2020版数学高考专题突破 (1)
2024年高考数学新增高频考点(解析版)

(多拿20分)2024年高考数学新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项2023年高考数学新增高频考点专题突破一.复数的三角表示(共5小题)1已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6,则z 1z 2的代数形式是()A.6cosπ4+i sin π4B.6cos π12+i sin π12 C.3-3i D.3+3i2若复数z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π33已知复数z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数4复数z =cos -2π5+i sin -2π5 的辐角主值为()A.8π5B.-8π5C.2π5D.-2π55任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8 m (m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,17利用积化和差公式化简sin αsin π2-β 的结果为()A.-12[cos (α+β)-cos (α-β)]B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]8已知cos α+cos β=12,则cos α+β2cos α-β2的值为.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为.10已知α,β为锐角,且α-β=π6,那么sin αsin β的取值范围是.三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sin α•cos β=sin (α+β)+sin (α-β)B.2cos α•sin β=sin (α+β)+cos (α-β)C.cos α+cos β=2sin α+β2⋅sin α-β2D.cos α-cos β=2cos α+β2⋅cosα-β212在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,则tan A2•tan C 2的值为(参考公式:sin A +sin C =2sin A +C 2cos A -C2)()A.2B.12C.3D.1313已知sin α+sin β=2165,cos α+cos β=2765,则sin β-sin αcos β-cos α=.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为.15在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为三角形.四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CAB.-12CAC.32CAD.-32CA19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.22320已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.8023某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.1024某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为11025某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为.六.点、线、面间的距离(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.七.条件概率(共8小题)29已知事件A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥30已知P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )=,P (A|B )=.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )=.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.9533为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.61735人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.36某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.八.全概率公式(共2小题)37某铅笔工厂有甲、乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.3838假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15九.贝叶斯公式(共2小题)39对正在横行全球的“新冠病毒”,某科研团队研发了一款新药用于治疗,为检验药效,该团队从“新冠”感染者中随机抽取若干名患者,检测发现其中感染了“普通型毒株”、“奥密克戎型毒株”、“其他型毒株”的人数占比为5:3:2.对他们进行治疗后,统计出该药对“普通型毒株”、“奥密克戎毒株”、“其他型毒株”的有效率分别为78%、60%、75%,那么你预估这款新药对“新冠病毒”的总体有效率是;若已知这款新药对“新冠病毒”有效,求该药对“奥密克戎毒株”的有效率是.40英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件A ,B ,A(A 的对立事件)存在如下关系:P (B )=P (B |A )•P (A )+P (B |A )•P (A).若某地区一种疾病的患病率是0.01,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为99%,即在被检验者患病的前提下用该试剂检测,有99%的可能呈现阳性;该试剂的误报率为10%,即在被检验者未患病的情况下用该试剂检测,有10%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为()A.0.01B.0.0099C.0.1089D.0.1十.二项分布中的最大项(共3小题)41若X ~B 100,13 ,则当k =0,1,2,⋯,100时()A.P (X =k )≤P (X =50)B.P (X =k )≤P (X =32)C.P (X =k )≤P (X =33)D.P (X =k )≤P (X =49)42已知随变量从二项分布B 1001,12,则()(多选)A.P (X =k )=C k100112 1001 B.P (X ≤301)=P (X ≥701)C.P (X >E (X ))>12D.P (X =k )最大时k =500或50143经检测有一批产品合格率为75%,现从这批产品中任取5件,设取得合格产品的件数为ξ,则P (ξ=k )取得最大值时k 的值为.(多拿20分)2023年高考新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项参考答案与试题解析一.复数的三角表示(共5小题)已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6 ,则z 1z 2的代数形式是()+i sin π4B.6cos π12+i sin π12 D.3+3i【解析】:∵z 1=2cosπ12+i sin π12 ,z 2=3cos π6+i sin π6 ,∴z 1z 2=6cos π12+i sin π12 cos π6+i sin π6=6cos π12cos π6-sin π12sin π6 +cos π12sin π6+sin π12cos π6 i=6cos π12+π6 +i sin π12+π6=6cos π4+i sin π4 =622+22i=3+3i ,故选:D .z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π3【解析】:z =32+12i 的模为1,辐角为π6,则复数z =32+12i 的三角形式为cos π6+i sin π6.故选:A .z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数【解析】:对于A ,|z |=cos 2θ+sin 2θ=1,故A 错误,对于B ,z 2=(cos θ+i sin θ)2=cos 2θ+2sin θcos θi +i 2sin 2θ=cos 2θ-sin 2θ+2cos θsin θi ,故B 错误,对于C ,z ⋅z=(cos θ+i sin θ)(cos θ-i sin θ)=cos 2θ+sin 2θ=1,故C 正确,对于D ,z +1z =cos θ+i sin θ+1cos θ+i sin θ=cos θ+i sin θ+cos θ-i sin θ(cos θ+i sin θ)(cos θ-i sin θ)=2cos θ,故D 错误.故选:C .=cos -2π5 +i sin -2π5的辐角主值为()B.-8π5C.2π5D.-2π5=cos -2π5 +i sin -2π5 ,∴复数z 的辐角为2k π-2π5,k ∈Z ,∴复数z 的辐角主值为2π-2π5=8π5.5任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8m(m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8【解析】:∵复数cosπ8+i sin π8 m =cos m π8+i sin m π8为纯虚数,∴cos m π8=0,sin m π8≠0,∴m π8=k π+π2,k ∈Z ,根据m ∈N *,可得正整数m 的最小值为4,此时,k =0,故选:B .二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,1【解析】:直角三角形中两锐角为A 和B ,A +B =C =π2,则cos A cos B =12[cos (A -B )+cos (A +B )]=12cos (A -B ),再结合A -B ∈-π2,π2,可得cos (A -B )∈(0,1],∴12cos (A -B )∈0,12 ,故选:A .7利用积化和差公式化简sin αsin π2-β的结果为()A.-12[cos (α+β)-cos (α-β)] B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]【解析】:sin αsin π2-β =sin αcos β=12[sin (α+β)+sin (α-β)]故选:D .8已知cos α+cos β=12,则cos α+β2cos α-β2的值为 14 .【解析】:∵cos α+cos β=12,∴cos α+β2cos α-β2=12cos α+β2-α-β2 +cos α+β2+α-β2 =12(cos α+cos β)=12×12=14.故答案为:14.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为 m .【解析】:由已知得:sin (α+β)•sin (β-α)=cos2α-cos2β2=(2cos 2α-1)-(2cos 2β-1)2=cos 2α-cos 2β=m10已知α,β为锐角,且α-β=π6,那么sinαsinβ的取值范围是 0,32 .【解析】:∵α-β=π6∴sinαsinβ=-12[cos(α+β)-cos(α-β)]=-12cos(α+β)-32=-12cos2β+π6-32∵β为锐角,即0<β<π3∴π6<2β+π6<5π6,∴-32<cos2β+π6<32∴0<-12cos2β+π6-32<32故答案为:0,3 2三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sinα•cosβ=sin(α+β)+sin(α-β)B.2cosα•sinβ=sin(α+β)+cos(α-β)C.cosα+cosβ=2sinα+β2⋅sinα-β2D.cosα-cosβ=2cosα+β2⋅cosα-β2【解析】:sin(α+β)+sin(α-β)=sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ=2sinαcosβ,故选:A.12在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,则tan A2•tan C2的值为(参考公式:sin A+sin C=2sin A+C2cos A-C2)()A.2B.12C.3 D.13【解析】:∵a+c=2b,∴由正弦定理得sin A+sin C=2sin B=2sin(A+C),即2sin A+C2cos A-C2=4sin A+C2cos A+C2,在三角形中sin A+C2≠0,∴cos A-C2=cos A+C2,即cosαA2cos C2+sin A2sin C2=2cos A2cos C2-2sin A2sin C2,即3sin A2sin C2=cos A2cos C2,即sin A2sin C2cos A2cos C2=13,即tan A2•tan C2=13,故选:D.13已知sinα+sinβ=2165,cosα+cosβ=2765,则sinβ-sinαcosβ-cosα= -97 .【解析】:sin α+sin β=2165,可得2sin α+β2cos α-β2=2165⋯①cos α+cos β=2765,2cos α+β2cos α-β2=2765⋯②.①②可得sin α+β2cosα+β2=2127=79.sin β-sin αcos β-cos α=-2cos α+β2sin α-β22sin α+β2sin α-β2=-cos α+β2sinα+β2=-97.故答案为:-97.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为 247 .【解析】:由sin α+sin β=14,得2sinα+β2cos α-β2=14,由cos α+cos β=13,得2cos α+β2cos α-β2=13,两式相除,得tanα+β2=34,则tan (α+β)=2tan α+β21-tan 2α+β2=2×341-34 2=247故答案为:24715在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为直角三角形.【解析】:由cos B +cos C =sin B +sin C 得到2cosB +C 2cos B -C 2=2sin B +C 2cos B -C2两边同除以2cos B -C 2得sin B +C 2=cos B +C 2即tan B +C2=1,由0<B <π,0<C <π,得到B +C 2∈(0,π),所以B +C 2=π4即B +C =π2,所以A =π2,则△ABC 为直角三角形.故答案为:直角四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b【解析】:因为两个单位向量a 和b的夹角为120°,所以a ⋅b =|a |⋅|b |cos120°=1×1×-12=-12,所以(a -b )⋅b =a ⋅b -b 2=-12-1=-32,故所求投影向量为(a-b )⋅b |b |⋅b =-32b.故选:D .17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)【解析】:已知a =(-2,λ),b =(1,1),由于a ⊥b ,所以a ⋅b=(-2)×1+λ×1=0,解得λ=2,所以a =(-2,2),b =(1,1),得a -b=(-3,1),则(a -b )⋅b=(-3)×1+1×1=-2,|b |=12+12=2,故a -b 在b 方向上的投影为(a -b )⋅b|b |=-22=-2,得a -b 在b方向上的投影向量为-2⋅b 2=(-1,-1).故选:D .18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CA B.-12CA C.32CA D.-32CA【解析】:AB 与CA 的夹角为2π3,则cos ‹AB ,CA ›=-12,根据投影向量的定义有:AB 在CA 上的投影向量为|AB |⋅cos ‹AB ,CA ›⋅CA|CA |=-12CA .