤一:引入添括号法则1.导入:让学生回顾上节课学习的内容,简要复习代数式和代数式的运算。
2.提问:举例问学生如何计算以下表达式:4 × 3 + 2 × 5。
3.引导学生思考:学生回答后,向学生解释添括号法则的概念,即在运算时,将同类项相加或相乘时,可以在它们之间添加括号,以提醒我们该先进行哪些数学运算。
步骤二:添括号法则的运算规则1.小组活动:将学生分成小组,每组2-3人,在黑板或白板上给每个组分配一个计算题,要求在运算时运用添括号法则,将同类项相加或相乘。
2.讨论和总结:每组完成后,让学生展示他们的解决方法,进行讨论和总结,引导学生总结出添括号法则的运算规则,如何合理地添括号。
步骤三:添括号法则的应用1.教师篇示范:教师通过一个例子,向学生展示如何应用添括号法则进行数学运算。
2.学生练习:让学生在课本上完成若干道练习题,要求运用添括号法则进行计算。
3.小组比赛:将学生分组,进行小组比赛,每组派出代表完成一道由教师出的题目,并向全班展示解题过程和答案。
步骤四:巩固练习1.达标挑战:在黑板或白板上出一道较难的添括号法则练习题,要求学生逐步推导,找出最终的解答。
2.独立完成:让学生在笔记本上独立完成几道练习题,监督学生独立思考和解决问题的能力。
步骤五:作业布置1.课后作业:布置相应的课后作业,要求学生运用添括号法则进行数学运算。
2.检查与讲评:下节课进行作业的检查和讲评,对错误较多的题目进行解释和指导。
四、教学反思在教学中,本设计通过引入小组合作、示范演练、练习比赛及独立完成作业等多种教学方法,激发学生的学习兴趣并提高他们的思维能力和动手能力。
7.《添括号》教学设计
7.《添括号》教学设计第一篇:7.《添括号》教学设计《添括号》教学设计黔南州都匀市凯口中学陆道军[教学内容] 选自人教版八年级数学上册课本第111页,14.2.2完全平方公式中的添括号。
[教学目标] 1.知识与技能:(1)添括号法则的推导;(2)会运用添括号法则进行多项式变形;(3)理解“去括号”与“添括号”的辩证关系。
2.过程与方法:经历添括号法则的推导与应用过程,进一步发展学生利用已有知识推导新知的思想,体验温故而知新的创造性意识。
3.情感态度与价值观:在灵活应用添括号法则的过程中,激发学生学习数学的兴趣,培养创新能力和探索精神。
[教学重点] 添括号法则的推导与应用。
[教学难点]理解添括号的法则,灵活应用添括号进行多项式的变形,特别是添上“-”号和括号,括到括号里的各项全变号。
[教学方法]探究与讲练相结合的方法。
[学具准备]ppt课件 [课时分配]一课时。
[教学过程]1创设情境,导入新课1.1 提问去括号法则 1.2 练习去括号:(1)a+(b-c);(2)a+(-b-c);(3)a-(-b+c);(4)a-(b-c).解:(1)a+(b-c)=a+b-c(2)a+(-b-c)=a-b-c(3)a-(-b+c)=a+b-c(4)a-(b-c)=a-b+c 把以上式子反过来写,观察从左到右的变形,你发现了什么?a+b-c=a+(b-c)①a-b-c=a+(-b-c)②a+b-c=a-(-b+c)③a-b+c=a-(b-c)④是添了括号,下面我们来讲新的知识添括号。
2 探究添括号法则2.1 添括号有什么规律?2.1.1 观察上面①——④四个式了,等号左右两边对应的项,从左到右哪些项没变,哪些项改变?第1 四个式了中,括号外的项的字母和符号没有改变;第2 ①②两个式了中,括号内的两项的字母和符号没有改变;为什么?因为添的是“+()”第3 ③④两个式了中,括号内的两项的字母没有改变,但符号改变;为什么?因为添的是“-()”2.1.2 概括以上三点,我们得到添括号的法则:(1)添括号时,如果括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号时,如果括号前面是“-”号,括到括号里的各项都改变符号。
《添括号》参考教案
三、巩固训练:
P109练习1、2
四、知识小结:
本节是主要学习了添括号法则,关键是在实际题目中的应用的,在应用中当所添括号前的符号是“-”时,所括到括号内的所有的项都必须变号,这也本节最难,也是最容易错的知识点。
五、家庭作业:
P112习题3.4 A:9
B:10
六、每日预题:
如何结合已学的知识进行对复杂的整式的加减运算,如何合理运用各个步骤?
