直线射线线段练习题

合集下载

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。

①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。

这个游戏规则不公平。

①如果被除数末尾有2个0,那么商的末尾至少有1个0。

①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。

A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。

5.下面的图形中哪些是线段?在其下面的()里画“○”。

()()()()()()()()6.下图中有______条线段。

7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。

( )9.放风筝时的风筝线可以看成是一条直线。

( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。

( )12.两个直角就是一个平角。

()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。

根据这一原理人们制作了度量角的工具——量角器。

( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。

( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。

画一条比1分米短1厘米的线段。

18.画一条比3厘米长15毫米的线段,并标出长度。

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。

小学人教四年级数学直线、射线、线段练习试题

小学人教四年级数学直线、射线、线段练习试题

直线、射线、线段测试题一、选择题1. 以下说法错误的选项是〔〕A. 平面内过一点有且只有一条直线与直线垂直B. 两点之间的全部连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与直线平行3.假如 A BC 三点在同向来线上,且线段AB=4CM ,BC=2CM ,那么AC 两点之间的距离为〔〕A .2CM B.6CM C .2 或 6CM D .没法确立4.以下说法正确的选项是〔〕A .延伸直线AB 到 C;B.延伸射线OA 到C;C.平角是一条直线;D.延伸线段AB 到C 5.假如你想将一根细木条固定在墙上,起码需要几个钉子〔〕A .一个B.两个C.三个D.无数个6.点 P 在线段EF 上,现有四个等式①PE=PF;②PE= 中点的有〔〕12EF;③12EF=2PE;④2PE=EF;此中能表示点P 是 EFA .4 个B.3 个C.2 个D.1 个7. 以下列图,从 A 地抵达 B 地,最短的路线是〔〕.A .A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B8..如右图所示,B、C 是线段AD 上随意两点,M 是 AB 的中点, N 是 CD 中点,假定MN=a ,BC=b,那么线段AD 的长是〔〕A .2(a - b)B .2a- bC .a+ bD .a- b9..在直线l 上按序取A、B、C 三点,使得AB=5 ㎝,BC=3 ㎝,假如O 是线段 AC 的中点,那么线段OB 的长度是〔〕A.2 ㎝B.㎝C.㎝D.1 ㎝10.假如 AB=8 ,AC=5 ,BC=3 ,那么〔〕A .点 C 在线段AB 上B.点 B 在线段AB 的延伸线上C.点 C 在直线AB 外 D .点 C 可能在直线AB 上,也可能在直线AB 外二、填空题1.假定线段AB=a ,C 是线段AB 上的随意一点,M 、N 分别是AC 和CB 的中点,那么MN=_______. 2.经过1点可作________条直线;假如有 3 个点,经过此中随意两点作直线,能够作______条直线;经过四点最多能确立条直线。

初中数学直线射线线段综合练习题(附答案)

初中数学直线射线线段综合练习题(附答案)