故选:B .19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.223【解析】:∵a +b 在b 上的投影向量为23b,∴(a+b )⋅b |b |⋅b |b |=23b ,∴a ⋅b =-13,∵|a|=|b |=1,∴由向量的夹角公式可知,cos ‹a ,b ›=a ⋅b |a ||b |=-13.故选:A .20已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a【解析】:∵|a|=2|b |,a 与b 的夹角为120°,∴(2b -a )⋅a =2a ⋅b -a 2=2|a |⋅12|a | ⋅cos120°-a 2=-32a 2,∴2b -a 在a 上的投影向量为:(2b -a )⋅a |a |⋅a|a |=-32a .故选:B .五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是90分.【解析】:8名学生的成绩从小到大排列为:63,68,76,77,82,88,92,93,因为8×75%=6,所以75%分位数为第6个数和第7个数的平均数,即12×(88+92)=90(分).故答案为:90分.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.80【解析】:记构成的等差数列为{a n },则a n =70+2(n -1)=2n +68,∵10×40%=4,∴这10个班级的平均成绩的第40百分位数为a 4+a 52=76+782=77,故选:B .23某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.10【解析】;抽取的工人总数为20,20×75%=15,那么第75百分位数是所有数据从小到大排序的第15项与第16项数据的平均数,第15项与第16项数据分别为9,10,所以第75百分位数是9+102=9.5.故选:C .24某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为110【解析】:由频率分布直方图可得,(a +0.01+0.03+0.035+0.01)×10=1,解得a =0.015,故A 错误,设第60百分位数为x ,则0.1+0.015+(x -70)×0.035=0.6,解得x =80,故B 正确,估计这20名学生数学考试成绩的众数为75,故C 错误,估计总体中成绩落在[50,60)内的学生人数为1000×0.01×10=100,故D 错误.故选:B .25某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为10.8.【解析】:数据从小到大排序为:8.6、8.9、9.1、9.6、9.7、9.8、9.9、10.2、10.6、10.8、11.2、11.7,共有12个,所以12×80%=9.6,所以这组数据的第80百分位数是第10个数即:10.8.故答案为:10.8.六.点、线、面间的距离计算(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.【答案】(1)证明:取DE 中点G ,连接FG ,CG ,∵F ,G 分别为AE ,DE 中点,∴FG ∥AD ,FG =12AD ,又AD ∥BC ,BC =12AD ,∴BC ∥FG ,BC =FG ,∴四边形BCGF 为平行四边形,∴BF ∥CG ,又BF ⊄平面CDE ,CG ⊂平面CDE ,∴BF ∥平面CDE .(2)∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABE ,又∠BAE =π2,则以A 为坐标原点,AB ,AE ,AD正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则F (0,1,0),C (2,0,1),D (0,0,2),E (0,2,0),∴CD =(-2,0,1),DE =(0,2,-2),FE =(0,1,0),设平面CDE 的法向量n=(x ,y ,z ),则CD ⋅n=-2x +z =0DE ⋅n =2y -2z =0,令x =1,解得:y =2,z =2,∴n=(1,2,2),∴点F 到平面CDE 的距离d =|FE ⋅n||n |=23.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.【答案】(1)证明:取AE 的中点G ,连接GD ,GF ,因为BF ∥EA ,且BF =12AE ,所以AG ∥BF 且AG =BF ,所以四边形AGFB 是平行四边形,所以GF ∥AB ,又因为ABCD 是菱形,所以AB ∥DC ,且AB =DC ,所以GF ∥DC 且GF =DC ,所以四边形CFGD 是平行四边形,CF ∥DG ,又CF ⊄平面ADE ,DG ⊂平面ADE ,所以CF ∥平面ADE ;解:(2)连接BD 交AC 于N ,取CE 中点P ,∵PN ∥AE ,EA ⊥平面ABCD ,∴PN ⊥平面ABCD ,且CN ⊥BN ,∴以N 为原点,NC ,NB ,NP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设在棱EC 上存在点M 使得平面MBD 与平面BCF 的夹角余弦值为155,E (-1,0,2),B (0,3,0),C (1,0,0),F (0,3,1),A (-1,0,0),D (0,-3,0)则设CM =λCE=λ(-2,0,2)(0<λ<1),∴M (1-2λ,0,2λ),所以DM =(1-2λ,3,2λ),DB =(0,23,0),BC =(1,-3,0),FB=(0,0,-1)设平面DBM 的一个法向量为n=(x ,y ,z ),则n ⋅DM=0n ⋅DB =0,即(1-2λ)x +3y +2λz =023y =0 ,令y =0,x =-2λ,z =1-2λ,得n=(-2λ,0,1-2λ),设平面FBC 的一个法向量为m=(a ,b ,c ),则m ⋅BC =0m ⋅FB =0,即a -3b =0-c =0 ,取b =1,得m=(3,1,0),∴|cos ‹n ,m ›|=|m ⋅n ||m |⋅|n |=|-23λ|2(-2λ)2+(1-2i )2=155,解得λ=13或λ=1,又∵0<λ<1,∴λ=13,此时M 13,0,23 ,∴CM =-23,0,23 ,∴点M 到平面BCF 的距离d =|CM ⋅m||m |=2332=33.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.【解析】:(1)证明:因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC .因为ABCD 为正方形,所以AB ⊥BC ,又因为PA ∩AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB ,所以BC ⊥平面PAB .因为AE ⊂平面PAB ,所以AE ⊥BC .因为PA =AB ,E 为线段PB 的中点,所以AE ⊥PB ,又因为PB ∩BC =B ,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC .又因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC .(2)因为PA ⊥底面ABCD ,AB ⊥AD ,以A 为坐标原点,以AB ,AD ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),P (0,0,2),E (1,0,1),易知u=(0,1,0)是平面PAB 的法向量,设BF =t (t ∈[0,2]),则F (2,t ,0),所以AE=(1,0,1),AF =(2,t ,0),所以|cos ‹AF ,u ›|=|AF ⋅u||AF ||u |=1-255 2,即t t 2+4=55,得t =1,所以AF =(2,1,0),设n=(x 1,y 1,z 1)为平面AEF 的法向量,则n ⋅AE=0,n ⋅AF =0,,所以平面AEF 的法向量n=(-1,2,1),又因为AP=(0,0,2),所以点P 到平面AEF 的距离为d =|AP ⋅n ||n |=26=63,所以点P 到平面AEF 的距离为63,由(1)可知,∠BAF 是直线AF 与平面PAB 所成的角,所以cos ∠BAF =AB AF =AB AB 2+BF 2=255,解得BF =12AB =12BC ,故F 是BC 的中点,所以AF =AB 2+BF 2=5,AE =12PB =2,EF =AF 2-AE 2=3,所以△AEF 的面积为S △AEF =12AE ⋅EF =62,因为PA =AB =2,△PAE 的面积为S △PAE =12S △PAB =14PA ⋅AB =1,设点P 到平面AEF 的距离为h ,则有V P -AEF =13S △AEF ⋅h =66h =V F -PAE =13S △PAE ⋅BF =13,解得h =63,所以点P 到平面AEF 的距离为63.七.条件概率(共8小题)A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥【解析】:根据题意,设P (B )=x ,由于P (A |B )=0.7,则P (AB )=P (B )P (A |B )=0.7x ,P (A )=1-P (A)=0.7,则P (A )P (B )=0.7x ,则有P (AB )=P (A )P (B ),事件A ,B 相互独立.不确定x 的值,P (A ∩B )=P (AB )=0.7x ,A 错误;P (B |A )=P (AB )P (A )=x ,B 错误;由于A 、B 相互独立,事件A 、B 可能同时发生,则事件A 、B 一定不互斥,D 错误.故选:C .P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )= 1936 ,P (A |B )= 319 .【解析】:P (A )=13,则P (A )=1-P (A )=23,故P (B )=P (AB )+P (A B )=P (A )P (B |A )+P (A )P B |A )=23×23+13×14=1936,P (A |B )=P (AB )P (B )=13×141936=319.故答案为:1936,319.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )= 38 .【解析】:由题意可知P (C )=P (A ∩B )=710,则P (A ∪B )=1-P (A ∩B )=1-710=310.又P (A ∪B )=P (A )+P (B )-P (AB ),所以P (AB )=P (A )+P (B )-P (A ∪B )=415+215-310=110,则P (B |A )=P (AB )P (A )=110415=38.故答案为:38.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.95【解析】:设买到的产品是甲厂产品为事件A ,买到的产品是乙厂产品为事件B ,则P (A )=0.8,P (B )=0.2,记事件C :从该地市场上买到一个合格产品,则P (C |A )=0.75,P (C |B )=0.8,所以P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B )=0.8×0.75+0.2×0.8=0.76.故选:C .33为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M 对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M 在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M 上场的概率.【解析】:(Ⅰ)事件B =“甲乙两队比赛4局甲队最终获胜”,事件A j =“甲队第j 局获胜”,其中j =1,2,3,4,A j 相互独立.又甲队明星队员M 前四局不出场,故P (A j )=12,j =1,2,3,4,B =A 1 A 2A 3A 4+A 1A 2 A 3A 4+A 1A 2A 3 A 4,所以P (B )=C 13×124=316.(Ⅱ)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛,由全概率公式知,P (C )=P (C |D )P (D )+P (C |D )P (D),因为每名队员上场顺序随机,故P (D )=C 24A 33A 35=35,P (D )=1-35=25,P (C |D )=122×34=316,P C |D )=123=18, 所以P (C )=316×35+18×25=1380.(Ⅲ)由(2),P (D |C )=P (CD )P (C )=P (C |D )P (D )P (C )=316×351380=913.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.617【解析】:需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,设事件A 表示“选派3名男医生和2名女医生,有一名主任医生被选派”,B 表示“选派3名男医生和2名女医生,两名主任医师都被选派”,P (A )=C 23C 24+C 33C 14+C 23C 14C 34C 25=1720,P (AB )=C 23C 14C 34C 25=310,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为:P (B |A )=P (AB )P (A )=3101720=617.故选:D .35人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.【解析】:设试验一次,“取到甲袋”为事件A 1,“取到乙袋”为事件A 2,“试验结果为红球”为事件B 1,“试验结果为白球”为事件B 2,(1)P (B 1)=P (A 1)P (B 1|A 1)+P (A 2)P (B 1|A 2)=12×910+12×210=1120;所以试验一次结果为红球的概率为1120.(2)①因为B 1,B 2是对立事件,P (B 2)=1-P (B 1)=920,所以P A 1|B 2)=P (A 1B 2)P (B 2)=P (B 2|A 1)P (A 1)P (B 2)=110×12920=19,所以选到的袋子为甲袋的概率为19;②由①得P (A 2|B 2)=1-P A 1|B 2)=1-19=89,中取到红球的概率为:P 1=P (A 1|B2)P (B1|A1)+P (A2|B2)910+89×210=518,方案二中取到红球的概率为:P 2=P (A 2|B 2)P (B 1|A 1)+P (A 1|B 2)P B 1|A 2)=89×910+19×210=3745, 所以方案二中取到红球的概率更大.该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】:(1)该款芯片生产在进入第四道工序前的次品率P =1-1-110 ×1-19 ×1-18=310.(2)设该批次智能自动检测合格为事件A ,人工抽检合格为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.八.全概率公式(共2小题)乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.38【解析】:甲生产线的产量是乙生产线产量的1.5倍,则从这种铅笔中任取一件抽到甲生产线的概率为0.6,抽到乙生产线的概率为0.4,从这种铅笔产品中任取一件,则取到次品的概率为0.6×10%+0.4×5%=0.08,所以取到合格产品的概率为1-0.08=0.92.故选:A .第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15【解析】:设事件A i 表示从第i (i =1,2)箱中取一个零件,事件B 表示取出的零件是次品,则P (B )=P (A 1。
2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 微重点15 离心率的范围问题

跟踪演练3 (2022·长沙市雅礼中学等十六校联考)已知双曲线 C:ax22-by22= 1(a>0,b>0)的左、右焦点分别为 F1,F2,若 C 与直线 y=x 有交点,且 双曲线上存在不是顶点的点 P,使得∠PF2F1=3∠PF1F2,则双曲线离心 率的取值范围为____( __2_,__2_) __.
