八年级上册数学第一单元测试题2
人教版初中数学八年级数学上册第一单元《三角形》测试(含答案解析)(2)

一、选择题1.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD 2.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠; ②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个3.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 5.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒ 6.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是( ) A .7B .8C .9D .10 7.下列长度的三条线段能组成三角形的是( ) A .3,3,4B .7,4,2C .3,4,8D .2,3,5 8.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 9.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒10.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°11.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°12.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D .二、填空题13.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.14.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.15.设三角形三内角的度数分别为,,x y z ︒︒︒,如果其中一个角的度数是另一个角的度数的2倍、那我们称数对(,)()y z y z <是x 的和谐数对,当150x =时,对应的和谐数对有一个,它为(10,20);当66x =时,对应的和谐数对有二个,它们是__________.当对应的和谐数对(,)y z 有三个时,请写出此时x 的范围_______.16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.18.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.20.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.三、解答题21.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.22.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.23.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.24.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .25.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在ABC 中,过C 点向AB 所在的直线作垂线,顶点与垂足之间的线段是AB 上的高,由此可得答案.【详解】解:ABC 中,AB 边上的高为:.CG故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.2.C解析:C【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.3.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C ,∴∠B=∠D ,∴选项A 、B 正确;∵∠2=∠A+∠D ,∴2D ∠>∠,∴选项C 正确;没有条件说明C D ∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 4.B解析:B【分析】利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.C解析:C【分析】根据三角形的外角性质求解 .【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=130°-55°=75°,故选C .【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键. 6.D解析:D【分析】设多边形有n 条边,则内角和为180°(n ﹣2),再根据内角和等于外角和4倍可得方程180(n ﹣2)=360×4,再解方程即可.【详解】解:设多边形有n 条边,由题意得:180(n ﹣2)=360×4,解得:n =10,故选:D .【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n ﹣2). 7.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A 、3+3>4,能构成三角形,故此选项正确;B 、4+2<7,不能构成三角形,故此选项错误;C 、3+4<8,不能构成三角形,故此选项错误;D 、2+3=5,不能构成三角形,故此选项错误.故选:A .【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.B解析:B【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°, ∴三角形是直角三角形,故选B.【点睛】 本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键. 9.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.10.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.11.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.12.B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A.CE不垂直AB,故CE不是ABC的高,不符合题意,B.CE是ABC中AB边上的高,符合题意,C.CE不是ABC的高,不符合题意,D.CE不是ABC的高,不符合题意.