初中数学直线射线线段综合练习题一、单选题1.下列说法正确的是( )A.画射线3cm OA =B.线段AB 和线段BA 不是同一条线段C.点A 和直线l 的位置关系有两种D.三条直线相交一定有3个交点 2.从重庆站乘火车到北京站,沿途经过5个车站方可到达北京站,那么在重庆与北京两站之间需要安排不同的车票___________种.3.若平面内有点,,A B C ,过其中任意两点画直线,则最多可以画的条数是( )A.3B.4C.5D.64.如图,点O 与射线AB 的位置关系是( )A.点O 一定在射线AB 上B.点O 一定不在射线AB 上C.点O 可能在射线AB 上,也可能不在射线AB 上D.射线AB 可能会经过点O5.下列图示中,直线表示方法正确的有( )A.①②③④B.①②C.②④D.①④6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A.7 cmB.3 cmC.7cm 或3cmD.5 cm7.如图,,C B 是线段AD 上的两点,若,2AB CD BC AC ==,那么AC 与CD 的关系为( )A.2CD AC =B.3CD AC =C.4CD AC =D.不能确定二、解答题8.如图,P 是线段AB 上任意一点,12cm,,AB C D =两点分别从,P B 同时向A 点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s ,运动的时间为s t .(1)若8cm AP =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2s,1cm t CD ==,试探索AP 的值.9.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.10.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度;(2)若3cm,1cm AC CP ==,求线段PN 的长度.11.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .12.如图,已知线段6AD =cm ,线段4AC BD ==cm,EF 分别是线段,AB CD 的中点,求线段EF 的长.13.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?14.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.15.如图,平面上有,,,A B C D 四个村庄,为了丰富人们的生活,政府准备投资修建一个文化活动中心H ,使它到四个村庄的距离之和最小,你认为文化活动中心应建在哪里?并说明理由.16.如图(1),直线AB 上有一点P ,点,M N 分别为线段,PA PB 的中点,14AB =.(1)若点P 在线段AB 上,且8PA =,求线段MN 的长度;(2)若点P 在直线AB 上运动,设,PA x PB y ==,请分别计算下面情况时MN 的长度; ①当P 在,A B 之间(含A 或B );②当P 在A 左边;③当P 在B 右边.你发现了什么规律?(3)如图(2),若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA PB PC-的值不变;②PA PB PC +的值不变.请选择一个正确的结论并求其值. 三、填空题17.给出下列说法:①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点.其中正确说法的序号为___________.18.平面内有3条直线,它们的交点个数是_________.19.如图,画的是一条直线和两个点的位置关系,现有4种叙述:①直线AB 在点C 上;②点C 在直线AB 上;③点O 不经过直线AB ;④直线a 经过点C .其中叙述正确的有(填序号):__________.参考答案1.答案:C解析:射线没有长度,故A 错误;线段AB 和线段BA 是同条线段,故B 错误;点A 和直线l 的位置关系有两种:点A 在直线上或在直线外,故C 正确;三条直线相交可能有1个或2个或3个交点,故D 错误.2.答案:42解析:因为共有(52)+个车站,把它们看作直线上的7个点,则直线上线段的条数为7(71)212⨯-=(条),而每条线段对应两种不同的车票,故需要安排不同的车票共42种. 3.答案:A解析:平面内有点,,A B C ,过其中任意两点画直线,最多可以画的直线条数是3.4.答案:B解析:射线AB 是有方向的,是从“A ”到“B ”的方向,图中的射线AB 是向右无限延伸的,向左到端点A 终止,故点O 一定不在射线AB 上.5.答案:D解析:用两个点表示直线时,这两个点必须是大写字母,故②③错误,①正确;用一个字母表示直线时,这个字母必须是小写的,且不能在直线上标点,④正确.6.答案:D解析:当点C 在线段AB 上时,则1115cm 222MN AC BC AB =+==;当点C 在线段AB 的延长线上时,则11725(cm)22MN AC BC =-=-=.综合上述情况,线段MN 的长度是5cm . 7.答案:B解析:因为AB CD =,所以AC BC BC BD +=+,即AC BD =.又因为2BC AC =,所以2BC BD =.所以33CD BD AC ==.8.答案:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=.