数值计算方法上机实验报告
西南交通大学数值分析上机实验报告

数值分析上机实习报告学号:姓名:专业:联系电话:任课教师:序 (3)一、必做题 (4)1、问题一 (4)1.1 问题重述 (4)1.2 实验方法介绍 (4)1.3 实验结果 (5)2、问题二 (7)2.1 问题重述 (7)2.2 实验原理 (7)雅各比算法:将系数矩阵A分解为:A=L+U+D,则推到的最后迭代公式为: (8)2.3 实验结果 (8)二、选做题 (10)3、问题三 (10)3.1 问题重述 (10)3.2 实验原理 (10)3.3 实验结果 (11)总结 (11)序伴随着计算机技术的飞速发展,所有的学科都走向定量化和准确化,从而产生了一系列的计算性的学科分支,而数值计算方法就是解决计算问题的桥梁和工具。
数值计算方法,是一种研究并解决数学问题的数值近似解方法,是在计算机上使用的解数学问题的方法。
为了提高计算能力,需要结合计算能力与计算效率,因此,用来解决数值计算的软件因为高效率的计算凸显的十分重要。
数值方法是用来解决数值问题的计算公式,而数值方法的有效性需要根据其方法本身的好坏以及数值本身的好坏来综合判断。
数值计算方法计算的结果大多数都是近似值,但是理论的严密性又要求我们不仅要掌握将基本的算法,还要了解必要的误差分析,以验证计算结果的可靠性。
数值计算一般涉及的计算对象是微积分,线性代数,常微分方程中的数学问题,从而对应解决实际中的工程技术问题。
在借助MA TLAB、JA V A、C++ 和VB软件解决数学模型求解过程中,可以极大的提高计算效率。
本实验采用的是MATLAB软件来解决数值计算问题。
MA TLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,其对解决矩阵运算、绘制函数/数据图像等有非常高的效率。
本文采用MATLAB对多项式拟合、雅雅格比法与高斯-赛德尔迭代法求解方程组迭代求解,对Runge-Kutta 4阶算法进行编程,并通过实例求解验证了其可行性,使用不同方法对计算进行比较,得出不同方法的收敛性与迭代次数的多少,比较各种方法的精确度和解的收敛速度。
数值代数上机实验报告

数值代数上机实验报告试验项目名称:平方根法与改进平方根法实验内容:先用你熟悉的计算机语言将平方根法和改进平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组Ax=b,其中,A=[101 10 1…1 10 11 10]100*100b随机生成,比较计算结果,评论方法优劣。
实验要求:平方根法与改进的平方根的解法步骤;存储单元,变量名称说明;系数矩阵与右端项的生成;结果分析。
实验报告姓名:罗胜利班级:信息与计算科学0802 学号:u200810087 实验一、平方根法与改进平方根法先用你所熟悉的计算机语言将平方根法和改进的平方根法编成通用的子程序,然后用你编写的程序求解对称正定方程组AX=b,其中系数矩阵为40阶Hilbert矩阵,即系数矩阵A的第i行第j列元素为=,向量b的第i个分量为=.平方根法函数程序如下:function [x,b]=pingfanggenfa(A,b)n=size(A);n=n(1);x=A^-1*b; %矩阵求解disp('Matlab自带解即为x');for k=1:nA(k,k)=sqrt(A(k,k));A(k+1:n,k)=A(k+1:n,k)/A(k,k);for j=k+1:n;A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k);endend %Cholesky分解for j=1:n-1b(j)=b(j)/A(j,j);b(j+1:n)=b(j+1:n)-b(j)*A(j+1:n,j);endb(n)=b(n)/A(n,n); %前代法A=A';for j=n:-1:2b(j)=b(j)/A(j,j);b(1:j-1)=b(1:j-1)-b(j)*A(1:j-1,j);endb(1)=b(1)/A(1,1); %回代法disp('平方根法的解即为b');endfunction [x]=ave(A,b,n) %用改进平方根法求解Ax=b L=zeros(n,n); %L为n*n矩阵D=diag(n,0); %D为n*n的主对角矩阵S=L*D;for i=1:n %L的主对角元素均为1L(i,i)=1;for i=1:nfor j=1:n %验证A是否为对称正定矩阵if (eig(A)<=0)|(A(i,j)~=A(j,i)) %A的特征值小于0或A非对称时,输出wrong disp('wrong');break;endendendD(1,1)=A(1,1); %将A分解使得A=LDL Tfor i=2:nfor j=1:i-1S(i,j)=A(i,j)-sum(S(i,1:j-1)*L(j,1:j-1)');L(i,1:i-1)=S(i,1:i-1)/D(1:i-1,1:i-1);endD(i,i)=A(i,i)-sum(S(i,1:i-1)*L(i,1:i-1)');endy=zeros(n,1); % x,y为n*1阶矩阵x=zeros(n,1);for i=1:ny(i)=(b(i)-sum(L(i,1:i-1)*D(1:i-1,1:i-1)*y(1:i-1)))/D(i,i); %通过LDy=b解得y的值endfor i=n:-1:1x(i)=y(i)-sum(L(i+1:n,i)'*x(i+1:n)); %通过L