南邮运筹学实验3
南邮运筹与优化实验报告

实验报告实验名称运筹与优化上机实验课程名称运筹与优化班级学号姓名开课时间 2011/2012学年,第二学期实验一:黄金分割法一、实验目的1.掌握并运用黄金分割法2.能在计算机上完成算法的实现,并解决最优化问题二、实验题目用黄金分割法求1xxf的最小值,初始区间[a,b]=[-1,1],精度=x)2-(min2-.0e≤16三、实验过程#include "math.h"#include "stdio.h"#define f(x) 2*x*x-x-1double hj(double *a,double *b,double e,int *n){ double x1,x2,s;if(fabs(*b-*a)<=e)s=f((*b+*a)/2);else{ x1=*a+0.382*(*b-*a);x2=*a+0.618*(*b-*a);if(f(x1)>f(x2))*a=x1;else*b=x2;*n=*n+1;s=hj(a,b,e,n);}return s;}main(){ double s,a,b,e;int n=0;scanf("%lf %lf %lf",&a,&b,&e); // 输入区间[a,b]和精度e的值s=hj(&a,&b,e,&n); //调用hj函数,其中n代表迭代次数printf("a=%lf,b=%lf,s=%lf,n=%d\n",a,b,s,n);}四、实验结果相应输入a、b、e的值-1、1、0.16,得出结果:区间为【0.167232,0.278651】一共迭代6次实验二:共轭梯度法一、 实验目的1、掌握并运用共轭梯度法2、能在计算机上完成算法的实现,并解决最优化问题二、 实验题目用共轭梯度法求解:(1)2122212142min x x x x x x -++-三、 实验过程function [ x,g ] = Untitled1( Q,b,x,c,m) a=0; f=Q*x+b;s=sqrt(f(1)^2+f(2)^2); while s>m, d=-f+a*d;t=-f'*d/(d'*Q*d); x=x+t*d; f=Q*x+b;a=f'*Q*d/(d'*Q*d); s=sqrt(f(1)^2+f(2)^2); endg=0.5*x'*Q*x+b'*x+c; Q=[2,-1;-1,2]; b=[2;-4]; x=[0;0]; c=0; m=0.001;[X,U]=getd(Q,b,x,c,m)四、实验结果利用Matlab作出上述结果,最优解为x=(0,2)T实验三:内外惩罚函数一、实验目的通过内外点法的学习让我们掌握利用罚函数解决线性规划为解决相应问题的一种思路与策略。
运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
线性规划实验

课内实验报告课程名:运筹学任课教师:朱卫未专业:信息管理与信息系统学号:姓名:2015/2016学年第 2 学期南京邮电大学管理学院实验结果:(附后)一、设A、B、D中C、P、H的量分别是Xac、Xap、Xah、Xbc、Xbp、Xbh、Xdc、Xdp、Xdh,总收益为Z,根据题意列出表达式。
Max Z=50(Xac+Xap+Xah)+45(Xbc+Xbp+Xbh) +35 (Xdh+Xdc+Xdp)-65(Xac+Xbc+Xdc)-25(Xap+Xbp+Xdp)-35(Xah+Xbh+Xdh)约束条件:Xac≥0.50(Xac+Xap+Xah)Xap≤0.25(Xac+Xap+Xah)Xbp≤0.50(Xbc+Xbp+Xbh)Xbc≥0.25(Xbc+Xbp+Xbh)Xac+Xbc+Xdc≤100Xap+Xbp+Xdp≤120Xah+Xbh+Xdh≤80Xac、Xap、Xah、Xbc、Xbp、Xbh、Xdc、Xdp、Xdh≥0进行化简得:Max Z=-15Xac+25 Xap+15 Xah-20 Xbc+20 Xbp+10 Xbh-30 Xdc+10 Xdp0.5Xac-0.5Xap-0.5Xah≥00.25Xac-0.75Xap+0.25Xah≥00.5Xbc-0.5Xbp+0.5Xbh≥00.75Xbc-0.25Xbp-0.25Xbh≥0Xac+Xbc+Xdc≤100Xap+Xbp+Xdp≤120Xah+Xbh+Xdh≤80Xac、Xap、Xah、Xbc、Xbp、Xbh、Xdc、Xdp、Xdh≥0二、接下来使用不同的软件求解,先尝试excel1、excel首先,引入规划求解加载项使用SUMPRODUCT函数规定K3~H10 用规划求解2、LINGO输入以下数据得出结果:三、结论:全部用来生产B商品能获得最大收益,最大收益为1866.67元。
四、总结:在进行解决问题时,一定要建立正确的数学模型,我在第一次列出表达式时,计算结果为正无穷,再回去看目标函数和约束条件,发现诸多不妥之处,根本题意就没有理解,所以耽误了很多时间。
运筹学实验报告