故选B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.二、填空题13.18【分析】连接BG根据重心的性质得到△BGC的面积再根据D点是BC的四等分点得到△GDC的面积故可求解【详解】连接BG∵G为纸片的重心∴S△BGC=S△ABC=8∵D为边上的一个四等分点()∴S△解析:18【分析】连接BG,根据重心的性质得到△BGC的面积,再根据D点是BC的四等分点得到△GDC的面积,故可求解.【详解】连接BG,∵G为ABC纸片的重心,∴S△BGC=1S△ABC=83)∵D为BC边上的一个四等分点(BD CD∴S△DGC=3S△BGC=64∴剪去GDC,则剩下纸片的面积为24-6=18故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.14.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.15.(3876)(3381)【分析】根据和谐数对的定义求出当x=66时的两组数对;再分当时当时当时三种情况讨论从而得出结论【详解】解:当时180-66=114则114÷3=3838×2=76此时和谐数对解析:(38,76),(33,81) 060x ︒<<︒【分析】根据“和谐数对”的定义求出当x=66时的两组数对;再分当060x ︒<<︒时,当60120x ︒<︒时,当120180x ︒<︒时,三种情况讨论,从而得出结论.【详解】解:当66x =时,180-66=114,则114÷3=38,38×2=76,此时和谐数对为(38,76),或66÷2=33,114-33=81,此时和谐数对为(33,81),若对应的和谐数对(,)y z 有三个,当060x ︒<<︒时,它的和谐数对有(1803,2)x x ︒-,3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-; 当60120x ︒<︒时,它的和谐数对有3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-, 当120180x ︒<︒时,它的和谐数对有180(3x ︒-,2(180))3x ︒-, ∴对应的和谐数对(,)y z 有三个时,此时x 的范围是060x ︒<<︒,故答案为:(38,76),(33,81);060x ︒<<︒.【点睛】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.16.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x ∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.17.6【分析】根据DE分别是三角形的中点得出G是三角形的重心再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3再根据AD是△ABC 的中线可得S△ABC=2S△ABD进而得到答案【详解析:6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S△ABC=2S△ABD=6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.18.2<a<12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(解析:2<a<12.已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.19.540°【分析】连接AGGD先根据∠H+∠K=∠HGA+∠KAG∠E+∠F=∠EDG+∠FGD最后根据多边形的面积公式解答即可【详解】解:连接AGGD∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG、GD,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG、GD,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.20.15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数再由补角的定义得出∠BDF的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°先根据直角三角板的性质得出∠B 及∠CDE 的度数,再由补角的定义得出∠BDF 的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.三、解答题21.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.22.(1)∠ABE=30°;(2)∠ABE=30°(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB∥DC,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE与AB、BF相交于点M、N,如图所示:设∠ABF=x,∠DCF=y,∵∠EBF=2∠ABF,CF平分∠DCE,∴∠EBF=2x,∠ABE=3x,∠FCE=y,∠DCE=2y,∵AB∥DC,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.23.(1)10°;(2)∠DAE =12(∠C−∠B);(3)45°. 【分析】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE 、∠B 、∠C 的数量关系;(3)设∠ACB =α,根据角平分线的定义得∠CAG =12∠EAC =12(90°−α)=45°−12α,∠FCG =12∠BCF =12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B =40°,∠C =60°,∠BAC +∠B +∠C =180°,∴∠BAC =80°,∵AD 平分∠BAC ,∴∠CAD =∠BAD =12∠BAC =40°, ∵AE 是△ABC 的高,∴∠AEC =90°,∵∠C =60°,∴∠CAE =90°−60°=30°,∴∠DAE =∠CAD−∠CAE =10°;(2)∵∠BAC +∠B +∠C =180°,∴∠BAC =180°−∠B−∠C ,∵AD 平分∠BAC ,∴∠CAD =∠BAD =12∠BAC , ∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°−∠C ,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.24.