专题强化练
考点一
利用圆锥曲线的定义求离心率的范围
例1 (1)(2022·南京模拟)设 e1,e2 分别为具有公共焦点 F1 与 F2 的椭圆
和双曲线的离心率,P 为两曲线的一个公共点,且满足∠F1PF2=π3,则
e1e2 的最小值为
√A.
3 2
B.32
C.
3 4
D.34
设椭圆的长半轴长为a1,双曲线的实半轴长为a2,不妨设|PF1|>|PF2|, 由椭圆和双曲线的定义可得||PPFF11||+ -||PPFF22||= =22aa12, , 得||PPFF12||= =aa11+ -aa22, ,
A.0,12
B.0,
2
2
C.12,1
√
D.
22,1
如图所示,A为椭圆的上顶点.
依题意∠F1AF2≥90°,即∠OAF2≥45°, 又|AF2|=a,|AO|=b,|OF2|=c, ∴sin∠OAF2=||OAFF22||=ac=e,
∵∠OAF2≥45°,
∴sin∠OAF2∈
22,1,即
√C.0,12
D.12,1
连接OP,当P不为椭圆的上、下顶点时, 设直线PA,PB分别与圆O切于点A,B,∠OPA=α, ∵存在M,N使得∠MPN=120°, ∴∠APB≥120°,即α≥60°, 又α<90°,∴sin α≥sin 60°, 连接 OA,则 sin α=||OOPA||=|ObP|≥ 23,∴|OP|≤2 33b. 又 P 是 C 上任意一点,则|OP|max≤2 33b, 又|OP|max=a,∴a≤2 33b,
2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用1(含解析)

2020届高考数学命题猜想函数与方程﹑函数模型及其应用1【考向解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【命题热点突破一】函数零点的存在性定理1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.例1 、(2018年全国I卷理数)已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.【变式探究】【2017课标1,理21】已知函数.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【答案】(1)见解析;(2)()0,1.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时, ()f x 取得最小值,最小值为.①当1a =时,由于,故()f x 只有一个零点;②当()1,a ∈+∞时,由于,即,故()f x 没有零点;③当()0,1a ∈时,,即. 又,故()f x 在(),ln a -∞-有一个零点.设正整数n 满足,则.由于,因此()f x 在()ln ,a -+∞有一个零点.综上, a 的取值范围为()0,1.【变式探究】(1)已知偶函数y =f(x),x ∈R 满足f(x)=x2-3x(x ≥0),函数g(x)=⎩⎪⎨⎪⎧log2x ,x>0,-1x,x<0,则函数y =f(x)-g(x)的零点个数为( )A .1B .3C .2D .4(2)已知函数f(x)=⎩⎪⎨⎪⎧x3,x ≤a ,x2,x>a ,若存在实数b ,使函数g(x)=f(x)-b 有两个零点,则a 的取值范围是________.【答案】(1)B (2)(-∞,0)∪(1,+∞)【解析】(1)作出函数f (x )与g (x )的图像如图所示,易知两个函数的图像有3个交点,所以函数y =f (x )-g (x )有3个零点.(2)令φ(x )=x3(x ≤a ),h (x )=x2(x>a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图像与直线y =b 有两个交点.结合图像,当a<0时,存在实数b 使h (x )=x2(x>a )的图像与直线y =b 有两个交点;当a ≥0时,必须满足φ(a )>h (a ),即a3>a2,解得a>1.综上得a ∈(-∞,0)∪(1,+∞).【感悟提升】函数的零点、方程的根的问题都可以转化为函数图像的交点问题,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数问题的有效方法.在解决函数零点问题时,既要利用函数的图像,也要利用函数零点的存在性定理、函数的性质等,把数与形紧密结合起来.【变式探究】已知函数f(x)=|x +a|(a ∈R)在[-1,1]上的最大值为M(a),则函数g(x)=M(x)-|x2-1|的零点的个数为( ) 络的发展,网校教育越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势.假设某网校每日的套题销售量y(单位:万套)与销售价格x(单位:元/套)满足关系式y =m x -2+4(x -6)2,其中2<x<6,m 为常数.已知销售价格为4元/套时,每日可售出套题21万套.(1)求m 的值;(2)假设每套题的成本为2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解析】解:(1)因为x =4时,y =21,代入y =mx -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)·⎣⎢⎢⎡⎦⎥⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x3-56x2+240x -278(2<x<6),从而f ′(x )=12x2-112x +240=4(3x -10)(x -6)(2<x<6).令f ′(x )=0,得x =103(x =6舍去),且在⎝ ⎛⎭⎪⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增,在⎝ ⎛⎭⎪⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值,即当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.【感悟提升】 函数建模首先要会根据题目的要求建立起求解问题需要的函数关系式(数学模型),然后通过求解这个函数模型(求单调性、最值、特殊的函数值等),对实际问题作出合乎要求的解释.需要注意实际问题中函数的定义域要根据实际意义给出,不是单纯根据函数的解析式得出.【变式探究】调查发现,提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是关于车流密度x (单位:辆/千米)的连续函数.当桥上的车流密度达到200辆/千米时,会造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20<x<200时,车流速度v 是关于车流密度x 的一次函数.(1)当0<x<200时,求函数v (x )的解析式;(2)当车流密度x 为多少时,车流量(每小时通过桥上某观测点的车辆数)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)【解析】解:(1)由题意知,当0<x ≤20时,v (x )=60;当20<x<200时,设v (x )=ax +b ,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故所求函数v (x )的解析式为v (x )=⎩⎪⎨⎪⎧60,0<x ≤20,13(200-x ),20<x<200. (2)由(1)可知v (x )=⎩⎪⎨⎪⎧60,0<x ≤20,13(200-x ),20<x<200.当0<x ≤20时,f (x )=60x 为增函数,故当x =20时,其最大值为60×20=1200;当20<x<200时,f (x )=13x (200-x )=-13(x2-200x )=-13(x -100)2+10 0003,当x =100时,f (x )取得最大值10 0003≈3333.综上可知,当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【高考真题解读】1. (2018年全国I 卷理数)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C 【解析】画出函数的图像,在y 轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.2. (2018年浙江卷)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1). (1,4) (2).【解析】由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。
高考数学二轮复习专题突破—统计与统计案例(含解析)

高考数学二轮复习专题突破—统计与统计案例1.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:√74≈8.602.2.(2021·江西赣州二模改编)遵守交通规则,人人有责.“礼让行人”是我国《道路交通安全法》的明文规定,也是全国文明城市测评中的重要内容.《道路交通安全法》第47条明确规定:“机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过道路,应当避让.否则扣3分罚200元”.下表是2021年1至4月份我市某主干路口监控设备抓拍到的驾驶员不“礼让行人”行为统计数据:(1)请利用所给数据求不“礼让行人”驾驶员人数y 与月份x 之间的经验回归方程y ^=b ^x+a ^,并预测该路口2021年10月不“礼让行人”驾驶员的大约人数(四舍五入);(2)交警从这4个月内通过该路口的驾驶员中随机抽查50人,调查驾驶员不“礼让行人”行为与驾龄的关系,得到下表:依据小概率值α=0.10的独立性检验,分析“礼让行人”行为是否与驾龄有关.参考公式:b ^=∑i=1nx i y i -nx y ∑i=1nx i 2-nx2=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2.χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.(2021·河北石家庄二模改编)某地区在2020年底全面建成小康社会,随着实施乡村振兴战略规划,该地区农村居民的收入逐渐增加,可支配消费支出也逐年增加.该地区统计了2016~2020年农村居民人均消费支出情况,对有关数据处理后,制作如图1的折线图[其中变量y (单位:万元)表示该地区农村居民人均年消费支出,年份用变量t 表示,其取值依次为1,2,3,…].(1)由图1可知,变量y与t具有很强的线性相关关系,求y关于t的经验回归方程,并预测2021年该地区农村居民人均消费支出;2016~2020年该地区农村居民人均消费支出图1(2)在国际上,常用恩格尔系数(其含义是指食品类支出总额占个人消费支出总额的比重)来衡量一个国家和地区人民生活水平的状况.根据联合国粮农组织的标准:恩格尔系数在40%~50%为小康,30%~40%为富裕.已知2020年该地区农村居民平均消费支出构成如图2所示,预测2021年该地区农村居民食品类支出比2020年增长3%,从恩格尔系数判断2021年底该地区农村居民生活水平能否达到富裕生活标准.2020年该地区农村居民人均消费支出构成图2参考公式:经验回归方程y ^=b ^x+a ^中斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2=∑i=1nx i y i -nx y∑i=1nx i 2-nx 2,a ^=y −b ^x .4.(2021·山东潍坊一模)在对人体的脂肪含量和年龄之间的关系的研究中,科研人员获得了一些年龄和脂肪含量的简单随机样本数据(x i ,y i )(i=1,2,…,20,25<x i <65),其中x i 表示年龄,y i 表示脂肪含量,并计算得到∑i=120x i 2=48 280,∑i=120y i 2=15 480,∑i=120x i y i =27 220,x =48,y =27,√22≈4.7.(1)请用样本相关系数说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求y 关于x的经验回归方程y ^=a ^+b ^x (a ^,b ^的计算结果保留两位小数);(2)科学健身能降低人体脂肪含量,下表是甲、乙两款健身器材的使用年限(整年)统计表:某健身机构准备购进其中一款健身器材,以使用年限的频率估计概率,请根据以上数据估计,该机构选择购买哪一款健身器材,才能使用更长久?参考公式:样本相关系数r=∑i=1n(x i -x)(y i -y)√∑i=1n (x i -x)2√∑i=1n(y i -y)2=∑i=1nx i y i -nx y√∑i=1nx i 2-nx 2√∑i=1ny i 2-ny 2;对于一组具有线性相关关系的数据(x i ,y i )(i=1,2,…,n ),其经验回归直线y ^=b ^x+a ^的斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y −b ^x .答案及解析1.解 (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6, s=√0.029 6=0.02×√74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17. 2.解 (1)由表中数据易知:x =1+2+3+44=52,y =125+105+100+904=105,则b ^=∑i=14x i y i -4x y∑i=14x i 2-4x2=995−1 05030−25=-11,a ^=y −b ^ x =105-(-11)×52=132.5,故所求经验回归方程为y ^=-11x+132.5.令x=10,则y ^=-11×10+132.5=22.5≈23(人),预测该路口10月份不“礼让行人”的驾驶员大约人数为23. (2)零假设为H 0:“礼让行人”行为与驾龄无关.由表中数据可得χ2=50×(10×12−20×8)218×32×30×20≈0.23<2.706=x 0.10,依据小概率值α=0.10的独立性检验,没有充分证据推断H 0不成立,可以认为H 0成立,即认为“礼让行人”行为与驾龄无关.3.解 (1)由已知数据可求t =1+2+3+4+55=3, y =1.01+1.10+1.21+1.33+1.405=1.21,∑i=15t i 2=12+22+32+42+52=55,∑i=15t i y i =1×1.01+2×1.10+3×1.21+4×1.33+5×1.40=19.16,b ^=19.16−5×3×1.2155−5×32=1.0110=0.101,a ^=1.21-0.101×3=0.907,所求经验回归方程为y ^=0.101t+0.907. 当t=6时,y ^=0.101×6+0.907=1.513(万元),故2021年该地区农村居民人均消费支出约为1.513万元.(2)已知2021年该地区农村居民平均消费支出1.513万元,由图2可知,2020年该地区农村居民食品类支出为4 451元,则预测2021年该地区食品类支出为4 451×(1+3%)=4 584.53元,恩格尔系数=4 584.5315 130×100%≈30.3%∈(30%,40%),所以,2021年底该地区农村居民生活水平能达到富裕生活标准.4.解 (1)x 2=2 304,y2=729,∑i=120x i y i -20x y =1 300,∑i=120x i 2-20x 2=2 200,∑i=1ny i 2-20y 2=900,r=∑i=120x i y i -20x y√∑i=120x i 2-20x 2√∑i=1ny i 2-20y2≈0.92,因为y 与x 的样本相关系数接近1,所以y 与x 之间具有较强的线性相关关系,可用线性回归模型进行拟合.由题可得,b ^=∑i=120(x i -x)(y i -y)∑i=120(x i -x)2=∑i=120x i y i -20x y∑i=120x i 2-20x2=1322≈0.591,a ^=y −b ^ x =27-0.591×48≈-1.37,所以y ^=0.59x-1.37.(2)以频率估计概率,设甲款健身器材使用年限为X (单位:年).E (X )=5×0.1+6×0.4+7×0.3+8×0.2=6.6. 设乙款健身器材使用年限为Y (单位:年).E (Y )=5×0.3+6×0.4+7×0.2+8×0.1=6.1.因为E (X )>E (Y ),所以该健身机构购买甲款健身器材更划算.。