因为8cm,12cm AP AB ==,所以1284(cm)PB AB AP =-=-=.所以2433(cm)CD CP PB DB =+-=+--.②因为8cm,12cm AP AB ==,所以1284(cm),(82)(cm)PB AC AP CP t =-==-=-.所以(43)(cm)DP PB DB t =-=-.所以243(4)(cm)CD CP DP t t t =+=+-=-.因为822(4)t t -=-,所以2AC CD =.(2)当2s t =时,224(cm),326(cm)CP DB =⨯==⨯=.当点D 在C 的右边时,如图所示:由于1cm CD =,所以167(cm)CB CD DB =+=+=.所以1275(cm)AC AB CB =-=-=,所以549(cm)AP AC CP =+=+=.当点D 在C 的左边时,如图所示;1266(cm)AD AB DB =-=-=.所以61411(cm)AP AD CD CP =++=++=.综上所述,9cm AP =或11cm .解析:9.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===.所以10cm AD AB BC CD =++=.因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=.因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=.1010220(cm)AD x ==⨯-.解析:10.答案:(1)因为,M N 分别是,AC BC 的中点,所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=.因为P 是线段AB 的中点,所以28cm AB AP ==.所以5cm CB AB AC =-=.因为N 是线段CB 的中点,1 2.5cm 2CN CB ==. 所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 11.答案:解:(1)若以B 为原点,则C 表示1,A 表示-2,所以1021p =+-=-.若以C 为原点,则A 表示-3,B 表示一I ,所以3104p =--+=-.(2)若原点O 在图中数轴上点C 的右边,28CO =,则C 表示-28,B 表示-29,A 表示-31, 所以31292888p =---=-.解析:12.答案:解:因为2AB AD BD =-=cm,2CD AD AC =-=cm , 所以112EB AB ==cm ,112CF CD == cm 所以6222BC AD AB CD =--=--=(cm ),所以1214EF EB BC CF =++=++= (cm).解析:13.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=,因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==. (3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN的长度始终等于线段AB的一半,与C点的位置无关.解析:14.答案:【解】第一种情况:若为图(1)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以2cmMN MB NB=-=.第二种情况:若为图(2)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以8cmMN MB BN=+=.解析:15.答案:【解】文化活动中心应建在,AC BD连线的交点处.理由如下:若把文化活动中心建在,AC BD连线的交点处,则中心到四个村庄的距离之和等于,AC BD两条线段的长度之和,而两点之间,线段最短,故这个位置符合要求.解析:16.答案:(1)因为8PA=,所以6BP AB PA=-=.因为点M是AP中点,所以142PM AP==.又因为点N是PB中点,所以132PN PB==.所以7MN PM PN=+=.(2)①当点P在,A B之间时,17222x yMN AB=+==;②当点P在BA的延长线上,11()72222y xMN PN PM y x AB =-=-=-==;③当点P在AB的延长线上时,11()72222x yMN PM PN x y AB =-=-=-==.规律:不管P在什么位置,MN的长度不变,都为7. (3)选择②.设PB x =.由题意,知7AC BC ==, ①1477PA PB AB PC x x -==++(在变化); ②21427PA PB x PC x ++==+(定值). 解析:(1)根据线段中点的定义及线段的和差,可求得结果.(2)根据线段中点的定义可求得,MP NP ,再根据线段的和差,可求得结果.(3)根据线段的和差可得,PA PB PA PC +-,进而可得所求的结论.17.答案:②③④解析:①错误,因为两条不同的直线不能重合,若两直线有两个或两个以上公共点,这两直线就是同一条直线;而两条不同的射线、两条不同的线段、一条直线和一条线段都可以有部分重合,因此它们都可以有无数个公共点,故②③④正确.18.答案:0或1或2或3解析:如图,若平面内有3条直线,则它们的交点个数有如下四种情况:19.答案:②④解析:只能说点在(或不在)直线上,而不能说直线在(或不在)点上,故①错;只能说直线经过(或不经过)点,而不能说点经过(或不经过)直线,故③错,②④正确.。