(1)35°;(2)90°-12α;(3)12β【分析】(1)由角平分线的定义得到∠DCG=12∠ACG,∠DBC=12∠ABC,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC,∠CBE=12∠CBF,于是得到∠DBE=90°,由(1)知∠D=12∠A,根据三角形的内角和得到∠E=90°-12α;(3)根据角平分线的定义可得,∠ABD=12∠ABC,∠DAM=12∠MAC,再利用三角形外角的性质可求解.【详解】解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=12∠ACG,∠DBC=12∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=12∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.【点睛】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.25.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.26.10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC=12∠BAC=12×60°=30°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°−∠C=90°−70°=20°,∴∠DAE=∠EAC−∠CAD=30°−20°=10°;∵AE,BF是角平分线,∴∠OAB=12∠BAC,∠OBA=12∠ABC,∴∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC)=12(180°−∠C)=12×(180°−70°) =55°.【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.。
初二数学上册第一单元测试题【三篇】

导语:检验数学学得好不好的标准就是会不会解题。
听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独⽴解题、解对题才是学好数学的标志。
以下是⽆忧考整理的初⼆数学上册第⼀单元测试题【三篇】,希望对⼤家有帮助。
初⼆数学上册第⼀单元测试题(⼀)⼀、选择(共30分)1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的⾯积为().A.16πB.12πC.10πD.8π2、三个正⽅形的⾯积如图(4),正⽅形A的⾯积为()A.6B.36C.64D.83、14.在△ABC中,AB=13,AC=15,⾼AD=12,则BC的长为()A.14B.14或4C.8D.4和84、将⼀根24cm的筷⼦,置于底⾯直径为15cm,⾼8cm的圆柱形⽔杯中,如图所⽰,设筷⼦露在杯⼦外⾯的长度为hcm,则h的取值范围是().A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm5、若直⾓三⾓形的两条直⾓边长分别为3cm、4cm,则斜边上的⾼为()A、cmB、cmC、5cmD、cm6、以下列线段的长为三边的三⾓形中,不是直⾓三⾓形的是()A、B、C、D、7、已知三⾓形的三边长为a、b、c,如果,则△ABC是()A.以a为斜边的直⾓三⾓形B.以b为斜边的直⾓三⾓形C.以c为斜边的直⾓三⾓形D.不是直⾓三⾓形8、如果把直⾓三⾓形的两条直⾓边同时扩⼤到原来的2倍,那么斜边扩⼤到原来的().A.1倍B.2倍C.3倍D.4倍9、2002年8⽉在北京召开的国际数学家⼤会会徽取材于我国古代数学家赵爽的《勾股圆⽅图》,它是由四个全等的直⾓三⾓形与中间的⼀个⼩正⽅形拼成的⼀个⼤正⽅形,如图所⽰,如果⼤正⽅形的⾯积是13,⼩正⽅形的⾯积是1,直⾓三⾓形的短直⾓边为a,较长直⾓边为b,那么(a+b)2的值为()A.13B.19C.25D.16910、如图,长⽅体的长为15,宽为10,⾼为20,点离点的距离为5,⼀只蚂蚁如果要沿着长⽅体的表⾯从点爬到点,需要爬⾏的最短距离是()A.B.25C.D.⼆、填空(共24分)11、⼀个三⾓形三个内⾓之⽐为1:2:3,则此三⾓形是__________三⾓形;若此三⾓形的三边为a、b、c,则此三⾓形的三边的关系是__________。
北师大版八年级数学上册第一章单元测试卷含答案

第一章单元测试卷(时间:100分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1. 已知△ABC的三边长分别是3 cm,4 cm,5 cm,则△ABC的面积是(A)A.6 cm2B.7.5 cm2C.10 cm2D.12 cm22. 如图,字母B所代表的正方形的面积是(C)A.12B.13C.144D.1943. 三角形的三条边长分别为a,b,c,且(a+b)2=c2+2ab,则这个三角形是(C)A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形4. 已知一直角三角形木板,三边的平方和为1800,则斜边长为(B)A.80 B.30 C.90 D.1205. 下列结论中不正确的是(C)A.三个内角之比为1∶2∶3的三角形是直角三角形B.三条边长之比为3∶4∶5的三角形是直角三角形C.三条边长之比为8∶16∶17的三角形是直角三角形D.三个内角之比为1∶1∶2的三角形是直角三角形6. 如图,小明将一张长为20 cm,宽为15 cm的长方形纸(AE>DE)剪去了一角,量得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜边BC长为(D)A.5 cm B.12 cm C.16 cm D.20 cm错误!错误!,第7题图) 错误!,第8题图),第9题图)7. 如图,某公司举行周年庆典,准备在门口长25 m,高7 m的台阶上铺设红地毯,已知台阶的宽为3 m,则共需购买红地毯(C)A.21 m2B.75 m2C.93 m2D.96 m28. 如图,已知长方形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD =8,AB=4,则DE的长为(C)A.3 B.4 C.5 D.69. 如图,在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是(B)A.30 B.36 C.72 D.12510. 