2023年高考数学二轮复习第二篇经典专题突破专题一三角函数和解三角形第1讲三角函数的图象和性质

返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
所以 ω=-16+23k,k∈Z, 所以 ω=52,f(x)=sin 52x+π4+2, 所以 fπ2=sin 54π+π4+2=1. 故选 A.
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
2.(2022·全国甲卷)设函数 f(x)=sin ωx+π3在区间(0,π)恰有三个极
返回导航
【解析】 f′(x)=-sin x+sin x+(x+1)cos x=(x+1)cos x,所以 f(x) 在区间0,π2和32π,2π上 f′(x)>0,即 f(x)单调递增;在区间π2,32π上 f′(x)<0, 即 f(x)单调递减,又 f(0)=f(2π)=2,fπ2=π2+2,f32π=-32π+1+1=- 32π,所以 f(x)在区间[0,2π]上的最小值为-32π,最大值为π2+2.故选 D.
值点、两个零点,则 ω 的取值范围是
( C)
A.53,163
B.53,169
C.163,83
D.163,169
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
【解析】 依题意可得 ω>0,因为 x∈(0,π),所以 ωx+π3∈π3,ωπ+π3,
要使函数在区间(0,π)恰有三个极值点、两个零点,
又 y=sin x,x∈π3,3π的图象如下所示:
则52π<ωπ+π3≤3π,解得163<ω≤83,即 ω∈163,83.故选 C.
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
3.(2022·全国甲卷)将函数 f(x)=sin ωx+π3(ω>0)的图象向左平移π2个 单位长度后得到曲线 C,若 C 关于 y 轴对称,则 ω 的最小值是 ( C )
2020版高考理科数学突破二轮复习新课标通用讲义:专题八 第1讲 数学文化 Word版含答案

第1讲数学文化函数中的数学文化题[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O的周长和面积同时等分成两部分的函数称为圆O的一个“太极函数”,给出下列命题:①对于任意一个圆O,其“太极函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“太极函数”;③正弦函数y=sin x可以同时是无数个圆的“太极函数”;④函数y=f(x)是“太极函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题为()A.①③B.①③④C.②③D.①④【解析】过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O,其“太极函数”有无数个,故①正确;函数f(x)=ln(x2+x2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故③正确;函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图2所示,故④错误.故选A .【答案】 A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练] (2019·福建泉州两校联考)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为:“今有人持金出五关,第1关所收税金为持金的12,第2关所收税金为剩余持金的13,第3关所收税金为剩余持金的14,第4关所收税金为剩余持金的15,第5关所收税金为剩余持金的16,5关所收税金之和恰好重1斤.”则在此问题中,第5关所收税金为( )A .136斤 B .130斤 C .125斤 D .120斤 解析:选C .设此人持金x 斤,根据题意知第1关所收税金为x 2斤; 第2关所收税金为x 6斤;第3关所收税金为x 12斤; 第4关所收税金为x 20斤; 第5关所收税金为x 30斤. 易知x 2+x 6+x 12+x 20+x 30=1, 解得x =65.则第5关所收税金为125斤.故选C .数列中的数学文化题[典型例题](1)(2019·湖南长沙雅礼中学模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M ,现将该金箠截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =( )A .4B .5C .6D .7(2)(2019·河北辛集中学期中)中国古代数学著作《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里.”其意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里.”若该匹马按此规律继续行走7天,则它这14天内所走的总路程为( )A .17532里 B .1 050里 C .22 57532里 D .2 100里【解析】 (1)由题意知,由细到粗每段的重量组成一个等差数列,记为{a n },设公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4⇒⎩⎪⎨⎪⎧2a 1+d =2,2a 1+17d =4⇒⎩⎨⎧a 1=1516,d =18. 所以该金箠的总重量 M =10×1516+10×92×18=15. 因为48a i =5M ,所以有48[1516+(i -1)×18]=75,解得i =6,故选C .(2)由题意可知,马每天行走的路程组成一个等比数列,设该数列为{a n },则该匹马首日行走的路程为a 1,公比为12,则有a 1[1-(12)7]1-12=700,则a 1=350×128127,则a 1[1-(12)14]1-12=22 57532(里).故选C .【答案】 (1)C (2)C(1)数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n 项和公式.(2)解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n 项和公式.[对点训练]1.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A .76钱 B .56钱 C .23钱 D .1钱解析:选D .因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D .2.(一题多解)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A .507斗粟 B .107斗粟 C .157斗粟 D .207斗粟 解:选C .法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5, 解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C . 法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C .三角函数中的数学文化题[典型例题]《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,现有周长为22+5的△ABC 满足sin A ∶sin B ∶sin C =(2-1)∶5∶(2+1),用上面给出的公式求得△ABC 的面积为( )A .32 B .34 C .52 D .54【解析】 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =(2-1)∶5∶(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S =14⎣⎢⎡⎦⎥⎤(2+1)2(2-1)2-⎝ ⎛⎭⎪⎫3+22+3-22-522=34,故选B . 【答案】 B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A 版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练](2019·济南市学习质量评估)我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m,依据规定,该小区内住宅楼楼间距应不小于52 m.若该小区内某居民在距离楼底27 m高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________m.解析:设两住宅楼楼间距实际为x m.如图,根据题意可得,tan∠DCA=27x,tan∠DCB=45-27x=18x,又∠DCA+∠DCB=45°,所以tan(∠DCA+∠DCB)=27x+18x1-27x·18x=1,整理得x2-45x-27×18=0,解得x=54或x=-9(舍去).所以该小区住宅楼楼间距实际为54 m.答案:54立体几何中的数学文化题[典型例题](1)(2019·高考浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2) (2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.【解析】 (1)如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27. 因此,该柱体的体积V =27×6=162.故选B .(2)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A -BCD 所示,其中AB =22,BC =CD =2,易知长方体的外接球即三棱锥A BCD 的外接球,设外接球的直径为2R ,所以4R 2=(22)2+(2)2+(2)2=8+2+2=12,则R 2=3,因此外接球的表面积S =4πR 2=12π.【答案】 (1)B (2)12π立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等. [对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V =112×底面圆的周长的平方×高,由此可推得圆周率π的取值为( )A .3B .3.1C .3.14D .3.2解析:选A .设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得体积为V =πr 2h .由题意知V =112×(2πr )2×h ,所以πr 2h =112×(2πr )2×h ,解得π=3.故选A . 2.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水的深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A .由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸), 则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸), 所以这一天该地的平均降雨量约为342ππ×122≈2(寸),故选A .算法中的数学文化题[典型例题](1)公元三世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后两位的近似值 3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n为(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)()A.12B.24C.36 D.48(2)我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.图中的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a=110011,k=2,n=7,则输出的b=()A.19 B.31C.51 D.63【解析】(1)按照程序框图执行,n=6,S=3sin 60°=332,不满足条件S≥3.10,执行循环;n=12,S=6sin 30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin 15°≈12×0.258 8=3.105 6,满足条件S≥3.10,跳出循环,输出n的值为24,故选B.(2)按照程序框图执行,b依次为0,1,3,3,3,19,51,当b=51时,i=i+1=7,跳出循环,故输出b=51.故选C.【答案】(1)B(2)C辗转相除法、更相减损术、秦九韶算法、进位制和割圆术都是课本上出现的算法案例.