T x=y解得x的值改进平方根法函数程序如下:function b=gaijinpinfanggenfa(A,b)n=size(A);n=n(1);v=zeros(n,1);for j=1:nfor i=1:j-1v(i)=A(j,i)*A(i,i);endA(j,j)=A(j,j)-A(j,1:j-1)*v(1:j-1);A(j+1:n,j)=(A(j+1:n,j)-A(j+1:n,1:j-1)*v(1:j-1))/A(j,j);end %LDL'分解B=diag(A);D=zeros(n);for i=1:nD(i,i)=B(i);A(i,i)=1;EndA=tril(A); %得到L和Dfor j=1:n-1b(j)=b(j)/A(j,j);b(j+1:n)=b(j+1:n)-b(j)*A(j+1:n,j);endb(n)=b(n)/A(n,n); %前代法A=D*(A');for j=n:-1:2b(j)=b(j)/A(j,j);b(1:j-1)=b(1:j-1)-b(j)*A(1:j-1,j);endb(1)=b(1)/A(1,1); %回代法disp('改进平方根法解得的解即为b');end调用函数解题:clear;clc;n=input('请输入矩阵维数:');b=zeros(n,1);A=zeros(n);for i=1:nfor j=1:nA(i,j)=1/(i+j-1);b(i)=b(i)+1/(i+j-1);endend %生成hilbert矩阵[x,b]=pingfanggenfa(A,b) b=gaijinpinfanggenfa(A,b)运行结果:请输入矩阵维数:40Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 6.570692e-020. > In pingfanggenfa at 4In qiujie at 10Matlab自带解即为x平方根法的解即为bx =1.60358.96850.85621.01950.9375-50.2500-3.0000-16.000024.0000-49.5000-30.000039.000022.0000-64.0000-12.00002.000010.2500-10.5000-1.0000-10.875083.000046.0000-98.0000-69.000068.000021.0000-50.7188-8.7500-8.0000 112.0000 6.0000 -68.7500 22.000044.0000 -28.0000 8.0000 -44.000012.0000b =1.0e+007 *0.0000-0.00000.0001-0.0004-0.00140.0424-0.29801.1419-2.73354.2539-4.30182.7733-1.19890.5406-0.36880.32850.4621-0.25130.05650.0000-0.00510.0071-0.0027-0.0031-0.00190.00090.0002-0.0002-0.00060.00040.0001-0.00020.00010.0000-0.00000.0000-0.0000-0.0000改进平方根法解得的解即为bb =1.0e+024 *0.0000-0.00000.0001-0.0012-0.0954 0.4208 -1.2101 2.0624 -1.0394 -3.3343 6.2567 -0.2463 -7.45942.80303.6990 0.7277 -1.7484 -0.4854 -3.6010 0.2532 5.1862 1.4410 0.8738 -4.5654 1.0422 4.0920 -2.7764 -2.2148 -0.8953 0.3665 4.8967 1.0416 0.1281-1.1902-2.83348.4610-3.6008实验二、利用QR分解解线性方程组:利用QR分解解线性方程组Ax=b,其中A=[16 4 8 4;4 10 8 4;8 8 12 10;4 4 10 12];b=[32 26 38 30];求解程序如下:定义house函数:function [v,B]=house(x)n=length(x);y=norm(x,inf);x=x/y;Q=x(2:n)'*x(2:n);v(1)=1;v(2:n)=x(2:n);if n==1B=0;elsea=sqrt(x(1)^2+Q);if x(1)<=0v(1)=x(1)-a;elsev(1)=-Q/(x(1)+a);endB=2*v(1)^2/(Q+v(1)^2);endend进行QR分解:clear;clc;A=[16 4 8 4;4 10 8 4;8 8 12 10;4 4 10 12]; b=[32 26 38 30];b=b';x=size(A);m=x(1);n=x(2);d=zeros(n,1);for j=1:n[v,B]=house(A(j:m,j));A(j:m,j:n)=(eye(m-j+1)-B*(v')*v)*A(j:m,j:n); d(j)=B;if j<m< p="">A(j+1:m,j)=v(2:m-j+1);endend %QR分解R=triu(A); %得到R D=A;I=eye(m,n);Q=I;for i=1:nD(i,i)=1;endH=tril(D);M=H';for i=1:nN=I-d(i)*H(1:m,i)*M(i,1:m);Q=Q*N;end %得到Qb=(Q')*b; %Q是正交阵for j=n:-1:2b(j)=b(j)/R(j,j);b(1:j-1)=b(1:j-1)-b(j)*R(1:j-1,j);endb(1)=b(1)/R(1,1); %回带法运行结果如下:R =18.7617 9.8072 15.7769 11.08640 9.9909 9.3358 7.53410 0 5.9945 9.80130 0 0 -0.5126Q =0.8528 -0.4368 -0.2297 -0.17090.2132 0.7916 -0.4594 -0.34170.4264 0.3822 0.2844 0.76890.2132 0.1911 0.8095 -0.5126b=1.000000000000001.000000000000010.9999999999999881.00000000000001实验三、Newton下山法解非线性方程组:3x-cos(yz)-=0,-81+sinz+1.06=0,exp(-xy)+20z+=0;要求满足数值解=满足或.定义所求方程组的函数:Newtonfun.mfunction F = Newtonfun(X)F(1,1)=3*X(1)-cos(X(2)*X(3))-1/2;F(2,1)=X(1)^2-81*(X(2)+0.1)^2+sin(X(3))+1.06;F(3,1)=exp(-X(1)*X(2))+20*X(3)+(10*pi-3)/3;End向量求导:Xiangliangqiudao.mfunction J=xiangliangqiudao()syms x y zX=[x,y,z];F=[3*X(1)-cos(X(2)*X(3))-1/2;X(1)^2-81*(X(2)+0.1)^2+sin(X(3))+1.06;exp(-X(1)*X(2))+20*X(3)+(10*pi-3)/3];J=jacobian(F,[x y z]);End代值函数:Jacobi.mfunction F=Jacobi(x)F=[ 3,x(3)*sin(x(2)*x(3)), x(2)*sin(x(2)*x(3));2*x(1), -162*x(2)-81/5,cos(x(3));-x(2)/exp(x(1)*x(2)),-x(1)/exp(x(1)*x(2)),20];End方程组求解:format long; %数据表示为双精度型X1=[0,0,0]';eps=10^(-8);k=1;i=1;X2=X1-Jacobi(X1)^(-1)*Newtonfun(X1);while (norm(subs(X2-X1,pi,3.1415926),2)>=eps)&&(norm(Newtonfun(X1),2)>=eps) if norm(Newtonfun(X2),2)<="" p="">X1=X2;B=inv(Jacobi(X2));C=Newtonfun(X2);X2=X2-B*C;i=i+1;elsev=1/(2^k); %引入下山因子X1=X2;B=inv(Jacobi(X2));C=Newtonfun(X2);X2=X2-v*B*C;k=k+1;endendj=i+k-1 %迭代次数X=X2 %输出结果运行结果如下:j =5X =0.500000000000000 -0.000000000000000 -0.523598775598299</m<>。
数值分析上机实验报告

实验报告一题目: (绪论) 非线性方程求解及误差估计摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。
本实验采用两种常见的求解方法二分法、Newton 法和改进的Newton 法。
可以节省计算机的计算时间,还能减小不必要的误差。
前言:(目的和意义)掌握二分法与Newton 法的基本原理、应用以及熟练掌握用MATLAB 求函数积分 数学原理:(1)函数的调用格式:quadl(filename,a,b,tol,trace)其中filename 是调用函数名,a 和b 分别为定积分的下限和上限。
用来控制积分精度。
(2)秦九韶算法: S n =a nS k =xS k+1+a k (k=n-1,n-2,...,0), P n (x)=S 0 程序设计:例1.1 计算积分de x xx110利用MATLAB ,下面给出主程序>>g=inline('x.^10.*exp(x-1)'); %定义一个语句函数g(x)=exp(x^10*exp(x-1)) I=quadl(g,0,1) I =0.0098例1.9 秦九韶算法a 0=3,a k=2a k-1+3,Pn(x)=a n x^n+a n-1x^(n-1)+...+a1x+a0求I1=P100(0.5),I2=P150(13)>>x=input('x=');n=input('n=');a=3;for i=1:na=2*a+3;ends=z;b=(a-3)/2;for m=1:100s=x*s+b;b=(b-3)/2;enddisp(s);>>x=0.5n=100600.0000>>x=3n=1004.7039e+078结果分析和讨论:结论:对于二分法,只要能够保证在给定的区间内有根,使能够收敛的,当时收敛的速度和给定的区间有关,二且总体上来说速度比较慢。
数值分析上机实习报告