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。

人教版四年级上册数学 3 1线段、直线、射线(同步练习)

人教版四年级上册数学  3 1线段、直线、射线(同步练习)

3.1线段、直线、射线同步练习一、选择题1.对下图中的射线描述正确的是()。

A.射线A B.射线AB C.射线BA2.冬冬家到学校最近的路是第()条.A.①B.①C.①3.丫丫画了一条长20厘米的()。

A.直线B.射线C.线段D.以上答案均错4.一条()长3米。

A.线段B.射线C.直线5.“有始有终”常常被用来形容一个人做事能够坚持到底,在数学上可以用这个成语来形容()。

A.射线B.直线C.线段6.把4厘米长的线段向两端各延长10厘米,得到一条()。

A.直线B.射线C.线段7.下图中共有()条线段。

A.8B.10C.5D.48.如图所画的线哪一条是射线?下面四个选项中正确的是()。

A.AB B.AC C.BA D.BC二、填空题9.线段有( )个端点,过一点可以画( )条直线。

10.如果把6厘米长的线段向两端各延长10厘米,得到的是一条( );如果把这条线段向一端无限延伸,得到的是一条( )。

11.直线( )端点,线段有( )端点,( )线和( )线都是无限长.12.射线有个端点,没有端点,线段有个端点.13.图中有( )组互相垂直的线段。

三、判断题14.一条射线长48米。

( )15.一条5米的直线比一条3米的射线长。

( )16.1条直线长6米.( )17.因为线段有两个端点,射线有一个端点,直线没有端点,所以线段比射线短,射线比直线短。

( )18.一条射线长20.5米.( )四、解答题19.把下列线进行分类,找出各类线之间有什么相同和不同之处?20.下图中一共有多少条射线?多少条线段?。

射线直线线段练习题

射线直线线段练习题

射线、直线、线段练习题一、选择题1. 下列说法正确的是:A. 射线有一个端点,无限长B. 直线有两个端点,有限长C. 线段有一个端点,有限长D. 射线与直线长度相等2. 在下列图形中,哪个是线段?A. 两条平行线B. 一个端点,向一方无限延伸C. 两个端点,有限长D. 一个端点,向两边无限延伸A. 两个端点,有限长B. 一个端点,向一方无限延伸C. 两个端点,无限长D. 无端点,无限长二、填空题1. 线段是由两个______和它们之间的______组成的。

2. 射线有一个______,向一方______延伸。

3. 直线无______,______延伸。

三、判断题1. 射线的长度大于线段的长度。

()2. 直线比射线更长。

()3. 线段有两个端点,有限长。

()四、连线题请将下列射线、直线、线段的定义与相应的图形连线:1. 直线:______2. 射线:______3. 线段:______五、作图题1. 画出一条线段,长度为5厘米。

2. 画出一条射线,从一个端点出发,经过点A。

3. 画出一条直线,使它与线段AB平行。

六、简答题1. 请简要说明射线、直线和线段的特点。

2. 如何用直尺和三角板画出一条指定长度的线段?3. 在日常生活中,你能找到哪些射线、直线和线段的例子?请分别列举。

七、应用题1. 在平面直角坐标系中,点A(2,3)和点B(5,3)是线段AB的两个端点,求线段AB的长度。

2. 已知射线OC从点O(0,0)出发,经过点C(4,0),求射线OC上距离点O 6个单位长度的点D的坐标。

3. 在直角坐标系中,直线l经过点P(1,2)和点Q(4,6),请写出直线l的方程。

八、拓展题1. 如果一条射线逆时针旋转90度,它变成了什么?2. 在平面上,两条直线相交,形成的四个角中,有几个角是相等的?3. 有一根无限长的直线,你在上面任意取两点,这两点之间的是什么?九、探究题1. 如何证明两条平行线之间的距离处处相等?2. 在同一平面内,如果两条直线不相交,那么它们一定是平行的吗?3. 请设计一个实验,证明线段的长度是可以通过测量得到的。

直线、射线、线段练习题(含答案)

直线、射线、线段练习题(含答案)

1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线 射线 线段 角大小比较 角平分线 互余互补一 解答题1. 如图所示,指出图中的直线、射线和线段.A B C DEF2. 往返于甲、乙两地的客车,中途停靠三站,问:(1)要有多少种不同的票价? (2)要准备多少种车票?3. 如图所示,C 是线段AB 的中点,D 是线段CB 的中点,BD =2cm ,求AD 的长.ABCD4. 已知线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,若CD =3cm ,求AB 的长.5. 已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.6. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。