其中,更相减损术和秦九韶算法是中国古代的优秀算法,课本上的进位制案例原本不渗透中国古代数学文化,但命题人巧妙地将烽火戍边的故事作为背景,强化了试题的“文化育人”功能.[对点训练]《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出“更相减损术”的程序框图如图所示,如果输入的a=114,b=30,则输出的n为()A.3 B.6C.7 D.30解析:选C.a=114,b=30,k=1,n=0,a,b都是偶数,a=57,b=15,k=2,a,b 不满足都为偶数,a=b不成立,a>b成立,a=57-15=42,n=0+1=1;a=b不成立,a>b 成立,a=42-15=27,n=1+1=2;a=b不成立,a>b成立,a=27-15=12,n=2+1=3;a=b不成立,a>b不成立,a=15,b=12,a=15-12=3,n=3+1=4;a=b不成立,a>b不成立,a =12,b =3,a =12-3=9,n =4+1=5;a =b 不成立,a >b 成立,a =9-3=6,n =5+1=6;a =b 不成立,a >b 成立,a =6-3=3,n =6+1=7;a =b 成立,输出的kb =6,n =7.概率中的数学文化题[典型例题](1)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,田忌获胜的概率是( )A .13B .14C .15D .16(2)太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,如图所示,其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .19【解析】 (1)从双方的马匹中随机选一匹马进行一场比赛,对阵情况如下表:齐王的马 上 上 上 中 中 中 下 下 下 田忌的马上中下上中下上中下双方马的对阵中,有3种对抗情况田忌能赢,所以田忌获胜的概率P =39=13.故选A .(2)函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118.故选B .【答案】 (1)A (2)B(1)本例(1)选取田忌赛马这一为人熟知的故事作为背景,考查了古典概型,趣味性很强,利于缓解考生在考场的紧张心理,体现了对考生的人文关怀.(2)本例(2)以中国优秀传统文化太极图为背景,考查几何概型,角度新颖,所给图形有利于考生分析问题和解决问题,给出了如何将抽象的数学问题形象化的范例.[对点训练]1.我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献.哥德巴赫猜想是“任一大于2的偶数都可写成两个质数的和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率是( )A .111B .211C .355D .455解析:选C .不超过32的质数有2,3,5,7,11,13,17,19,23,29,31,共11个,随机选取两个不同的数,共有C 211=55种不同的选法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种选法,所以概率为355,故选C .2.(2019·广州市综合检测(一))刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.如图所示,圆内接正十二边形的中心为圆心O ,圆O 的半径为2,现随机向圆O 内投放a 粒豆子,其中有b 粒豆子落在正十二边形内(a ,b ∈N *,b <a ),则圆周率的近似值为( )A .b aB .a bC .3a bD .3b a解析:选C .依题意可得360°12=30°,则正十二边形的面积为12×12×2×2×sin 30°=12.又圆的半径为2,所以圆的面积为4π,现向圆内随机投放a 粒豆子,有b 粒豆子落在正十二边形内,根据几何概型可得124π=b a ,则π=3ab,选C .一、选择题1.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B .法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B .法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B .2.北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86解析:选C .由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n6[(2a +c )b +(2c+a )d ]+n6(c -a )得s =85,故选C .3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A .根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝⎛⎭⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A .4.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22B .C 414C 510C 55A 22C 55A 33 C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A .先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A . 5.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B .设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B .6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A .π15B .2π5C .2π15D .4π15解析:选C .因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C .7.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤 000 0 艮 001 1 坎 010 2 巽0113依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( )A .33B .34C .36D .35解析:选B .由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B .8.《九章算术》中有如下问题:“今有卖牛二、羊五,以买一十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖六羊、八豕,以买五牛,钱不足六百,问牛、羊、豕价各几何?”依上文,设牛、羊、豕每头价格分别为x 元、y 元、z 元,设计如图所示的程序框图,则输出的x ,y ,z 的值分别是( )A .1 3009,600,1 1203B .1 200,500,300C .1 100,400,600D .300,500,1 200解析:选B .根据程序框图得:①y =300,z =4603,x =6 4009,i =1,满足i <3;②y =400,z =6803,x =8 6009,i =2,满足i <3;③y =500,z =300,x =1 200,i =3,不满足i <3; 故输出的x =1 200,y =500,z =300.故选B .9.(2019·洛阳市统考)如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:选B .设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×(1-32)≈27,故选B . 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A .依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A .11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B .设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B .12.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A .如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A .二、填空题13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ;正方形数 N (n ,4)=n 2; 五边形数 N (n ,5)=32n 2-12n ;六边形数 N (n ,6)=2n 2-n ; ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 解析:易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ).则N (n ,k )=12(k -2)n 2+12(4-k )n ,故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000.答案:1 00014. (2019·湖南师大附中模拟)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎫1516,6364,则输入的n 的值为________.解析:框图中首先给累加变量S 赋值0,给循环变量k 赋值1, 输入n 的值后,执行循环体,S =12,k =1+1=2.若2>n 不成立,执行循环体,S =34,k =2+1=3.若3>n 不成立,执行循环体,S =78,k =3+1=4.。
浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)

高考专题突破一 高考中的不等式问题题型一 含参数不等式的解法例1解关于x 的不等式x 2+ax +1>0(a∈R ). 解 对于方程x 2+ax +1=0,Δ=a 2-4.(1)当Δ>0,即a >2或a <-2时,方程x 2+ax +1=0有两个不等实根x 1=-a -a 2-42,x 2=-a +a 2-42,且x 1<x 2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a -a 2-42或x >-a +a 2-42; (2)当Δ=0,即a =±2时,①若a =2,则原不等式的解集为{x |x ≠-1}; ②若a =-2,则原不等式的解集为{x |x ≠1};(3)当Δ<0,即-2<a <2时,方程x 2+ax +1=0没有实根,结合二次函数y =x 2+ax +1的图象,知此时原不等式的解集为R .思维升华解含参数的一元二次不等式的步骤(1)若二次项含有参数应讨论是否等于0,小于0,和大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)当方程有两个根时,要讨论两根的大小关系,从而确定解集形式.跟踪训练1 (1)若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是________. 答案 3解析 由题意可知-7和-1为方程ax 2+8ax +21=0的两个根. ∴-7×(-1)=21a,故a =3.(2)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是__________. 答案 (-∞,-4)∪(2,+∞)解析 依题意得,|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,即函数y =|x -1|+|x +m |的最小值是|m +1|,于是有|m +1|>3,m +1<-3或m +1>3,由此解得m <-4或m >2.因此实数m 的取值范围是(-∞,-4)∪(2,+∞).题型二 线性规划问题例2(2018·浙江五校联考)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,x -y ≥-1,2x -y ≤4,且z =ax +y 的最大值为16,则实数a =________,z 的最小值为________. 答案 2 1解析 如图,作出不等式组所表示的可行域(△ABC 及其内部区域).目标函数z =ax +y 对应直线ax +y -z =0的斜率k =-a .(1)当k ∈(-∞,1],即-a ≤1,a ≥-1时,目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧ 2x -y =4,x -y =-1,解得A (5,6),故z 的最大值为5a +6,即5a +6=16,解得a =2.(2)当k ∈(1,+∞),即-a >1,a <-1时,目标函数在点C 处取得最大值,由⎩⎪⎨⎪⎧x +2y =2,x -y =-1,解得C (0,1),故z 的最大值为0×a +1=1,不符合题意. 综上,a =2.数形结合知,当直线z =2x +y 经过点C 时,z 取得最小值,z min =2×0+1=1. 思维升华1.利用线性规划求目标函数的基本步骤为一画二移三求,其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有(1)截距型:如z =-2x +y ,z =2y4x ,z =OP →·OM →(其中M (x ,y )为区域内动点,P (-2,1)),等等.(2)距离型:如z =(x -2)2+y 2,z =|2x -y |,等等.(3)斜率型:如z =y +1x ,z =x +y +1x ,z =x y +1,z =y +1x +x y +1=x 2+(y +1)2xy +x ,等等.(4)二次曲线型:如z =xy ,z =y 2x ,z =x 22+y 2,等等.3.解题时要注意可行解是区域的所有点还是区域内的整点.跟踪训练2 (1)(2018·湖州五校模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1>0,x +y -3<0,y >0,则z =2x-y 的取值范围为( ) A .(-6,-1) B .(-8,-2) C .(-1,8) D .(-2,6)答案 D解析 方法一 作出约束条件所表示的可行域如图中阴影部分所示.作出直线y =2x ,平移直线,直线z =2x -y 在点B (-1,0)处的取最小值为-2,在点C (3,0)处的取最大值为6,所以z =2x -y 的取值范围为(-2,6).