运筹学实验报告一、实验名称线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:5、试验体会或心得通过上机实践,基本上学会使用软件求解运筹学中常见的数学模型。
学会了对具体方法与模型的学习,在分析问题,设置变量是要有清晰的思路。
对问题的分析、建模,锻炼了我思考能力,同时提高了分析和建模的能力。
认识到了运筹学在经营管理中作为提高决策水平的方法和工具的作用,了解了运筹学在分析与解决实际问题过程中的基本思想和基本思路,更好的铺垫了以后的学习。
运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。
而通过本次的实验,我也深刻的体会到这一点。
将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得到结果,当然还有对结果的检验与分析也是不可少的。
在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。
二、实验名称整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解最优物资调运方案的方法。
③掌握利用计算机软件求解整数规划的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:5、试验体会或心得通过上机实践,基本上学会使用软件求解运筹学中常见的数学模型。
学会了对具体方法与模型的学习,在分析问题,设置变量是要有清晰的思路。
对问题的分析、建模,锻炼了我思考能力,同时提高了分析和建模的能力。
《运筹学》实验三__图与网络分析(学生版)

18
实验三 图与网络分析
一、实验目的
掌握不同问题的输入方法,求解网络模型,观察求解步骤,显示并读出结果。
二、实验平台和环境
WindowsXP 平台下,WinQSB V2.0版本已经安装在D:\WinQSB 中。
三、实验内容和要求
用WinQSB 软件求解最小支撑树,最短路及网络最大流等问题。
四、实验操作步骤
1、启动程序。
点击开始→程序→WinQSB →Network Modeling.
2、求最小支撑树:Minimal spanning tree ,输入节点数,沿编号从小到大顺次输入备树枝的长。
3、求最短路:Shortest path ,输入节点数,沿箭头方向输入各段弧上的数据。
4、求最大流:Maximal flow ,输入节点数,输入各段弧的容量。
五、分析讨论题
(一)应用求最小树子程序,求解下述问题的最小支撑树。
1、求以下问题的最小树
图3-39
2、求以下问题的最小树
图3-40
(二)应用求最短路子程序,求解下述问题从v 1到各点的最短路。
1、求v 1~v 7的最短路线及最短路长。
19
图3-41
2、求v 1~v 12的最短路线及最短路长。
图3-42
(三)应用求最大流的子程序,求解下述问题从v s 到v t 的网络最大流,图中弧旁数字为容量c ij 。
1、求以下网络的最大流
图3-43
2、求以下网络的最大流
图3-44
六、图论模型常用术语词汇及其含义
20。
南邮运筹学实验2

1.问题的分析与建立模型,阐明建立模型的过程。
2.计算过程,包括采用什么算法,使用什么软件以及计算详细过程和结果。
3.结果分析,将结果返回到实际问题进行分析、讨论、评价和推广。
实验结果:(附后)
实验背景:某企业集团有3个生产同类产品的工厂,生产的产品由4个销售中心出售,各工厂的生产量、各销售中心的销售量(假定单位均为吨)、各工厂到各销售点的单位运价(元/吨)示于表1中。要求研究产品如何调运才能使总运费最小。
根据产销平衡建立约束条minZ=3x11+11x12+3x13+10x14+x21+9x22+2x23+8x24+7x31+4x32+10x33+5x34
x11+x12+x13+x14=7
x21+x22+x23+x24=4
x31+x32+x33+x34=9
x11+x12+x13=3
x21+x22+x23=6
表1产销平衡表和单位运价表
销地
运价
产地
B1B2B3B4
产量
A1
A2
A3
3 11 3 10
1 9 2 8
7 4 10 5
7
4
9
销量
3 6 5 6
产品由产地运往销地,产地有三个,销地有四个,根据路程的远近,运费不同。题目要求我们列出一种最优的调运方案,要达到产销平衡,并且使总运费最小。xij表示从产地i到销地j的运输量,i=1,2,3,j=1,2,3,4,Z为总运费。
南邮课内实验运筹学运输问题第二次

课内实验报告课程名:运筹学任课教师:邢光军专业:学号:姓名:/ 学年第学期南京邮电大学管理学院售,各工厂的生产量、各销售中心的销售量(假定单位均为吨)、各工厂到各销售点的单位运价(元/吨)示于表1中。
要求研究产品如何调运才能使总运费最小。
表1 产销平衡表和单位运价表实验结果:一:问题分析和建立模型:解:由于总产量(7+4+9=20)=总销量(3+6+5+6=20),故该问题为产销平衡问题。
其数学模型如下:设从Ai运往Bi的运量为Xij,(i =1,2,3,j=1,2,3,4)Min Z=3X11+11X12+3X13+10X14+X21+9X22+2X23+8X24+7X31+4X32+10X33+5X34s.t. X11+X12+X13+X14=7X21+X22+X23+X24=4X31+X32+X33+X34=9X11+X21+X31=3X12+X22+X32=6X13+X23+X33=5X14+X24+X34=6Xij>=0,i=1,2,3;j=1,2,3,4二:计算过程:与一般的线性规划问题的解法类似,首先需要建立运输问题的电子表格。
下面利用Spreadsheet来求解该问题:在Excel2003版本中,单击“工具”栏中“加载宏”命令,在弹出的的“加载宏”对话框选择“规划求解”,在“工具”下拉菜单中会增加“规划求解”命令,这样就可以使用了。
1、将求解模型及数据输入至Spreadsheet工作表中。
在工作表中的B3~F3单元格分别输入单位运价,销地B1,销地B2,销地B3,销地B4,B4~B6单元格分别输入产地A1,产地A2,产地A3,C4~F6单元格分别输入价值系数(单位运价)。
在工作表中的B8~G8,G10单元格分别输入运输量,销地B1,销地B2,销地B3,销地B4,实际产量,产量。
B9~B13单元格分别输入产地A1,产地A2,产地A3,实际销量,销量。
C4~F6单元格分别表示矩阵决策变量的取值。
运筹学实验-线性规划-第一次