3.4整式的加减
教学过程设计
分析备注
3添括号
教学目的:
1、要求学生掌握添括号的法则;
2、使学生能在题目能把添括号法则运用到题目的变形及在整式加减中的作用。
教学分析:
重点:能把握住添括号法则;
难点:如何在实际题目中灵活运用添括号法则。
教学过程:
一、知识导向:
本节课其实中去括号知识点的延续,而且本节的真正运用也要等到以后年级段的学习中,也就是说,在目前的情况下,对于学生的要求上主要是侧重于要求学生能首先对此知识有一个明确的印象。在教学中,添括号法则的简单应用也是整个教学的中心。
二、新课拆析:
1、知识引入:
从去括号的运算中,我们知道:
根据等式的性质,我们有:
2、知识形成:
结合去括号法则,结合以上的引例,我们容易得到:
概括:添括号法则:
所添括号前面是“+”号,括到括号里的各项都不变符号;
所添括号前面是“-”号,括到括号里的各项都改变符号;
例8:用简便方法计算:
(1)
(2)
例(补充):化简求值: ,
在引例的讲解中注意复习去括号法则,因为在这两者中,去括号法则还是占有主要地位,同时去括号法则也是本部分知识的是添了两个部分:前面的符号及括号。
2024~2025学年度八年级数学上册第2课时 添括号教学设计
第2课时添括号.应该是所添括号前的符号及进入括号内各项的符号变化的相互依存关系.添括号时进入括号的各项的符号,要么不变,要么“都”变.为了保证正确,我们还可以用已熟练的“去括号”来验证,因为它们是互逆的变形过程.当然,不改变变形前后等式两边的多项式的值是去、添括号的基本要求.例(教材P111例5)运用乘法公式计算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.教师总结:有些整式相乘需要先作适当变形,然后再用公式.【对应训练】教材P111练习第1,2题.【教学建议】例题第(1)小题先添括号变形为符合平方差公式的形式,再用平方差公式进行计算.例题第(2)小题是完全平方公式的推广,其结果的规律性和完全平方公式是一致的.在教学时,主要强调把其中的a+b看作一项,再进一步利用公式;当然也可以把b+c看作一项,再利用公式,得到的结果是一样的.活动三:典例精析,巩固新知设计意图通过例题和对应训练让学生尝试应用添括号法则进行式子的变形,体会符号的变化规律,进一步熟练掌握添括号法则.例分别按下列要求把多项式5a-b-2a2+13b2添括号:(1)把前两项括到前面带有“+”号的括号里,后两项括到前面带有“-”号的括号里;(2)把后三项括到前面带有“-”号的括号里;(3)把含有字母a的项括到前面带有“+”号的括号里,把含有字母b的项括到前面带有“-”号的括号里.解:(1)5a-b-2a2+13b2=+(5a-b)-(2a2-13b2);、(2)5a-b-2a2+13b2=5a-(b+2a2-13b2);(3)5a-b-2a2+13b2=5a-2a2-b+13b2=+(5a-2a2)-(b-13b2).【对应训练】把多项式x3y-4xy3+2x2-xy-1按下列要求添括号.(1)把四次项相结合,放在前面带有“-”号的括号里;(2)把二次项结合,放在前面带有“+”号的括号里.解:(1)x3y-4xy3+2x2-xy-1=-(-x3y+4xy3)+2x2-xy-1;(2)x3y-4xy3+2x2-xy-1=x3y-4xy3+(2x2-xy)-1.【教学建议】教师提醒学生解此类题时注意看清题目的要求,应特别注意括号前是负号时,括到括号里的各项都改变符号,而不是只改变部分项的符号.添括号法则速记:添括号,看符号,正号在前直接抄,负号在前变号抄.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:添括号的法则是什么?添括号的关键是什么?【知识结构】【作业布置】1.教材P112习题14.2第3题.2.《创优作业》主体本部分相应课时训练.教学步骤师生活动板书设计第2课时添括号添括号法则:①添括号时,如果括号前面是正号,括到括号里的各项都不变符号;②如果括号前面是负号,括到括号里的各项都改变符号.教学反思本节课通过对添括号法则的学习及其与去括号法则的比较,强化了对数学知识体系对立统一相互关系的认识,感受到数学知识体系的完备性.同时,在解题中注意符号带来的整式变形,培养学生耐心仔细、科学严谨的解题素养和治学态度.解题大招一 利用添括号进行乘法公式的计算(1)有符号相同也有符号不同的两个三项式相乘,可通过变形用平方差公式计算,确定平方差公式中“a”“b”的方法:完全相同的项为“a”,绝对值相同符号相反的项为“b”.(2)两个因式中绝对值相同的各项,若符号全部相同或全部相反,可通过变形用完全平方公式计算.