方法二 三条直线两两联立求出的交点坐标分别是(1,2),(-1,0),(3,0),分别代入z =2x -y 求值,得0,-2,6,所以z =2x -y 的取值范围为(-2,6). (2)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =(x +1)2+(y -1)2的最小值为________. 答案 30 95解析 作出⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5表示的平面区域如图中阴影部分(含边界)所示,则不等式组表示的平面区域的面积为12×5×2+12×10×5=30.z =(x +1)2+(y -1)2表示可行域内的点(x ,y )与点M (-1,1)之间的距离的平方,数形结合易知,z =(x +1)2+(y -1)2的最小值为点M (-1,1)到直线2x -y =0的距离的平方,即z min =|2×(-1)-1|2[22+(-1)2]2=95. 题型三 基本不等式的应用例3 (1)已知x 2+4xy -3=0,其中x >0,y ∈R ,则x +y 的最小值是( ) A.32B .3C .1D .2 答案 A解析 由x 2+4xy -3=0,得y =3-x24x,即有x +y =x +3-x 24x =34⎝ ⎛⎭⎪⎫x +1x .∵x >0,∴x +1x ≥2,即x +y ≥32,当且仅当x =1x ,即x =1,y =12时,x +y 取得最小值32.(2)已知a >0,b >0,c >1,且a +b =1,则⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1的最小值为______.答案 4+2 2解析 ∵a 2+1ab =a 2+(a +b )2ab =2a 2+2ab +b 2ab=2a b +ba+2≥22a b ·ba+2=22+2,当且仅当⎩⎪⎨⎪⎧2a b =b a,a +b =1,即⎩⎨⎧a =2-1,b =2-2时等号成立,∴⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1≥22c +2c -1=22(c -1)+2c -1+2 2≥222(c -1)·2c -1+22=4+22, 当且仅当22(c -1)=2c -1,即c =1+22时,等号成立. 综上,所求最小值为4+2 2. 思维升华利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值,主要思路有两种:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接应用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法.跟踪训练3 (1)已知xy =1,且0<y <22,则x 2+4y2x -2y 的最小值为( )A .4B.92C .22D .4 2答案 A解析 由xy =1且0<y <22,可知x >2, 所以x -2y >0.x 2+4y 2x -2y =(x -2y )2+4xy x -2y =x -2y +4x -2y≥4, 当且仅当x =3+1,y =3-12时等号成立. (2)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 答案233解析 由x 2+y 2+xy =1,得1=(x +y )2-xy , ∴(x +y )2=1+xy ≤1+(x +y )24,解得-233≤x +y ≤233(当且仅当x =y =33时取得最大值),∴x +y 的最大值为233.题型四 绝对值不等式的应用例4 (1)(2018·浙江五校联考)已知a ∈R ,则“a ≤9”是“2|x -2|+|5+2x |<a 无解”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 2|x -2|+|5+2x |=|2x -4|+|5+2x | ≥|2x -4-5-2x |=9,若2|x -2|+|5+2x |<a 无解,则a ≤9,同样若a ≤9,则2|x -2|+|5+2x |<a 无解, 所以“a ≤9”是“2|x -2|+|5+2x |<a 无解”的充要条件.(2)(2019·温州模拟)已知a ,b ,c ∈R ,若|a cos 2x +b sin x +c |≤1对x ∈R 恒成立,则|a sin x +b |的最大值为________. 答案 2解析 |a cos 2x +b sin x +c |≤1, 即|a sin 2x -b sin x -(a +c )|≤1,分别取sin x =1,-1,0,可知⎩⎪⎨⎪⎧|b +c |≤1,|b -c |≤1,|a +c |≤1,所以|a +b |=|(a +c )+(b -c )|≤|a +c |+|b -c |≤2, 且|a -b |=|(a +c )-(b +c )|≤|a +c |+|b +c |≤2.所以max{|a sin x +b |}=max{|a +b |,|a -b |}≤2,当a =2,b =0,c =-1时,取等号. 思维升华(1)解绝对值不等式可以利用绝对值的几何意义,零点分段法、平方法、构造函数法等.(2)利用绝对值三角不等式可以证明不等式或求最值.跟踪训练4 (1)已知函数f (x )=|x -5|+|x +3|+|x -3|+|x +5|-c ,若存在正实数m ,使f (m )=0,则不等式f (x )<f (m )的解集是________.答案 (-m ,m )解析 由|-x -5|+|-x +3|+|-x -3|+|-x +5|=|x -5|+|x +3|+|x -3|+|x +5|可知,函数f (x )为偶函数,当-3≤x ≤3时,f (x )取最小值16-c .结合题意可得c ≥16.由f (m )=0得f (x )<0,即|x -5|+|x +3|+|x -3|+|x +5|-c <0,结合图象(图略)可知,解集为(-m ,m ).(2)不等式|x -2|+|x +1|≥a 对于任意x ∈R 恒成立,则实数a 的取值范围为__________. 答案 (-∞,3]解析 当x ∈(-∞,-1]时,|x -2|+|x +1|=2-x -x -1=1-2x ≥3;当x ∈(-1,2)时,|x -2|+|x +1|=2-x +x +1=3; 当x ∈[2,+∞)时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,综上可得|x -2|+|x +1|≥3,∴a ≤3.1.(2018·宁波期末)若a ,b ∈R ,且a <b <0,则下列不等式成立的是( ) A .2a -b>1B.1a -1>1b -1C .a 3>b 3D .a +|b |>0答案 B解析 由a <b <0得a -1<b -1<0,则(a -1)(b -1)>0,所以(a -1)·1(a -1)(b -1)<(b -1)·1(a -1)(b -1),即1a -1>1b -1,故选B.2.(2018·浙江绍兴一中期末)若关于x 的不等式|x +2|+|x -a |<5有解,则实数a 的取值范围是( ) A .(-7,7) B .(-3,3) C .(-7,3) D .∅答案 C解析 不等式|x +2|+|x -a |<5有解,等价于(|x +2|+|x -a |)min <5,又因为|x +2|+|x -a |≥|(x +2)-(x -a )|=|2+a |,所以|2+a |<5,-5<2+a <5,解得-7<a <3,即实数a 的取值范围为(-7,3),故选C.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x -y -1≤0,3x -y +1≥0,3x +y -1≤0,x ,y ∈R,则M 表示的平面区域的面积是( )A.2B.32C.322D .2答案 B解析 由题意,M 表示的平面区域是以A (0,1),B (-1,-2),C ⎝ ⎛⎭⎪⎫12,-12为顶点的三角形及其内部,如图中阴影部分所示(含边界),所以其面积为12×2×⎝ ⎛⎭⎪⎫12+1=32.4.(2018·杭州质检)若正数x ,y 满足2x +y -3=0,则2x +1y的最小值为( )A .2B .3C .4D .5 答案 B解析 由2x +y -3=0,得2x +y =3, 所以2x +1y =13(2x +y )⎝ ⎛⎭⎪⎫2x +1y =13⎝ ⎛⎭⎪⎫5+2x y +2y x≥13⎝⎛⎭⎪⎫5+2 2x y·2y x =3,当且仅当2x y =2y x,即x =y =1时等号成立,故选B.5.(2018·金华十校调研)设x ,y ∈R ,下列不等式成立的是( ) A .1+|x +y |+|xy |≥|x |+|y | B .1+2|x +y |≥|x |+|y | C .1+2|xy |≥|x |+|y | D .|x +y |+2|xy |≥|x |+|y |答案 A解析 对于选项B ,令x =100,y =-100,不成立;对于选项C ,令x =100,y =1100,不成立;对于选项D ,令x =13,y =-12,不成立,故选A.6.(2018·杭州学军中学模拟)设关于x ,y 的不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +m ≤0,y -m ≥0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0>3,则实数m 的取值范围是( ) A .(-1,0) B .(0,1) C .(-1,+∞) D .(-∞,-1)答案 D解析 作出满足不等式组的平面区域,如图中阴影部分所示(包含边界),当目标函数z =x -2y 经过直线x +m =0与y -m =0的交点时取得最大值,即z max =-m -2m =-3m ,则根据题意有-3m >3,即m <-1,故选D.7.(2018·浙江舟山中学月考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax+by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( ) A .5B .4C.5D .2 答案 B解析 画出满足约束条件的可行域如图中阴影部分(包含边界)所示,可知当目标函数过直线x -y -1=0与2x -y -3=0的交点A (2,1)时取得最小值,所以有2a +b =2 5.因为a 2+b 2表示原点(0,0)到点(a ,b )的距离的平方,所以a 2+b 2的最小值为原点到直线2a +b -25=0的距离,即(a 2+b 2)min =|-25|22+12=2,所以a 2+b 2的最小值是4,故选B.8.(2018·嘉兴教学测试)若直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,则2a +3b 的取值范围是( ) A .(-7,1) B .(-3,5) C .(-7,3) D .R答案 C解析 不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域是以A (1,1),B (-1,1),C (0,-1)为顶点的三角形区域(包含边界);因为直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,所以a ,b满足⎩⎪⎨⎪⎧a +b -1>0,-a +b -1>0,-b -1>0或⎩⎪⎨⎪⎧a +b -1<0,-a +b -1<0,-b -1<0,故点(a ,b )在如图所示的三角形区域(除边界且除原点)内,所以2a+3b 的取值范围为(-7,3),故选C.9.(2019·诸暨期末)不等式-x 2+2x +3<0的解集为________;不等式|3-2x |<1的解集为________.答案 (-∞,-1)∪(3,+∞) (1,2)解析 依题意,不等式-x 2+2x +3<0,即x 2-2x -3>0,解得x <-1或x >3,因此不等式-x 2+2x +3<0的解集是(-∞,-1)∪(3,+∞);由|3-2x |<1得-1<3-2x <1,1<x <2,所以不等式|3-2x |<1的解集是(1,2).10.(2018·宁波期末)关于实数x 的不等式x 2-4x >1a+3在[0,5]上有解,则实数a 的取值范围为______________.答案 (-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞ 解析 由x 2-4x >1a +3得x 2-4x -3>1a ,则问题等价于1a小于x 2-4x -3在[0,5]上的最大值,又因为x 2-4x -3=(x -2)2-7,所以当x =5时,x 2-4x -3取得最大值2,所以1a<2,解得a <0或a >12,所以a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.11.(2018·嘉兴测试)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为______________;|f (2x )|+|g (x )|的最小值为________.答案 ⎣⎢⎡⎦⎥⎤53,3 3 解析 由题意得|f (x )|+|g (x )|=|x -2|+|2x -5|=⎩⎪⎨⎪⎧7-3x ,x <2,-x +3,2≤x ≤52,3x -7,x >52,所以|f (x )|+|g (x )|≤2等价于⎩⎪⎨⎪⎧7-3x ≤2,x <2或⎩⎪⎨⎪⎧-x +3≤2,2≤x ≤52或⎩⎪⎨⎪⎧3x -7≤2,x >52,解得53≤x ≤3,|f (2x )|+|g (x )|=|2x -2|+|2x -5|=⎩⎪⎨⎪⎧7-4x ,x <1,3,1≤x ≤52,4x -7,x >52,|f (2x )|+|g (x )|的图象如图,则由图象易得|f (2x )|+|g (x )|的最小值为3.12.(2018·浙江镇海中学模拟)已知正数x ,y 满足1x +2y =1,则1x +1+2y +1的最大值是________. 答案 34解析 设u =1x ,v =1y ,则问题转化为“已知正数u ,v 满足u +2v =1,求u u +1+2vv +1的最大值”.uu +1+2v v +1=3-⎝ ⎛⎭⎪⎫1u +1+2v +1=3-⎝⎛⎭⎪⎫1u +1+2v +1·14[(u +1)+2(v +1)]=3-14⎣⎢⎡⎦⎥⎤5+2(v +1)u +1+2(u +1)v +1≤3-14(5+4)=34. 当且仅当2(v +1)u +1=2(u +1)v +1,即u =v =13时,取等号.13.(2018·浙江金华十校联考)已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________. 