在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是(C)A .42B .32C .42或32D .30或35二、填空题(本大题共6小题,每小题4分,共24分)11. 在Rt △ABC 中,∠C =90°.若b =8,c =17,则S △ABC =60. 12. 在△ABC 中,AB =5 cm ,BC =6 cm ,BC 边上的中线AD =4 cm ,则∠ADC 的度数是90°. 13. 如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为85.,第13题图) ,第14题图) ,第16题图)14. 如图,已知长方形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE 的长为78cm .15. 李明从家出发向正北方走了1200 m ,接着向正东方向走到离家2000 m 的地方,则李明向正东方向走了1600m .16. 如图,一块砖的宽AN =5 cm ,长ND =10 cm ,CD 上的点B 距地面的高BD =8 cm .地面上A 处的一只蚂蚁要到B 处吃食,需要爬行的最短路径是17cm .三、解答题(一)(本大题共3小题,每小题6分,共18分)17. 如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,求AB 的长和△ABC 的周长.解:由勾股定理得AB 2=AC 2+BC 2=32+42=52,所以AB =5,△ABC 的周长是AC +BC +AB =3+4+5=1218. 如图,∠C =90°,AM =CM ,MP ⊥AB 于点P ,求证:BM 2=AP 2+BC 2+PM 2.证明:因为BM 2=BC 2+CM 2,CM =AM ,所以BM 2=BC 2+AM 2.又AM 2=AP 2+PM 2,所以BM 2=BC 2+AP 2+PM 219. 如图,在△ABC 中,AB =20,AC =15,AD 为BC 边上的高,且AD =12,求△ABC 的周长.解:因为AD 为BC 边上的高,所以∠ADB =∠ADC =90°,在Rt △ABD 中,AB =20,AD =12,所以BD 2=AB 2-AD 2,即BD =16,在Rt △ADC 中,AC =15,AD =12,所以DC 2=AC 2-AD 2,即DC =9,所以BC =25,所以△ABC 的周长是60四、解答题(二)(本大题共3小题,每小题7分,共21分)20. 如图,已知∠ADC =90°,AD =8,CD =6,AB =26,BC =24. (1)证明:△ABC 是直角三角形. (2)请求图中阴影部分的面积.解:(1)因为在Rt △ADC 中,∠ADC =90°,AD =8,CD =6,所以AC 2=AD 2+CD 2=82+62=100,所以AC =10.在△ABC 中,因为AC 2+BC 2=102+242=676,AB 2=262=676,所以AC 2+BC 2=AB 2,所以△ABC 为直角三角形 (2)S 阴影=S △ABC -S △ACD =12×10×24-12×8×6=9621. 如图,小明的家位于一条南北走向的河流MN 的东侧A 处,某一天小明从家出发沿南偏西30°方向走60 m 到达河边B 处取水,然后沿另一方向走80 m 到达菜地C 处浇水,最后沿第三方向走100 m 回到家A 处.问小明到河边B 处取水后是沿哪个方向行走的?并说明理由.解:因为AB =60,BC =80,AC =100,所以AB 2+BC 2=AC 2,∠ABC =90°.因为AD ∥NM ,所以∠NBA =∠BAD =30°,所以∠MBC =180°-90°-30°=60°,所以小明在河边B 处取水后是沿南偏东60°方向行走的22. 学校要征收一块土地,形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7米,土地价格为1000元/平方米,请你计算学校征收这块地需要多少元?解:连接AC ,在△ABC 中,∠B =90°,AB =20,BC =15.由勾股定理得:AC 2=AB 2+BC 2=202+152=625.在△ADC 中,∠D =90°,CD =7,由勾股定理得:AD 2=AC 2-CD 2=625-72=576,AD =24,所以四边形的面积为12AB ·BC +12CD ·AD =234(平方米),234×1000=234000(元),所以学校征收这块地需要234000元五、解答题(三)(本大题共3小题,每小题9分,共27分)23. 如图,△ABC 的面积为84,BC =21,现将△ABC 沿直线BC 向右平移a(0<a <21)个单位到△DEF 的位置.(1)求BC 边上的高; (2)若AB =10,①求线段DF 的长;②连接AE ,当△ABE 时等腰三角形时,求a 的值.解:(1)作AM ⊥BC 于M ,因为△ABC 的面积为84,所以12BC ·AM =84,解得AM =8,即BC 边上的高为8(2)①在Rt △ABM 中,BM 2=AB 2-AM 2,所以BM =6,所以CM =BC -BM =15,在Rt △ACM 中,AC 2=AM 2+CM 2,所以AC =17,由平移的性质可知,DF =AC =17;②当AB =BE =10时,a =BE =10;当AB =AE =10时,BE =2BM =12,则a =BE =12;当EA =EB =a 时,ME =a -6,在Rt △AME 中,AM 2+ME 2=AE 2,即82+(a -6)2=a 2,解得a =253,则当△ABE 时等腰三角形时,a 的值为10或12或25324. 我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是12(9-1),12(9+1);勾是五时,股和弦的算式分别是12(25-1),12(25+1).根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含n(n 为奇数,且n ≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m 为偶数,且m >4)的代数式来表示股和弦.解:(1)12(72-1),12(72+1) (2)当n ≥3,且n 为奇数时,勾、股、弦分别为:n ,12(n 2-1),12(n 2+1),它们之间的关系为:①弦-股=1,②勾2+股2=弦2,如证明①,弦-股=12(n 2+1)-12(n 2-1)=12n 2+12-12n 2+12=1 (3)当m>4,且m 为偶数时,股、弦分别为:(m 2)2-1,(m2)2+125. 如图,在△ABC 中,AC =BC ,∠ACB =90°,点D ,E 是直线AB 上两点.