指导教师:姓名:学号:专业:联系电话:上海交通大学目录序言 (3)实验课题(一) 雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (4)数值分析 (6)实验课题(二) 松弛因子对SOR法收敛速度的影响 (6)数值分析 (12)总结 (13)附录(程序清单) (14)1.雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (14)雅可比迭代法: (14)高斯-塞得尔迭代法: (16)2.松弛因子对SOR法收敛速度的影响 (18)松弛法(SOR) (18)序言随着科学技术的发展,提出了大量复杂的数值计算问题,在实际解决这些计算问题的长期过程中,形成了计算方法这门学科,专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的误差分析,是一门内容丰富,有自身理论体系的实用性很强的学科。
解决工程问题,往往需要处理很多数学模型,这就要花费大量的人力和时间,但是还有不少数学模型无法用解析法得到解。
使用数值方法并利用计算机,就可以克服这些困难。
事实上,科学计算已经与理论分析、科学实验成为平行的研究和解决科技问题的科学手段,经常被科技工作者所采用。
作为科学计算的核心内容——数值分析(数值计算方法),已逐渐成为广大科技工作者必备的基本知识并越来越被人重视。
由于数值方法是解数值问题的系列计算公式,所以数值方法是否有效,不但与方法本身的好坏有关,而且与数值问题本身的好坏也有关,因此,研究数值方法时,不但需要研究数值方法的好坏,即数值稳定性问题,而且还需要研究数值问题本身的好坏,即数值问题的性态,以及它们的判别问题。
数值计算的绝大部分方法都具有近似性,而其理论又具有严密的科学性,方法的近似值正是建立在理论的严密性基础上,根据计算方法的这一特点。
因此不仅要求掌握和使用算法,还要重视必要的误差分析,以保证计算结果的可靠性。
数值计算还具有应用性强的特点,计算方法的绝大部分方法如求微分方程近似解,求积分近似值,求解超越方程,解线性方程组等都具有较强的实用性,而插值法,最小二乘法,样条函数等也都是工程技术领域中常用的,有实际应用价值的方法。
(完整word版)计算方法A上机实验报告

计算方法A上机实验报告姓名:苏福班级:硕4020 学号:3114161019一、上机练习目的1)复习和巩固数值计算方法的基本数学模型,全面掌握运用计算机进行数值计算的具体过程及相关问题。
2)利用计算机语言独立编写、调试数值计算方法程序,培养学生利用计算机和所学理论知识分析解决实际问题的能力。
二、上机练习任务1)利用计算机语言编写并调试一系列数值方法计算通用程序,并能正确计算给定题目,掌握调试技能。
2)掌握文件使用编程技能,如文件的各类操作,数据格式设计、通用程序运行过程中文件输入输出运行方式设计等。
3)写出上机练习报告。
三、上机题目1. 共轭梯度法求解线性方程组。
(第三章)2. 三次样条插值(第四章)3. 龙贝格积分(第六章)4. 四阶龙格-库塔法求解常微分方程的初值问题四、上机报告题目1:共轭梯度法求解线性方程组1.算法原理共轭梯度法是把求解线性方程组的问题转化为求解一个与之等价的二次函数极小值的问题。
从任意给定的初始点出发,沿一组关于矩阵A共轭的方向进行线性搜索,在无舍入误差的假定下,最多迭代n 次(其中n 为矩阵A 的阶数),就可求得二次函数的极小值,也就求得了线性方程组Ax b =的解。
定理:设A 是n 阶对称正定矩阵,则x *是方程组Ax b =的解得充分必要条件是x *是二次函数1()2TT f x x Ax b x =-的极小点,即 ()()min nx R Ax b f x f x **∈=⇔=共轭梯度法的计算公式:(0)(0)(0)()()()()(1)()()(1)(1)(1)()()()(1)(1)()k T k k k T k k k k k k k k T k k k T k k k k k d r b Ax r d d Ad xx d r b Ax r Ad d Ad d r d ααββ++++++⎧==-⎪⎪=⎪⎪=+⎪⎨=-⎪⎪⎪=-⎪⎪=+⎩2. 程序框图(1)编写共轭梯度法求解对称正定矩阵的线性方程组见附录(myge.m):function x=myge(A,b)输入对称正定矩阵及对应的列向量,初始向量设为0,精度取为810 。
计算方法上机实验

1.拉格朗日插值多项式,用于离散数据的拟合#include <stdio.h>#include <conio.h>#include <alloc.h>float lagrange(float *x,float *y,float xx,int n) /*拉格朗日插值算法*/{ int i,j;float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项式*/a=(float *)malloc(n*sizeof(float));for(i=0;i<=n-1;i++){ a[i]=y[i];for(j=0;j<=n-1;j++)if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);yy+=a[i];}free(a);return yy;}main(){ int i,n;float x[20],y[20],xx,yy;printf("Input n:");scanf("%d",&n);if(n>=20) {printf("Error!The value of n must in (0,20)."); getch();return 1;} if(n<=0) {printf("Error! The value of n must in (0,20)."); getch(); return 1;} for(i=0;i<=n-1;i++){ printf("x[%d]:",i);scanf("%f",&x[i]);}printf("\n");for(i=0;i<=n-1;i++){ printf("y[%d]:",i);scanf("%f",&y[i]);}printf("\n");printf("Input xx:");scanf("%f",&xx);yy=lagrange(x,y,xx,n);printf("x=%f,y=%f\n",xx,yy);getch();}2.