如(a +2b +3c)(-a -2b -3c)可转化为-(a +2b +3c)(a +2b +3c)=-(a +2b +3c)2来计算.例1 计算:(1)(x +12y -3)(x -12y +3);解:原式=[x +(12y -3)][x -(12y -3)]=x 2-(12y -3)2=x 2-14y 2+3y -9;(2)(3x +y -2)(-3x -y +2).解:原式=-(3x +y -2)(3x +y -2)=-[(3x +y)-2]2=-(3x +y)2+4(3x +y)-4=-9x 2-6xy -y 2+12x +4y -4;(3)(x +y +z)2-(x +y -z)2.解:原式=[x +y +z +(x +y -z)][x +y +z -(x +y -z)]=(2x +2y)·2z =4xz +4yz. 解题大招二 利用添括号化简求值先观察所求式子里面有没有同类项,如果有,先添括号将它们组合在一起,再合并同类项化简,最后将已知值代入计算即可.例2 先化简,再求值:2x 2y +4x 2y -3xy 2-5xy 2,其中x =1,y =-1. 解:2x 2y +4x 2y -3xy 2-5xy 2 =(2x 2y +4x 2y)-(3xy 2+5xy 2) =6x 2y -8xy 2. 当x =1,y =-1时,原式=6×12×(-1)-8×1×(-1)2=-14.培优点 利用添括号变形求值例 若(2a +2b +1)(2a +2b -1)=63,试求(a +b)2的值.分析:首先把括号里面的变形为[2(a +b)+1][2(a +b)-1],进而得到4(a +b)2-1=63,即可算出(a +b)2=16.解:因为(2a +2b +1)(2a +2b -1)=[2(a +b)+1][2(a +b)-1]=4(a +b)2-1=63, 所以4(a +b)2=64,所以(a +b)2=16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学公开课教案
课题:14.2.2添括号法则
教材的地位和作用
去括号法则是在新人教版第二章出现的,学生对此法则较为熟悉,而添括号法则是讲去括号法则反过来理解和运用的,而添括号是本章的一个难点,今后学习因式分解,分式的运算等内容,经常会出现去括号和添括号的问题,所以一定要重视本节知识的教学,使学生掌握去括号和添括号法则,为今后学习打下基础。
教学目标
(一)知识与技能
1.理解并掌握添括号法则。
2.会运用添括号法则将多项式进行恒等变形。
3.理解“去括号”法则与“添括号”法则的辩证关系。
4.利用“添括号”法则进行简便运算。
(二)过程与方法
经历添括号法则的探究,学习逆向思维;经历合作交流,学习根据数学式子的结构特点,适当恒等变形和灵活运用公式。
(三)情感态度、价值观
进一步培养学生的数学思维和参与数学活动的自信心、合作交流意
识。
教学重点
添括号法则的推导,添括号法则的内容及其应用。
教学难点
添上“-”号和括号,括到括号里的各项全变号。
教学方法
自主探究、合作交流、类比、讲练结合。
教具准备
智慧课堂、平板机、熟悉智慧平台的操作。
教学过程
一、创设情景,提高学习兴趣
(一)算一算
(1)214+47+53; (2)214–39–61
(二)再算一算
a a a 616775)3(+-
[设计意图:先计算纯数字的式子,降低难度,学生有不同的计算方法,但速度差别不大;第3题计算题的引入,大多数学生很难在短时间内计算出答案,这时引进添括号法则的学习,大大提高学生的学习兴趣。
]
二、探索规律,揭示新知
(一)引入
1.回顾去括号法则:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都
不改变符号。
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
[设计意图:因为去括号与添括号有密切的联系,可以引导学生通过类比得出添括号法则。
]
2.把下列各式的小括号去掉。
(1)a+(b-c) (2)a+(-b-c) (3) a-(-b+c) (4)a-(b-c) =a+b-c =a-b-c =a+b-c =a-b+c (二)小组讨论
1.把上面四个等式左右交换。
(1)a+b-c=a+(b-c) (2) a-b-c=a+(-b-c)
(3) a+b-c=a-(-b+c) (4)a-b+c=a-(b-c)
[设计意图:根据等式的性质,等式左右两边的式子相等,等式两边的式子左右交换后,从左到右观察,可以看到添了括号。
]
2.学生小组讨论:以上等式从左到右,可以看到什么变化?