∠DCE =45°. (1)当CE ⊥AB 时,点D 与点A 重合,求证:DE 2=AD 2+BE 2; (2)当点D 不与点A 重合时,求证:DE 2=AD 2+BE 2;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.解:(1)因为CE ⊥AB ,所以AE =BE ,因为点D 与点A 重合,所以AD =0,所以DE 2=AD 2+BE 2 (2)如图①,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠ACB =90°,∠DCE =45°,所以∠ACD +∠BCE =∠ACB -∠DCE =90°-45°=45°,因为∠ACF =∠BCE ,所以∠ACD +∠ACF =45°,即∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2(3)结论仍然成立.理由:如图②,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠BCE +∠ACE =90°,所以∠ACF +∠ACE =90°,即∠FCE =90°,因为∠DCE =45°,所以∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2。
苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)

苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)(2)

一、选择题1.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 2.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 3.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 4.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 5.下列长度的线段能组成三角形的是( ) A .2,3,5B .4,6,11C .5,8,10D .4,8,4 6.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 7.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒8.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 9.如图,直线//,65,30AB CD AE ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°10.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 11.以下列各组线段为边,能组成三角形的是( ) A .1,2,3B .2,3,4C .2,5,8D .6,3,3 12.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8 二、填空题13.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线14.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.15.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.16.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.17.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.19.如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .20.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF =∠CFE .(2)如图2,过点E 作EG ⊥AB 于点G ,请直接写出图中与∠CAE 互余的所有角.23.如图ABC 中,45B ∠=︒,70ACB ∠=︒,AD 是ABC 的角平分线,F 是AD 上一点EF AD ⊥,交AC 于E ,交BC 的延长线于G .求G ∠的度数.24.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.25.(1)已知△ABC 中,∠B=5∠A ,∠C-∠B=15°,求∠A ,∠B ,∠C 的度数. (2)在△ABC 中,∠A=50°,BD ,CE 为高,直线BD ,CE 交于点H ,求∠BHC 的度数. 26.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D .【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.2.C解析:C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质3.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A 、1+2=3,故以这三根木棒不能构成三角形,符合题意;B 、2+3>4,故以这三根木棒能构成三角形,不符合题意;C 、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D 、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.4.D解析:D【分析】将一个多边形纸片剪去一个内角可以多三种情况比原多边形边数少1,不变,多1,利用内角和公式求出内角的和与外角关系即可求出.【详解】如图将一个多边形纸片剪去一个内角∠BCF 后,多边形的边数和原多边形边数相同为n ,()21804360n-⨯︒=⨯︒,n=10,如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数比原多边形边数少1为n-1,()n--⨯︒=⨯︒,121804360n=11,如图将一个多边形纸片剪去一个内角∠GCF后,多边形的边数比原多边形边数多1为n+1,()n-⨯︒=⨯︒,+121804360n=9,原多边形的边数为9,10,11.故选择:D.【点睛】本题考查多边形剪去一个角问题,掌握剪去一个角后对多边形的边数分类讨论是解题关键.5.