牛顿插值多项式,用于离散数据的拟合#include <stdio.h>#include <conio.h>#include <alloc.h>void difference(float *x,float *y,int n){ float *f;int k,i;f=(float *)malloc(n*sizeof(float));for(k=1;k<=n;k++){ f[0]=y[k];for(i=0;i<k;i++)f[i+1]=(f[i]-y[i])/(x[k]-x[i]);y[k]=f[k];}return;}main(){ int i,n;float x[20],y[20],xx,yy;printf("Input n:");scanf("%d",&n);if(n>=20) {printf("Error! The value of n must in (0,20)."); getch(); return 1;} if(n<=0) {printf("Error! The value of n must in (0,20).");getch(); return 1;} for(i=0;i<=n-1;i++){ printf("x[%d]:",i);scanf("%f",&x[i]);}printf("\n");for(i=0;i<=n-1;i++){ printf("y[%d]:",i);scanf("%f",&y[i]);}printf("\n");difference(x,(float *)y,n);printf("Input xx:");scanf("%f",&xx);yy=y[20];for(i=n-1;i>=0;i--) yy=yy*(xx-x[i])+y[i];printf("NewtonInter(%f)=%f",xx,yy);getch();}3.高斯列主元消去法,求解其次线性方程组第一种#include<stdio.h>#include <math.h>#define N 20int main(){ int n,i,j,k;int mi,tmp,mx;float a[N][N],b[N],x[N];printf("\nInput n:");scanf("%d",&n);if(n>N){ printf("The input n should in(0,N)!\n");getch();return 1;}if(n<=0){ printf("The input n should in(0,N)!\n");getch();return 1;}printf("Now input a(i,j),i,j=0...%d:\n",n-1); for(i=0;i<n;i++){ for(j=0;j<n;j++)scanf("%f",&a[i][j]);}printf("Now input b(i),i,j=0...%d:\n",n-1);for(i=0;i<n;i++)scanf("%f",&b[i]);for(i=0;i<n-2;i++){ for(j=i+1,mi=i,mx=fabs(a[i][j]);j<n-1;j++) if(fabs(a[j][i])>mx){ mi=j;mx=fabs(a[j][i]);}if(i<mi){ tmp=b[i];b[i]=b[mi];b[mi]=tmp;for(j=i;j<n;j++){ tmp=a[i][j];a[i][j]=a[mi][j];a[mi][j]=tmp;}}for(j=i+1;j<n;j++){ tmp=-a[j][i]/a[i][i];b[j]+=b[i]*tmp;for(k=i;k<n;k++)a[j][k]+=a[i][k]*tmp;}}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--){ x[i]=b[i];for(j=i+1;j<n;j++)x[i]-=a[i][j]*x[j];x[i]/=a[i][i];}for(i=0;i<n;i++)printf("Answer:\n x[%d]=%f\n",i,x[i]); getch();return 0;}第二种#include<math.h>#include<stdio.h>#define NUMBER 20#define Esc 0x1b#define Enter 0x0dfloat A[NUMBER][NUMBER+1] ,ark;int flag,n;exchange(int r,int k);float max(int k);message();main(){float x[NUMBER];int r,k,i,j;char celect;clrscr();printf("\n\nUse