7. 已知A 、B 、C 、D 四点,如图所示,若过其中的任意两点画直线,能画几条?分别用字母表示每条直线.ABCD8. 如图所示,这是某村的平面示意图,阴影部分是该村的道路,A 处是住宅区,B 处是村小学,其他部分都是麦田,每年一到冬季,小学生们就在麦田里走出一条小路AB ,请你用数学原理解释这一现象.二、选择题.1、下面几种表示直线的写法中,错误的是( ) A. 直线a B. 直线Ma C. 直线MND. 直线MO2、下列作图语句中正确的是( ) A. 画直线AB =2cm B. 画射线OC =3cmC. 在射线OC 上,截取射线CD =2cmD. 延长线段AB 到C ,使得BC =AB 3、下列说法错误的是( ) A. 过一点可以作无数条直线 B. 过已知三点可以画一条直线 C. 一条直线通过无数个点 D. 两点确定一条直线4、如果线段AB =6cm ,BC =4cm ,则线段AC 的长度是( ) A. 2cm B. 10cm C. 2cm 或10cm D. 无法确定5、下列四种说法:①因为AM =MB ,所以M 是AB 中点;②在线段AM•的延长线上取一点B ,如果AB =2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM =MB =12AB ;④因为A 、M 、B 在同一条直线上,且AM =BM ,所以M 是AB 的中点.其中正确的是( )A. ①③④ B. ④ C. ②③④ D. ③④6、如图所示,C 是线段AB 的中点,D 是线段BC 的中点,则下列关系式中不正确的是( )A. CD =AC -BDB. CD =AD -BCC. CD =12AB -BDD. CD =13ABABCD7、线段AB =1996cm ,P 、Q 是线段AB 上的两个点,线段AQ =1200cm ,线段BP =1050cm ,则线段PQ =( ) A. 254cmB. 150cmC. 127cmD. 871cm8.下列说法正确的是( )A. 两点之间的连线中,直线最短B.若P 是线段AB 的中点,则AP=BPC. 若AP=BP, 则P 是线段AB 的中点D. 两点之间的线段叫做者两点之间的距离9.如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( ) A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对.三、填空题.1、在墙上钉一根木条需__________个钉子,其根据是__________.2、如下图所示,直线__________和直线__________相交于点P ;直线AB 和直线EF•相交于点__________;点R 是直线__________和直线__________的交点.ABCD E FOPR3、如下图所示,图中共有__________条线段,它们是__________;共有__________条射线,它们是__________.ABCDF4、如下图,把河道由弯曲改直,根据__________说明这样做能缩短航道.5、如下图,AC =CD =DE =EB ,图中和线段AD 长度相等的线段是__________,以D•为中点的线段是__________. ABCDE6、画线段AB =50mm ,在线段AB 上取一点C ,使得5AC =2AB ,在AB 的延长线上取一点D ,使得AB =10BD ,那么CD =__________mm .7、探索规律:(1)若直线l 上有2个点,则射线有_____条,线段有______条; (2)若直线l 上有3个点,则射线有_____条,线段有______条; (3)若直线l 上有4个点,则射线有_____条,线段有______条; (4)若直线l 上有n 个点,则射线有_____条,线段有______条.8、先画线段AB =5cm ,延长AB 至C ,使BC =2AB ,反向延长AB 至E ,使AE =AB ,再计算:(1)线段CE 的长;(2)线段AC 是线段CE 的几分之几? (3)线段CE 是线段BC 的几倍?9、已知线段AB =10cm ,直线AB 上有一点C ,且BC =2cm ,点D 是线段AB 的中点,求线段DC 的长.10、已知数轴的原点为O ,如图所示,若点A 表示3,点B 表示-52,问:(1)数轴是什么图形?(2)数轴在原点O 左边的部分(包括原点)是什么图形?怎样表示? (3)射线OB 上的点表示什么数?端点表示什么数?(4)数轴上表示不小于-52,且不大于3的部分是什么图形?怎样表示?21COBAD1 2FE21 ACB 角的比较和运算1.法1.叠合法:把一个角放到另一个角上,使它们的顶点重合,其中的一边也重合,这两个角的另一边都在这一条边的同侧,可看到:∠CGH ∠AOB , 或 ∠AOB ∠CGH . 2.法2. 度量法:可以用量角器分别量出角的度数,然后加以比较. 3. 用三角板拼出75°、15°、105°的角, 并描画出来 角的和差4. ① ∠2在∠1内部时,如右图, ∠ABD 是∠1与∠2的差,记作:∠ABD = - ;② ∠2在∠1外部时,如右图∠DEF 是∠1与∠2的和, 记作:∠DEF = + .角平分线5. 角平分线: 从角的顶点引出的一条射线,可以把这个角分成两个 , 这条射线叫做这个角的平分线. 若OC 平分∠AOB ,(如右图)则 有 (1) ∠1 ∠2;(2) ∠1=∠2= ∠AOB ; (3) ∠AOB = ∠1= ∠2.6. 上图中,若OC 是角平分线, ∠1 = 35°,则 ∠AOB =若OC 是∠AOB 的角平分线,则_________ = 2∠AOC. 7.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A 一定大于∠C 。