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、2+3=5,不能组成三角形,不符合题意;B 、4+6<11,不能组成三角形,不符合题意;C 、5+8>10,能组成三角形,符合题意;D 、4+4=8,不能够组成三角形,不符合题意.故选:C .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m ,则5-2<x <5+2即3<x <7,∴当x=5时,能与2m 、5m 长的两根木棒钉成一个三角形,故选:C .【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.7.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.8.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C .【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.9.B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键. 10.A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A 时,一共走了8×9=72(m ).故选:A .【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.11.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.12.D解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.二、填空题13.11【分析】先根据题意求出多边形的边数再根据从n边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n,则有(n-2)•180+360=2520,解得:n=14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.14.25°【分析】先求出∠A的度数再根据折叠的性质可得∠E的度数根据平行线的性质求出∠ADE的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A的度数,再根据折叠的性质可得∠E的度数,根据平行线的性质求出∠ADE的度数,进而即可求解.∵90,50ACB B ︒︒∠=∠=,∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,∵//CE AB ,∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键. 15.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.16.2<a <12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(解析:2<a <12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(7+5),即2<a【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.17.72【分析】由∠CAD=3∠BAD∠ABE=3∠CBE∠BCF=3∠ACF易得各角与∠ABC∠ACB∠BAC之间的关系由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论【详解】解:∵∠CAD解析:72【分析】由∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF易得各角与∠ABC、∠ACB、∠BAC之间的关系,由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论.【详解】解:∵∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,∴∠CAD=34∠BAC,∠BAD=14∠BAC,∠ABE=34∠ABC,∠CBE=14∠ABC,∠BCF=34∠ACB,∠ACF=14∠ACB.∵∠DFE=60°、∠FDE=53°、∠FED=67°,∴1360 441353441367 44BAC ABCABC ACBACB BAC⎧∠+∠=⎪⎪⎪∠+∠=⎨⎪⎪∠+∠=⎪⎩,解得∠BAC=72°,∠ABC=56°,∠ACB=52°,故答案为:72.【点睛】本题考查了三元一次方程组的应用,以及三角形外角的性质.解题的关键是由外角的性质列出方程组.本题属于中档题,难度不大,但在角的变化上稍显繁琐,一不注意就易失分,做形如此类题型时,牢牢把握等量关系是关键.18.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.10【分析】依据AE 是△ABC 的边BC 上的中线可得CE=BE 再根据AE=AE △ACE 的周长比△AEB 的周长多2cm 即可得到AC 的长【详解】解:∵AE 是△ABC 的边BC 上的中线∴CE=BE 又∵AE=A解析:10【分析】依据AE 是△ABC 的边BC 上的中线,可得CE=BE ,再根据AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,∴CE=BE ,又∵AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC-AB=2cm ,即AC-8=2cm ,∴AC=10cm ,故答案为:10;【点睛】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.20.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.三、解答题21.28°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠BAD 的度数,在△ABD 中,利用三角形外角性质可求出∠PDE 的度数,再在△PDE 中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠,1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.(1)见解析;(2)图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【分析】(1)根据角平分线的定义可得∠DAF =∠CAE ,再根据等角的余角相等、对顶角相等,可得∠CEF =∠CFE ;(2)根据互余的两个角的和为90°求解即可.