Gauss.");printf("\n\n1.Jie please press Enter."); printf("\n\n2.Exit press Esc.");celect=getch();if(celect==Esc)exit(0);printf("\n\n input n=");scanf("%d",&n);printf(" \n\nInput matrix A and B:"); for(i=1;i<=n;i++){printf("\n\nInput a%d1--a%d%d and b%d:",i,i,n,i);for(j=1;j<=n+1;j++) scanf("%f",&A[i][j]);}for(k=1;k<=n-1;k++){ark=max(k);if(ark==0){printf("\n\nIt's wrong!");message();}else if(flag!=k)exchange(flag,k);for(i=k+1;i<=n;i++)for(j=k+1;j<=n+1;j++)A[i][j]=A[i][j]-A[k][j]*A[i][k]/A[k][k];}x[n]=A[n][n+1]/A[n][n];for( k=n-1;k>=1;k--){float me=0;for(j=k+1;j<=n;j++){me=me+A[k][j]*x[j];}x[k]=(A[k][n+1]-me)/A[k][k];}for(i=1;i<=n;i++){printf(" \n\nx%d=%f",i,x[i]);}message();}exchange(int r,int k){int i;for(i=1;i<=n+1;i++)A[0][i]=A[r][i];for(i=1;i<=n+1;i++)A[r][i]=A[k][i];for(i=1;i<=n+1;i++)A[k][i]=A[0][i];}float max(int k){int i;float temp=0;for(i=k;i<=n;i++)if(fabs(A[i][k])>temp){temp=fabs(A[i][k]);flag=i;}return temp;}message(){printf("\n\n Go on Enter ,Exit press Esc!");switch(getch()){case Enter: main();case Esc: exit(0);default:{printf("\n\nInput error!");message();} }}4.龙贝格求积公式,求解定积分#include<stdio.h>#include<math.h>#define f(x) (sin(x)/x)#define N 20#define MAX 20#define a 2#define b 4#define e 0.00001float LBG(float p,float q,int n){ int i;float sum=0,h=(q-p)/n;for (i=1;i<n;i++)sum+=f(p+i*h);sum+=(f(p)+f(q))/2;return(h*sum);}void main(){ int i;int n=N,m=0;float T[MAX+1][2];T[0][1]=LBG(a,b,n);n*=2;for(m=1;m<MAX;m++){ for(i=0;i<m;i++)T[i][0]=T[i][1];T[0][1]=LBG(a,b,n);n*=2;for(i=1;i<=m;i++)T[i][1]=T[i-1][1]+(T[i-1][1]-T[i-1][0])/(pow(2,2*m)-1);if((T[m-1][1]<T[m][1]+e)&&(T[m-1][1]>T[m][1]-e)){ printf("Answer=%f\n",T[m][1]); getch();return ;}}}5.牛顿迭代公式,求方程的近似解#include<stdio.h>#include<math.h>#include<conio.h>#define N 100#define PS 1e-5#define TA 1e-5float Newton(float (*f)(float),float(*f1)(float),float x0 ) { float x1,d=0;int k=0;do{ x1= x0-f(x0)/f1(x0);if((k++>N)||(fabs(f1(x1))<PS)){ printf("\nFailed!");getch();exit();}d=(fabs(x1)<1?x1-x0:(x1-x0)/x1);x0=x1;printf("x(%d)=%f\n",k,x0);}while((fabs(d))>PS&&fabs(f(x1))>TA) ;return x1;}float f(float x){ return x*x*x+x*x-3*x-3; }float f1(float x){ return 3.0*x*x+2*x-3; }void main(){ float f(float);float f1(float);float x0,y0;printf("Input x0: ");scanf("%f",&x0);printf("x(0)=%f\n",x0);y0=Newton(f,f1,x0);printf("\nThe root is x=%f\n",y0); getch();}。