答案 911-32 解析 将⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5变形为⎩⎪⎨⎪⎧xy =1-2z ,x 2+y 2=5-z 2,由|xy |≤x 2+y 22知,|1-2z |≤5-z22,即-5-z 22≤1-2z ≤5-z 22,解得2-7≤z ≤11-2.所以xyz =(1-2z )z =-2z 2+z 在[2-7,11-2]上的最小值为911-32.14.(2018·宁波模拟)若6x 2+4y 2+6xy =1,x ,y ∈R ,则x 2-y 2的最大值为________. 答案 15解析 方法一 设m =x +y ,n =x -y ,则问题转化为“已知4m 2+mn +n 2=1,求mn 的最大值”.由基本不等式,知1=mn +4m 2+n 2≥mn +4|mn |,所以-13≤mn ≤15,当且仅当n =2m ,即x =-3y 时,取得最大值15.方法二 (齐次化处理)显然要使得目标函数取到最大值,x ≠0.令z =x 2-y 2=x 2-y 26x 2+4y 2+6xy=1-⎝ ⎛⎭⎪⎫y x26+4·⎝ ⎛⎭⎪⎫y x 2+6·y x ,设t =y x ,则z =1-t 26+4t 2+6t,则(4z +1)t 2+6zt +6z -1=0对t ∈R 有解.当z=-14时,t =-53.当z ≠-14时,Δ=36z 2-4(4z +1)(6z -1)≥0,解得-13≤z ≤15.当t =-3z 4z +1=-13时取最大值.方法三 1=6x 2+4y 2+6×x3×3y ≥6x 2+4y 2-6×x 23+3y 22=5x 2-5y 2,所以x 2-y 2≤15,当且仅当x =-3y 时取等号.15.(2019·浙江嘉兴一中模拟)已知点P 是平面区域M :⎩⎨⎧x≥0,y ≥0,3x +y -3≤0内的任意一点,则P 到平面区域M 的边界的距离之和的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤32,3 解析 设平面区域M :⎩⎨⎧x ≥0,y≥0,3x +y -3≤0为△ABO 区域(包含边界),由题意,|AO |=1,|BO |=3,|AB |=2,P 到平面区域M 的边界的距离之和d 就是P 到△ABO 三边的距离之和,设P 到边界AO ,BO ,AB 的距离分别为a ,b ,c ,则P (b ,a ),由题意0≤a ≤3,0≤b ≤1,0≤c =12(3-a -3b )≤32,所以d =a +b +c =12[a +(2-3)b +3],从而d ≥32,当a =b =0时取等号.如图,P 为可行域内任意一点,过P 作PE ⊥x 轴,PF ⊥y 轴,PP ′⊥AB ,过P ′作P ′E ′⊥x 轴,P ′F ′⊥y 轴,则有PE +PF +PP ′≤P ′F ′+P ′E ′,由P (b ,a ), 可得P ′⎝⎛⎭⎪⎫3+b -3a4,3+3a -3b 4,所以d =a +b +c ≤3+b -3a 4+3+3a -3b 4=3+3+(3-1)(3a -b )4,又0≤a ≤3,0≤b ≤1,则d ≤3,当a =3,b =0时取等号,因此d 的取值范围为⎣⎢⎡⎦⎥⎤32,3. 16.(2018·浙江“七彩阳光”新高考研究联盟联考)若正数a ,b ,c 满足b +c a +a +c b =a +bc+1,则a +bc的最小值是________. 答案1+172解析 由a ,b ,c 为正数,且b +c a +a +c b =a +b c +1得b c +1a c +a c +1b c =a c +b c +1,设m =a c ,n =bc,则有m >0,n >0,上式转化为n +1m +m +1n =m +n +1,即m 2+n 2+m +nmn=m +n +1,又由基本不等式得m 2+n 2≥(m +n )22,mn ≤(m +n )24,所以m +n +1=m 2+n 2+m +n mn ≥(m +n )22+m +n (m +n )24,令t =m +n ,则t >0,上式转化为t +1≥t 22+tt 24,即t 2-t -4≥0,解得t ≥1+172,所以t =m +n =a c +bc =a +b c 的最小值为1+172.。
高考数学专题概率《随机事件与样本空间》突破解析

第15章概率15.1 随机事件与样本空间必备知识基础练1.下列事件中不可能事件的个数为( )①抛一块石块下落;②如果a>b,那么a-b>0;③没有水分,种子能发芽;④某电话机在1分钟内收到2次呼叫;⑤在标准大气压下且温度低于0 ℃时,冰融化.A.1B.2C.3D.4是必然事件,④是随机事件,③⑤是不可能事件.2.抛掷一枚质地均匀的骰子,记事件A={出现的点数是1或2},事件B={出现的点数是2或3或4},则事件“出现的点数是2”可以记为( )A.A∪BB.A∩BC.A⊆BD.A=B∪B={1,2,3,4},A∩B={2},故选B.3.从甲、乙等5名学生中随机选出2人,观察选出的2人,设事件M为“甲被选中”,则事件M含有的样本点个数为( )A.2B.4C.6D.85名学生分别为甲、乙、丙、丁、戊,则M={甲乙,甲丙,甲丁,甲戊},所以M含有4个样本点.4.从5人中选出2人担任正、副班长,则样本点个数为( )A.10B.15C.20D.255人分别记为A,B,C,D,E,用x表示正班长,y表示副班长,则样本点用(x,y)表示,∴样本空间Ω={(A,B),(A,C),(A,D),(A,E),(B,A),(B,C),(B,D),(B,E),(C,A),(C,B),(C,D),(C,E),(D,A),(D,B),(D,C),(D,E),(E,A),(E,B),(E,C),(E,D)},故共有20个样本点.5.(1)一批小麦种子全部发芽是 事件;(2)某人投篮3次,投中4次是 事件.随机 (2)不可能6.从2,3,8,9中任取两个不同数字,分别记为a,b,用(a,b)表示该试验的样本点,则事件“log a b为整数”可表示为 .log28=3,log39=2为整数.7.掷一枚骰子,给出下列事件:A={出现奇数点},B={出现偶数点},C={出现的点数小于3}.求:(1)A∩B,B∩C;(2)A∪B,B∪C.A∩B=⌀,B∩C={出现2点}.(2)A∪B={出现1,2,3,4,5或6点},B∪C={出现1,2,4或6点}.关键能力提升练8.一袋中装有10个红球、8个白球、7个黑球,现在把球随机地一个一个摸出来,为了保证在第k次或第k次之前一定能摸出红球,则k的最小值为( ) A.10 B.15 C.16 D.1715次,则第16次一定能摸出红球.9.将一枚质地均匀的骰子投两次,得到的点数依次记为a,b,设事件M为“方程ax2+bx+1=0有实数解”,则事件M中含有样本点的个数为( )A.6B.17C.19D.21方程ax2+bx+1=0(a>0)有实数解,∴Δ=b2-4a≥0,则M={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6,5),(6,6) },共含19个样本点.10.(多选)下列试验中,随机事件有( )A.某射手射击一次,射中10环B.同时掷两枚骰子,都出现6点C.某人购买福利彩票未中奖D.若x为实数,则x2+1≥1为随机事件,D为必然事件.11.(多选)下列事件是随机事件的是( )A.函数f(x)=x2-2x+1的图象关于直线x=1对称B.某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意拨了一个数字,恰巧是朋友的电话号码C.直线y=kx+6是定义在R上的增函数D.若|a+b|=|a|+|b|,则a,b同号为必然事件;B,C,D为随机事件.对于D,当|a+b|=|a|+|b|时,有两种可能:一种可能是a,b同号,即ab>0;另外一种可能是a,b中至少有一个为0,即ab=0.12.(多选)已知非空集合A,B,且集合A是集合B的真子集,则下列命题为真命题的是( )A.“若x∈A,则x∈B”是必然事件B.“若x∉A,则x∈B”是不可能事件C.“若x∈B,则x∈A”是随机事件D.“若x∉B,则x∉A”是必然事件A,C,D是真命题,B是假命题.13.已知A={-1,0,1},B={1,2},从A,B中各取一个元素分别作为点的横坐标和纵坐标,则该试验的样本空间Ω为 .-1,1),(-1,2),(0,1),(0,2),(1,1),(1,2)}14.写出下列试验的样本空间:(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局): ;(2)从含有6件次品的50件产品中任取4件,观察其中次品数: .Ω={胜,平,负} (2)Ω={0,1,2,3,4}对于甲队来说,有胜、平、负三种结果.(2)从含有6件次品的50件产品中任取4件,其次品的个数可能为0,1,2,3,4.15.将一个各个面上涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取1个,观察取到的小正方体的情况,则事件B为“从小正方体中任取1个,恰有两面涂有颜色”,那么事件B含有 个样本点.,共12个.16.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:性别一年级二年级三年级男A B C女X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)写出该试验的样本空间Ω;(2)设事件M为“选出的2人来自不同年级且恰有1名男同学和1名女同学”,试用集合表示M.Ω={AB,AC,AX,AY,AZ,BC,BX,BY,BZ,CX,CY,CZ,XY,XZ,YZ}.(2)M={AY,AZ,BX,BZ,CX,CY}.学科素养创新练17.汉字是世界上最古老的文字之一,字形结构体现着人类追求均衡对称、和谐稳定的天性.如图所示,三个汉字可以看成轴对称图形.小敏和小慧利用“土”“口”“木”三个汉字设计了一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上,洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”),则小敏获胜,否则小慧获胜.(1)写出该试验的样本空间Ω;(2)设小敏获胜为事件A,试用样本点表示A.每次游戏时,所有可能出现的结果如下表所示:第二张卡片第一张卡片土口木土(土,土)(土,口)(土,木)口(口,土)(口,口)(口,木)木(木,土)(木,口)(木,木)∴Ω={(土,土),(土,口),(土,木),(口,土),(口,口),(口,木),(木,土),(木,口),(木,木)}.(2)能组成上下结构的汉字的样本点为(土,土),(口,口),(木,口),(口,木).∴A={(土,土),(口,口),(木,口),(口,木)}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1节 平面向量的概念及线性运算最新考纲 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.知 识 梳 理1.向量的有关概念(1)向量:既有大小又有方向的量叫作向量,向量的大小叫作向量的长度(或模). (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算3.共线向量定理a 是一个非零向量,若存在一个实数λ,使得b =λa ,则向量b 与非零向量a 共线. [微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A1A n →,特别地, 一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP→=12(OA →+OB →). 基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)零向量与任意向量平行.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量AB→与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( )(4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) 解析 (2)若b =0,则a 与c 不一定平行.(3)共线向量所在的直线可以重合,也可以平行,则A ,B ,C ,D 四点不一定在一条直线上.答案 (1)√ (2)× (3)× (4)√2.(必修4P108A1改编)给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.①B.③C.①③D.①②解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误. 答案 A3.(必修4P87A6引申改编)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM→ B.2OM→ C.3OM→ D.4OM→ 解析 OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →.答案 D4.(2019·宜春调研)如图所示,已知AC →=3BC →,OA →=a ,OB →=b ,OC →=c ,则下列等式中成立的是( )A.c =32b -12aB.c =2b -aC.c =2a -bD.c =32a -12b解析 因为AC →=3BC →,OA →=a ,OB →=b ,所以OC→=OA →+AC →=OA →+32AB →=OA →+32(OB →-OA→)=32OB →-12OA →=32b -12a .答案 A5.(2018·长沙检测)若四边形ABCD 满足AD →=12BC →且|AB →|=|DC →|,则四边形ABCD 的形状是( ) A.等腰梯形 B.矩形 C.正方形D.菱形解析 因为AD→=12BC →,所以AD →∥BC →,且|AD →|=12|BC →|,所以四边形ABCD 为以AD 为上底,BC 为下底的梯形.又|AB →|=|DC →|,所以梯形ABCD 的两腰相等.因此四边形ABCD 是等腰梯形. 答案 A6.(2019·西安调研)设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a )共线,则λ=________.解析 依题意知向量a +λb 与2a -b 共线,设a +λb =k (2a -b ),则有(1-2k )a +(k +λ)b =0,所以⎩⎪⎨⎪⎧1-2k =0,k +λ=0,解得k =12,λ=-12.答案 -12考点一 平面向量的概念【例1】 (1)设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( ) A.a =2b B.a ∥b C.a =-13bD.a ⊥b(2)给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A.