【详解】(1)证明:∵∠ACB ═90°,CD ⊥AB ,∴∠DAF +∠AFD =90°,∠CAE +∠CEF =90°,又∵AE 是∠CAB 的角平分线,∴∠DAF =∠CAE ,∴∠AFD =∠CEF ,又∵∠AFD =∠CFE ,∴∠CEF =∠CFE ;(2)∵EG ⊥AB 于点G ,∴∠DAF +∠GEA =90°,由(1)可知∠DAF =∠CAE ,∠CAE +∠CEF =90°,∠CEF =∠CFE =∠DFA ,∴图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【点评】本题考查了角平分线的定义和余角的定义,解决本题的关键是熟记余角的定义.23.12.5【分析】根据角平分线的定义以及三角形的内角和定理即可得出∠ADC的度数,再根据垂直定义以及三角形的内角和即可得出∠G的度数.【详解】解:∵∠B=45°,∠ACB=70°,AD是ABC的角平分线,∴∠BAC=2∠CAD=65°,∴∠ADC=180°﹣70°﹣32.5°=77.5°,∵EF⊥AD,∴∠G=180°﹣90°﹣77.5°=12.5°.【点睛】本题主要考查了三角形的内角和定理以及角平分线的定义,难度适中.24.110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.25.(1)∠A=15°,∠B=75°,∠C =90°;(2)130°【分析】(1)将∠C用∠A表示,然后利用三角形内角和即可求解∠A,然后在依次求出∠B,∠C 即可;(2)根据题意作出示意图,然后根据四边形内角和即可求出∠DHE,根据对顶角相等即可求解∠BHC.【详解】(1)∵∠C-∠B=15°,即∠C =15°+∠B又∵∠B=5∠A∴∠C =15°+5∠A∵∠A+∠B+∠C=180°∴∠A+5∠A +15°+5∠A =180°解得∠A=15°∴∠B=75°,∠C =90°∴∠A=15°,∠B=75°,∠C =90°(2)根据题意作出下图,∵BD AC ⊥,CE AB ⊥∴∠BDA =90°,∠CEA=90°∵在四边形AEHD 中,∠A+∠HDA+∠HEA+∠DHE =360°∴∠DHE=360°-∠A-∠HAD-∠HEA=360°-50°-90°-90°=130°∴∠BHC=∠DHE=130°∴∠BHC =130°.【点睛】本题考查了三角形的内角和和四边形内角和,重点是熟记多边形内角和公式.26.这个多边形的边数是9【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n 边形的内角和可以表示成(n−2)•180°,设这个多边形的边数是n ,就得到方程,从而求出边数.【详解】设这个多边形的边数为n ,根据题意,得(n−2)•180=360×3+180,解得:n =9.则这个多边形的边数是9.【点睛】此题考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.。
八年级上册数学 第一、二单元测试

初二数学第一、二单元测试一、选择题。
(每题3分,共30分)1.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A. 7B.8C.9D.102.如图AD,CE是△ABC的两条高,已知AD=10,CE=9,AB=12,则BC的长是( ).A.10B.10. 8C.12D. 153.在平面直角坐标系中,已知A(2,0),B(-3,一4),C(0,0),则△ABC的面积为( ).A.4B. 6C.8D. 34.在△ABC中,∠A,∠B, ∠C的度数之比为2:3:4.则∠B的度数为( ).A. 120°B. 80°C.60°D.40°5.如图,在△ABC中. ∠B+∠C=120°,AD平分∠BAC.交BC于点D,DE//AB,交AC于点 E,则∠ADE的大小是( ).A. 30°B.40°C.50°D.60°6.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35° ,∠ACE=60°,则∠A的度数为( )A.50°B. 60°C.70°D.85°7.一个多边形的每个内角都是108°,那么这个多边形是( ).A.五边形B.六边形C.七边形D.八边形8.如图△ABC≌△ADE.如果AB=5cm.BC=7cm,AC=6cm,那么DE的长是( ).A.6cmB.5cmC.7cmD.无法确定9. 如图,AB= AC.添加下列条件,能用SAS判断△ABE≌△ACD的是( ).A.∠B=∠CB.∠AEB =∠ADCC.AE=ADD.BE=DC10.如图,在△ABC中,∠C= 90°,AD是∠BAC的平分线,DE⊥AB于点E,若DE=8cm, DB=10cm,则BC等于( ).A. 14 cmB. 16 cmC.18 cmD. 20cm二、填空题。
八年级上册第一单元数学测试卷

八年级数学上第一单元测试题1一.选择题(10小题每题4分,共40分)1.如图AE∥DF和AE=DF.要使△EAC≌△FDB,可添加的条件是()A.∠E=∠F B.EC=BF C.∠A=∠D D.BC=CD 2.如图△ABC≌△DCB若AC=6且DE=2,则BE的长为()A.3B.6C.2D.43.如图所示AB=AC和AD=AE和∠BAC=∠DAE和∠1=20°和∠2=25°,则∠3的度数为()A.30°B.45°C.50°D.60°4.如图△ABC≌△ADE中∠B=30°且∠E=115°,则∠BAC的度数是()A.35°B.30°C.45°D.25°5.如图在△ABC中AD⊥BC于点D和BE⊥AC于点E且AD和BE 交于点F,已知DF=DC=4且AF=3则BC的长为()A.7B.192C.11D.2526.如图△ABC≌△DBC和∠A=34°和∠ACD=72°,则∠DBC的度数是()A.110°B.105°C.64°D.100°7.如图△ABC≌△DEC且AF⊥CD.若∠BCE=65°那么∠CAF的度数为()8.如图△ABC≌△ADE和∠CAE=90°和AB=2,则图中阴影部分的面积为()A.2B.3C.4D.无法确定9.如图△ABC≌△DEC zh点E在AB上且AC与DE相交于点F和∠BCE=30°.则∠CED的度数为()A.30°B.40°C.60°D.75°10.如图在△ABD中AB=AD和点C是BD上一点和过点C作∠ACE =∠B交AD于点F,连接AE和CE且AE=AC,则下列结论正确的个数是()①BC=DE;②∠ACB=∠CFD;③∠CED=∠CAD;④CD=DE.A.1个B.2个C.3个D.4个二.填空题(10小题每题4分,共40分)11.如图线段AE和DB交于点C和∠A=∠D,请你添加一个条件.