数值计算方法上机实验报告
数值计算方法上机实验报告
一、实验目的
本次实验的主要目的是熟悉和掌握数值计算方法,学习梯度下降法的
原理和实际应用,熟悉Python语言的编程基础知识,掌握Python语言的
基本语法。
二、设计思路
本次实验主要使用的python语言,利用python下的numpy,matplotlib这两个工具,来实现数值计算和可视化的任务。
1. 首先了解numpy的基本使用方法,学习numpy的矩阵操作,以及numpy提供的常见算法,如矩阵分解、特征值分解等。
2. 在了解numpy的基本操作后,可以学习matplotlib库中的可视化
技术,掌握如何将生成的数据以图表的形式展示出来。
3. 接下来就是要学习梯度下降法,首先了解梯度下降法的主要原理,以及具体的实际应用,用python实现梯度下降法给出的算法框架,最终
可以达到所期望的优化结果。
三、实验步骤
1. 熟悉Python语言的基本语法。
首先是熟悉Python语言的基本语法,学习如何使用Python实现变量
定义,控制语句,函数定义,类使用,以及面向对象编程的基本概念。
2. 学习numpy库的使用方法。
其次是学习numpy库的使用方法,学习如何使用numpy库构建矩阵,学习numpy库的向量,矩阵操作,以及numpy库提供的常见算法,如矩阵分解,特征值分解等。
3. 学习matplotlib库的使用方法。
《数值计算方法》上机实验报告
《数值计算方法》上机实验报告华北电力大学实验名称数值il•算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一.各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程*对于非线性方程,若已知根的一个近似值,将在处展开成一阶xxfx ()0, fx ()xkk泰勒公式"f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2!忽略高次项,有,fxfxfxxx 0 ()()(),,, kkk右端是直线方程,用这个直线方程来近似非线性方程。
将非线性方程的**根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkkfx 0 fx 0 0,解出fX 0 *k XX,, k' fx 0 k水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ikfx ()k 八XX, Ikk* fx()k这就是牛顿迭代公式。
,2,计算机程序框图:,见,,3,输入变量、输出变量说明:X输入变量:迭代初值,迭代精度,迭代最大次数,\0输出变量:当前迭代次数,当前迭代值xkl,4,具体算例及求解结果:2/16华北电力大学实验报吿开始读入l>k/fx()0?,0fx 0 Oxx,,01* fx ()0XX,,,?10kk, ,1,kN, ?xx, 10输出迭代输出X输出奇异标志1失败标志,3,输入变量、输出变量说明: 结束例:导出计算的牛顿迭代公式,并il •算。
(课本P39例2-16) 115cc (0), 求解结果:10. 75000010.72383710. 72380510. 7238052、列主元素消去法求解线性方程组,1,算法原理:高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角3/16华北电力大学实验报告方程组求解。
数值分析上机实验报告
数值分析上机实验理学院11级统计01班41108030125鲁庆实验报告一一.实验名称误差与误差估计二.实验目的掌握数值运算的误差估计方法三.数学原理 1.绝对误差(*)e x设某一量的准确值为x ,近似值为x*,则x*与x 之差叫做近似值x*的绝对误差(简称误差),记为*(*)*e e x x x ==- 2.绝对误差限适当小的正数,使|(*)||*|*e x x x ε=-≤则称*ε为近似值 x * 的绝对误差限。
(有时用*x x ε*=±表示近似值x *的精度或准确值的所在范围。
3.相对误差(*)r e x绝对误差与准确值之比*(*)*(*),0r r e x x xe e x x x x-===≠称为x *的相对 误差。
4.相对误差限(*)r x ε若指定一个适当小的正数 (*)r x ε,使|(*)||(*)|(*)||r r e x e x x x ε=≤则称(*)r x ε为近似值 x *的相对误差限。
5.有效数字若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。
6.绝对误差的运算:)()()(2121x x x x εεε+=± )()()(122121x x x x x x εεε+≈22122121+=x x x x x x x )()()(εεε (f(x))()(x)f x εε'≈四.实验内容1. 计算I n=e 1-⎰10nxe x 2dx (n=0,1,...)并估计误差。