②③B.①②C.③④D.②④解析 (1)由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a 与b 共线且方向相反,因此当向量a 与向量b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A 中a 与b 的方向相同;选项B 中a 与b 共线,方向相同或相反;选项C 中a 与b 的方向相反;选项D 中a 与b 互相垂直. (2)①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB→=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC→|, AB→∥DC →且AB →,DC →方向相同,因此AB →=DC →. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是②③. 答案 (1)C (2)A规律方法 对于向量的有关概念应注意以下几点:(1)平行向量就是共线向量,二者是等价的,它们均与起点无关;非零向量的平行具有传递性;相等向量一定是平行向量,而平行向量未必是相等向量;相等向量具有传递性.(2)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负数,可以比较大小.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图像的平移混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.【训练1】 (1)如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( )A.AD →=BC →B.AC →=BD →C.PE→=PF →D.EP→=PF → (2)给出下列说法:①非零向量a 与b 同向是a =b 的必要不充分条件; ②若AB→与BC →共线,则A ,B ,C 三点在同一条直线上; ③a 与b 是非零向量,若a 与b 同向,则a 与-b 反向; ④设λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误说法的序号是________.解析 (1)根据相等向量的定义,分析可得AD→与BC →不平行,AC →与BD →不平行,所以AD→=BC →,AC →=BD →均错误,PE →与PF →平行,但方向相反也不相等,只有EP →与PF →方向相同,且大小都等于线段EF 长度的一半,所以EP →=PF →.(2)根据向量的有关概念可知①②③正确,④错误. 答案 (1)D (2)④考点二 平面向量的线性运算 多维探究角度1 向量的线性运算【例2-1】 (2018·全国Ⅰ卷)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →解析 ∵E 是AD 的中点,∴EA→=-12AD →,∴EB→=EA →+AB →=-12AD →+AB →, 又知D 是BC 的中点, ∴AD→=12(AB →+AC →), 因此EB→=-14(AB →+AC →)+AB →=34AB →-14AC →. 答案 A角度2 利用向量线性运算求参数【例2-2】 (1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A.1B.34C.23D.12(2)在锐角△ABC 中,CM→=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y =________.解析 (1)∵E 为线段AO 的中点,∴BE→=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC→=34AB →+14AC →,则x =34,y =14.故xy =3. 答案 (1)B (2)3规律方法 1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【训练2】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB→=a ,AC →=b ,则AD →=( )A.a -12b B.12a -b C.a +12bD.12a +b(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点, 得CD ∥AB 且CD→=12AB →=12a ,所以AD→=AC →+CD →=b +12a .(2)DE→=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →, ∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23, 因此λ1+λ2=12. 答案 (1)D (2)12考点三 共线向量定理及其应用 【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD→=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →.∴AB →,BD →共线,又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.规律方法 1.证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 2.向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立. 【训练3】 (1)已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( ) A.λ+μ=2 B.λ-μ=1 C.λμ=-1D.λμ=1(2)(一题多解)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( )A.{0}B.∅C.{-1}D.{0,-1}解析 (1)因为A ,B ,C 三点共线,所以AB →∥AC →,设AB →=mAC →(m ≠0),则λa +b=m (a +μb ),所以⎩⎪⎨⎪⎧λ=m ,1=mμ,所以λμ=1.(2)法一 若要x 2OA→+xOB →+BC →=0成立,BC →必须与x 2OA →+xOB →共线,由于OA →-OB →=BA →与BC →共线,所以OA →和OB →的系数必须互为相反数,则x 2=-x ,解得x =0或x =-1,而当x =0时,BC →=0,此时B ,C 两点重合,不合题意,舍去.故x =-1.法二 ∵BC→=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB→,∵A ,B ,C 三点共线, ∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC→=0,此时B ,C 两点重合,不合题意,舍去.故x =-1. 答案 (1)D (2)C[思维升华]1.向量线性运算的三要素向量的线性运算满足三角形法则和平行四边形法则,向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.三个常用结论(1)O 为△ABC 的重心的充要条件是OA→+OB →+OC →=0; (2)四边形ABCD 中,E 为AD 的中点,F 为BC 的中点,则AB→+DC →=2EF →;(3)对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1. 注意向量共线与三点共线的区别. [易错防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.基础巩固题组 (建议用时:35分钟)一、选择题1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB→-AC →+BD →-CD →,其中结果为零向量的个数为( ) A.1 B.2 C.3 D.4解析 由题知结果为零向量的是①④,故选B. 答案 B2.如图,在正六边形ABCDEF 中,BA→+CD →+EF →=( )A.0B.BE→ C.AD→ D.CF→ 解析 由题图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →.答案 D3.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a |D.|-λa |≥|λ|·a解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小. 答案 B4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A.A ,B ,C B.A ,B ,D C.B ,C ,DD.A ,C ,D解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线. 答案 B5.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC→ B.12AD → C.AD → D.12BC → 解析 如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD→=AD →.答案 C6.(2019·唐山二模)已知O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( ) A.-2B.-12C.- 2D. 2解析 DO→=DA →+AO →=CB →+AO →=AB →-AC →+12AC →=AB →-12AC →,∴λ=1,μ=-12,因此λμ=-2. 答案 A7.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB→=mAM →,AC →=nAN →,则m +n 的值为( )A.1B.2C.3D.4解析 ∵O 为BC 的中点,∴AO→=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1, ∴m +n =2. 答案 B8.在△ABC 中,点D 在线段BC 的延长线上,且BC→=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫0,13 C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析 设CO→=yBC →,因为AO→=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC→=3CD →,点O 在线段CD 上(与点C ,D 不重合), 所以y ∈⎝ ⎛⎭⎪⎫0,13,因为AO→=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0.答案 D 二、填空题9.如图,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析 根据正六边形的性质和相等向量的定义,易知与向量OA→相等的向量有CB →,DO →,EF →,共3个. 答案 310.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则得⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.答案 1211.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x +y=________.解析 由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC→=xAB →+yAC →, 所以x =12,y =-16,因此x +y =12-16=13. 答案 1312.(2018·清华大学自主招生能力测试)设O 在△ABC 的内部,D 为AB 的中点,且OA→+OB →+2OC →=0,则△ABC 的面积与△AOC 的面积的比值为________. 解析 ∵D 为AB 的中点,则OD→=12(OA →+OB →),又OA→+OB →+2OC →=0,∴OD →=-OC →,∴O 为CD 的中点. 又∵D 为AB 的中点,∴S △AOC =12S △ADC =14S △ABC ,则S △ABC S △AOC=4.答案 4能力提升题组(建议用时:15分钟)13.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( )A.点P 在线段AB 上B.点P 在线段AB 的反向延长线上C.点P 在线段AB 的延长线上D.点P 不在直线AB 上解析 因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B. 答案 B14.(2019·合肥二模)设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A.12AD →B.32AD →C.12AC →D.32AC →解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点, 所以DA→+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →. 答案 D15.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 由已知条件得MB →+MC →=-MA →,如图,延长AM 交BC 于D 点,则D 为BC 的中点.同理E ,F 分别是AC ,AB 的中点,因此点M 是△ABC 的重心, ∴AM→=23AD →=13(AB →+AC →),则m =3. 答案 316.(2019·郑州模拟)设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.解析 由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →. 又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2, 所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2) =(3-k )e 1-(2k +1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2, 又e 1与e 2不共线,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.答案 -94。