x1+x2+x3+x4+x5≥28
x2+x3+x4+x5+x6≥15
x3+x4+x5+x6+x7≥24
x1+x4+x5+x6+x7≥25
x1+x2+x5+x6+x7≥19
x1+x2+x3+x6+x7≥31
x1+x2+x3+x4+x7≥28
xi≥0,xi是整数,i=1,2,3,4,…,7
实验结果:
1、建立模型
以xi为从星期一开始休息的人数,i=1,2,3,4,5,6,7。目标是要求售货人员的总数最少。因为每个售货员都工作五天,休息两天,所以只要计算出连续休息两天的售货员人数,也就计算出了售货员的总数。
这里可以把连续休息两天的售货员按照开始休息的时间分成7类,各类的人数分别是x1,x2,x3,x4,x5,x6,x7,即有以下数学模型:
某中型百货商场对售货人员的需求经过统计分析如下表所示。
时间
所需售货人数(人)
星期日
28
星期一
15
星期二
24
星期三
25
星期四
19
星期五
31
星期六
28
为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作需要,又使配备的售货人员人数最少?
要求:能够写出求解模型、运用软件进行求解并对求解结果进行分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该生对待本次实验的态度□认真□良很好□较好□一般□比较差
对实验结果的分析□很好□良好□一般□比较差
文档书写符合规范程度□很好□良好□一般□比较差
综合意见:
成绩
指导教师签名
日期
58
61
Aj各点的设备投资及每年可获利润由于地点不同都就是不一样的,预测情况见表所示(单位:万元)。但投资总额不能超过720万元,问应选择哪几个销售点,可使年利润为最大?
1、建立模型
设10个销售位置分别为Xi(i=1,2,3,、、、,10),建立0—1整数规划数学模型如下:
目标函数:maxZ=36X1+40X2+50X3+22X4+20X5+30X6+25X7+48X8+58X9+61X10
100X1+120X2+150X3+80X4+70X5+90X6+80X7+140X8+160X9+180X10≤720
X1+X2+X3≤2
X4+X5≥1
X6+X7≥1
X8+X9+X19≥2
Xi=0或1(i=1,2,3,、、、,10)
Xi=1表示项目被选中(i=1,2,3,、、、,10)
决策变量Xi=
在东区由A1,A2,A3三个点至多选择两个;
在西区由A4,A5两个点中至少选一个;
在南区由A6,A7两个点中至少选一个;
在北区由A8,A9,A10三个点中至少选两个。
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
投资额
100
120
150
80
70
90
80
140
160
180
利润
36
40
50
22
20
30
25
48
实验考核办法:
实验结束要求写出实验报告。实验报告的形式可以包括以下3点:
1、问题的分析与建立模型,阐明建立模型的过程。
2、计算过程,包括采用什么算法,使用什么软件以及计算详细过程与结果。
3、结果分析,将结果返回到实际问题进行分析、讨论、评价与推广。
实验结果:(附后)
实验背景:
某公司计划在市区的东、西、南、北四区建立销售中心,拟议中有10个位置Aj(j=1,2,3,…,10)可供选择,考虑到各地区居民的消费水平及居民居住密集度,规定:
课内实验报告
课 程 名:运筹学
任课教师:朱京辉
2014 /2015 学年 第 2 学期
南京邮电大学 经济与管理学院
《 运筹学 》课程实验第 3 次实验报告
实验内容及基本要求:
实验项目名称:整数规划实验
实验类型:验证
每组人数:1
实验内容及要求:
内容:整数规划建模与求解
要求:能够写出求解模型、运用软件进行求解并对求解结果进行分析
Xi=0表示项目没有被选中(i=1,2,3,、、、,10)
2.规划求解
(1)在表格中填入数据
(2)填入目标函数约束条件
(3)在A16填入约束条件
(4)在A17,A18,A19,A20填入公式
(5)规划求解
(6)结果
当X1=1,X2=1,X3=0,X4=0,X5=1,X6=1,X7=0,X8=0,X9=1,X10=1时,目标函数最优解为245