(只填一个即可),使△ABC≌△DEC.12.如图已知∠A=∠D要使△ABO≌△DCO,可添加的条件是.13.已知△ABC≌△ADE且AB=5cm和BC=8cm则DE的长为cm.14.如图OB为∠ABC的角平分线且AO⊥BO于点O,连接OC和△OBC的面积为12,则△ABC的面积为.15.如图已知△ABC≌△ADE中∠DAC=60°且∠BAE=100°,BC 和DE相交于点F则∠DFB的度数是度.16.如图在△ADB和△CBD中已知∠ADB=∠DBC和AD=BC那么由所给条件判定△ADB和△CBD全等的依据可以简写为.17.如图∠B=∠C,若用“SAS”说明△ABE≌△ACD则还需要加上条件:.18.如图点C在线段AB上(不与点A,B重合)且在AB的上方分别作△ADC和△BCE且AC=DC和BC=EC和∠ACD=∠BCE=α连接AE和BD交于点P,下列结论正确的是(填序号).①AE=BD;②PC平分∠APB;③PC平分∠DCE;④∠APB=180°﹣α.19.如图△ABC≌△DEF且点B和E在CF上.若CF=8和BE=4,则CE的长为.20.如图∠ACB=90°和AC=BC和AD⊥CE和BE⊥CE,垂足分别是点D和E,AD=3且BE=1,则DE的长是.一.解答题(6小题,每题10分共60分)1.如图已知AB∥CF且点E是AC的中点,直线FE交AB于点D.(1)求证:△ADE≌△CFE;(2)若AB=9和CF=5求BD的长.4.已知:如图点A和B和C和D在一条直线上,且CE=DF与AE=BF 与AB =CD .求证:△EAC ≌△FBD .7.把下列证明过程补充完整.已知:如图AC =AD 和∠C =∠D 和∠1=∠2.求证:AB =AE .证明:∵∠1=∠2,∴∠1+∠ =∠2+∠ ,∴∠ =∠EAD .在△ABC 和△AED 中,{∠C =∠DAC =AD∠()=∠EAD∴△ABC ≌△AED ( ),∴AB =AE .( )10.如图AB =AC .(1)请补充一个条件,使△ABE≌△ACD.(2)在(1)的条件下,OB=OC吗?为什么?13.如图∠A=∠B和AE=BE且点D在AC边上yu∠1=∠2=42°且AE和BD相交于点O.求∠BDE的度数.16.如图∠A=∠D=90°和AC=BD且AC和BD交于点O.求证:AO =DO.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上第一单元测试题
一、选择题(每小题3分,共36分)
1、下列说法正确的是( )
A.有理数只是有限小数。
B.无理数是无限小数。
C.无限小数是无理数。
D.3
2
是分
数
2、81的平方根是( )
B.±9
C.3
D.±3 3、立方根等于本身的数是( )
A.-1
B.0
C.±1
D.±1或0 4、边长为1的正方形的对角线长是( ) A.整数 B.分数 C.有理数 D.无理数 5、下列说法错误的是( )
的平方根是1,B.-1的立方根是-.2是2的平方根。
D.-3是2)3( 的平方根
6.将写有字“B ”的字条正对镜面,则镜中出现的会是( )。
(A )B (B ) (C ) (D ) 7、下列四个图案
中,具有
一个共有性质。
则下面四个数字中,满足上述性质的一个是( )。
A 6 B 7 C 8 D 9 8、下列命题中,不正确的是( ) A 关于直线对称的两个三角形一定全等;
B 两个圆形纸片随意平放在水平桌面上构成轴对称图形;
C 若两图形关于直线对称,则对称轴是对应点所连线的垂直平分线;
D 等腰三角形一边上的高,中线及这边对角平分线重合。
9.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于 ( ) A .12 B .12或15 C .15 D .15或18 10.已知等腰三角形的一个外角等于100°,则它的顶角是 ( ) A .80° B .20° C .80°或20° D .不能确定 11.如图,已知∠AOB=40°,OM 平分∠AOB ,MA ⊥OA ,MB ⊥OB ,垂足 分别为A 、B 两点,则∠MAB 等于 ( ) A .50° B .40° C .30° D .20°
12.如图,DE 是△ABC 中边AC 的垂直平分线,若BC=18 cm ,AB=10 cm ,则△ABD 的周长为 ( ) A .16 cm B .28 cm C .26 cm D .18 cm
二、填空题(每小题3分,共21分)
13、一个正数的平方等于169,
则这个正数是 ,一个负数的平方等于
25
16
,这个负数是 ,一个数的平方等于6,则这个数是 .
14、-1的立方根是 27的立方根是 ,5的算术平方根是 .
15、化简:
3681= ,-2
)2
1(- = ,-33)3(- =
16、64
的立方根是 平方根是 平方是 。
17、比较大小:8 7,5
3
10 2
2
1
π 。
18、等腰三角形腰上的高与另一腰的夹角为40度,则这个等腰三角形的顶角为 度
19、如图,△ABC 中,AB=AC ,∠A=36°AB 的中垂线DE 交AC 于D ,交AB 于E ,下述结论:(1)BD 平分∠ABC ;(2)AD=BD=BC ;(3)△BCD 的周长等于AB +BC ;(4)D 是AC 中点。
其中正确的命题序号是_________________。
三、、解答题
20、(12)如图,根据要求回答下列问题:
解:(1)点A 关于x 轴对称点的坐标是 ;
点B 关于y 轴对称点的坐标是 ;
(2)作出与△ABC 关于x 轴对称的图形(不写作法,保留作图痕
迹)
21、(10)在△ABC 中,∠C =90°,DE 垂直平分斜边AB ,分别交AB ,BC 于D ,E 。
若
∠CAE =∠B +30°,求∠AEB 。
E
D
C
A
22、(10)已知AB=AC,BD=DC,AE平分∠FAC,问:AE与AD是否垂直为什么
23、(9)以“,△△,―――”(即两个圆,两个三角形,三条线段)为条件画出一个有实际意义的对称图形。
24.(10)下面是数学课堂上的一个学习片段,阅读后,请回答后面的问题;
学习了等腰三角形的有关内容后,王老师请同学们回答这样一个问题:“已知等腰三角形ABC一个角的度数为30°,请你求出其他两个角。
”在与同学交流后,小明说:“其他两个角的度数分别是30°和120°."小梁说:“其他两个角的度数分别是75°和75°。
”还有一些同学也提出了不同看法······(1)假如你也在课堂上,你的意见如何为什么(2)通过对上面的数学问题的讨论,你有什么感受(用一句话表示)25.(12)在△ABC中,AB=AC, ∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
(1)试猜想∠MAN的大小并说明理由。
(2)试证:BM=MN=NC
M
E
N
A
B
A
B C D E
F。