余角和补角8.互为余角的定义: ,就说这两个角互为余角。

如图,若∠1=230, ∠2=670,∠1与∠2互为余角;若∠AOB=900,∠3与∠4互为余BD2143角。

9.补角的定义:如果两个角的和是180°(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。

如图,若∠5=230, ∠6=1570,∠5与∠6互为补角;若∠AOB=1800,∠3与∠4互为补角。

10.究补角的性质:如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?11.探究余角的性质: 如图∠1 与∠2互余,∠3 与∠4相等吗?为什么?12.如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?13.填空:(1)70°的余角是 ,补角是 。

(2)∠α(∠α <90°)的它的余角是 ,它的补角是 。

互余和互补是两个角的数量关系,与它们的位置无关。

(3)若一个角的补角等于它的余角4倍,求这个角的度数。

(4)一个角的补角比它的23还少20°,求这个角. 14.∠β与∠α互余,∠γ与∠α互补,∠α=37°21′,那么∠β=______,∠γ=_____.15.一个角的补角比它的余角的2倍还大18°,求这个角.16.已知一个角的补角比它的余角的3倍还多18°, 求这个角的度数。

17.已知一个角的补角的2倍减去这个角的余角恰好是这个角的4倍, 求这个角的度数。

分层练习1. 如图1,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<);AOB 1 2 3 4OC(1)AB O DC(2)AB2. 如图2 , ∠AOC=______+______=______-______;∠BOC=______-______= _____-________.3. OC 是∠AOB 内部的一条射线,若∠AOC =12________,则OC 平分∠AOB; 4.如果∠1=65°15′,∠2=78°30′,那么∠3是多少度?5.用一副三角板不能画出( )A.75°角B.135°角C.160°角D.105°角 6.如果∠1-∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是( ) A.∠3>∠4 B.∠3=∠4; C.∠3<∠4 D.不确定7. 如图,∠AOB=55°.画出∠BOC 的平分线OD ,并计算∠AOD 的度数。

BA O C 8. OC 是从∠AOB 的顶点O 引出的一条射线,若∠AOB=90°,∠AOB= 2∠BOC,求∠AOC 的度数. 9.选择题(1)下列说法中:①一个角的补角一定大于这个角的余角;②一个角的补角必定大于这个角;③若两个角互为补角,那么这两个角必定是一个锐角和一个钝角;④互余的两个非零的角必定都是锐角. 不正确的个数有( )A 1个B 2个C 3个D 4个(2)如图,已知∠AOB 是直角,点C 、O 、D 在一条直线上,∠AOC=25°,则∠BOC 和∠AOD 的度数分别是( )CDBOA 75°,155°B 65°,155°C 25°,65°D 90°,180°10.已知:∠AOB=40°,∠BOC 是∠AOB 的补角,OD 、OE 分别是∠AOB 和∠BOC 的平分线,求∠DOE 的度数.11.如图,∠AOC=∠BOD=90º,∠AOD=130º,求∠BOC 的度数。

相关文档
最新文档