三、领悟新知,归纳定理
1.学生通过小组讨论,自行说出发现的变化,类比去括号的法则总结出添括号法则。
2.添括号法则内容:添括号时:如果括号前面是“+”号,括到括号里的各项都不变符号。
如果括号前面是“-”号,括到括号里的各项都改变符号。
四、实践应用
(一)探究一:添括号法则的应用
例1、按要求,将多项式4a―2b+c添上括号:
(1)把它放在前面带有“+”号的括号里。
(2)把它放在前面带有“-”号的括号里。
解: (1) 4a-2b+c=+(4a-2b+c) (2)4a-2b+c=-(-4a+2b-c)
提问:如何知道添括号是否正确?
可以用添括号法则检查;也可以用去括号法则检查
[设计意图:让学生明白添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变。
]
例2、在括号内填入适当的项。
(1) a²–a+1 = a²–(a-1);(2) 2 y ²–3y–1= 2 y²+( -3y-1 );例3、在括号前面填上适当的符号。
(1)a-b-c+d = a - ( b+c-d )
(2)(x+y-z)(x-y+z)=[x + (y-z)][x - ( y-z)]
[设计意图:通过3个例题的设置,可以让学生学会添括号法则的经典应用。
]
练习1:判断下列添括号是否正确,若不正确请改正。
(1)3x-y+z-3=-(3x+y-z+3) (2)x-a+b-2=x+(a+b-2)
(3)a-b-x+y=a-(b-x+y) (4)a-b-c+1=(a-b)-(c-1) 练习2: 完成学乐云平台的课堂练习(时间:3分钟)
[设计意图:通过学乐云平台现场出题,平板操作,现场回收,通过大数据分析,可以精准掌握学生对知识点的掌握情况。
对于学生掌握得不理想的题目,老师现场答疑。
也可以通过数据分析,及时掌握每个学生的答题情况。
]
(二)探究二:用简便方法计算。
a a a 616775)1(+-
(2)214a - 39a –61a
[设计意图:第1道题,回应了上课开始时提出的问题,回答了学习添括号法则的必要性;学生利用添括号法则,快速地解决了这个问题,增强了学习数学的兴趣。
]
五、课堂小结
1、我学会了…… 我明白了…… 我会用……
学习过程中运用了什么方法?
[设计意图:使学生对本节课的知识有一个系统全面的认识,分组讨论后交流。
]
2、利用希沃白板5设计相关知识的小游戏,让学生在竞赛的氛围中检验学习成果。
六、作业
1.根据添括号法则,在____上填上“+”号或“-”号:
(1)a-b+c = a______(-b+c)
(2)a-b+c+d = a______(b-c-d)
(3)c+d-a+b = ____(a-b)___ (c+d)
2.在括号内填入适当的项。
(1)x2-x+1= x2-()
(2)2x2-3x-1= 2x2+()
(3)(a-b)-(c-d)=a-()
七、板书设计:
14.2.2添括号法则
一、法则内容:1、括号前是正号
2、括号前是负号
二、添括号法则的应用
3、简便运算
八、教学反思
通过这节课的学习,大部分的学生已经掌握了添括号法则及其应用。
通过回顾去括号法则,反过来得到添括号法则,由已知到未知,学生增强了学习数学的兴趣与信心。
在小组讨论中,小部分同学不敢发言,担心讲错,以后在课堂上要鼓励这些学生大胆发言。