解: >> I0 = exp(-1)*quad('(x.^0).*exp(x.^2)',0,1,10^(-10));>> vpa(I0,10) ans =.5380795069>> I1= exp(-1)*quad('(x.^1).*exp(x.^2)',0,1,10^(-10)); >> vpa(I1,10) ans =.3160602794>> I2 = exp(-1)*quad('(x.^2).*exp(x.^2)',0,1,10^(-10)); >> vpa(I2,10) ans =.2309602465>> I3 = exp(-1)*quad('(x.^3).*exp(x.^2)',0,1,10^(-10)); >> vpa(I3,10) ans =.1839397206>> I4 = exp(-1)*quad('(x.^4).*exp(x.^2)',0,1,10^(-10)); >> vpa(I4,10) ans =.1535596302>> I5 = exp(-1)*quad('(x.^5).*exp(x.^2)',0,1,10^(-10)); >> vpa(I5,10) ans =.1321205588>> I6 = exp(-1)*quad('(x.^6).*exp(x.^2)',0,1,10^(-10)); >> vpa(I6,10) ans =.1161009245>> I7 = exp(-1)*quad('(x.^7).*exp(x.^2)',0,1,10^(-10)); >> vpa(I7,10) ans =.1036383235>> I8 = exp(-1)*quad('(x.^8).*exp(x.^2)',0,1,10^(-10)); >> vpa(I8,10) ans =.9364676413e-1>> I9 = exp(-1)*quad('(x.^9).*exp(x.^2)',0,1,10^(-10)); >> vpa(I9,10) ans =.8544670595e-1 2.计算x255的值。
计算方法与实习上机实验报告
计算方法与实习上机实验报告一、引言本文旨在介绍和展示我们在“计算方法”课程中的实习上机实验环节所完成的一些关键任务和所取得的成果。
该实验课程的目标是让我们更深入地理解和应用各种计算方法,并在实际操作中提高我们的编程和问题解决能力。
二、实验内容与目标实验的主要内容是利用各种计算方法解决实际数学问题。
我们被要求使用编程语言(如Python或Java)来实现和解决这些问题。
这些问题包括使用牛顿法求解平方根,使用蒙特卡洛方法计算圆周率,以及使用最优化方法求解函数的最小值等。
实验的目标不仅是让我们掌握计算方法的基本理论,更是要让我们能够在实际操作中运用这些方法。
我们需要在实习过程中,通过与同伴们合作,共同解决问题,提高我们的团队合作能力和问题解决能力。
三、实验过程与问题解决策略在实验过程中,我们遇到了许多问题,如编程错误、理解困难和时间压力等。
我们通过相互讨论、查阅资料和寻求教师帮助等方式,成功地解决了这些问题。
例如,在实现牛顿法求解平方根时,我们一开始对导数的计算和理解出现了一些错误。
但我们通过查阅相关资料和讨论,最终理解了导数的正确计算方法,并成功地实现了牛顿法。
四、实验结果与结论通过这次实习上机实验,我们不仅深入理解了计算方法的基本理论,还在实际操作中提高了我们的编程和问题解决能力。
我们的成果包括编写出了能有效求解平方根、计算圆周率和求解函数最小值的程序。
这次实习上机实验非常成功。
我们的团队不仅在理论学习和实践操作上取得了显著的进步,还在团队合作和问题解决方面积累了宝贵的经验。
这次实验使我们对计算方法有了更深的理解和认识,也提高了我们的编程技能和解决问题的能力。
五、反思与展望回顾这次实验,我们意识到在实验过程中,我们需要更好地管理我们的时间和压力。
在解决问题时,我们需要更有效地利用我们的知识和资源。
在未来,我们希望能够更加熟练地运用计算方法,并能够更有效地解决问题。
我们也希望能够将所学的计算方法应用到更广泛的领域中,如数据分析、科学研究和工业生产等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)算法原理:
用区间 内四个不同点上的函数值的线性组合就得到四阶龙格-库塔法。
四阶龙格-库塔法
其中, 均为待定系数。
类似于前面的讨论,把 分别在 点展开成 的幂级数,代入 并进行花间,然后与 在 点上的泰勒展开式比较,使其两式比较,使其两式右端直到 的系数相等,经过复杂的数学演算可得到关于 的一组特解
(4)具体算例及求解结果:
例:导出计算 的牛顿迭代公式,并计算 。(课本P39例2-16)
求解结果:
2、列主元素消去法求解线性方程组
(1)算法原理:
高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘一个方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上对上三角方程组求解。
从而得到下列常用的经典公式
经典的龙格-库塔法每一步需要4次计算函数值 ,它具有四阶精度,即局部截断误差是 。
(2)计算机程序框图:(见下页)
(3)输入变量、输出变量说明:
输入变量: 处置点, 区间长度, 计算次数
输出变量: 初值问题的数值解法结果
(4)具体算例及求解结果:
例:设取步长 ,从 到 ,用经典公式求解初值问题
0.2
1.184097
1.184097
0.7
1.562514
1.552514
0.3
1.266201
1.266201
0.8
1.616475
1.616474
0.4
1.343360
1.343360
0.9
1.678320
1.678166
0.5
1.416402
1.416402
1.0
1.737867
1.737867
例:根据给定的函数 的实例数据表,试用最小二乘法求二次拟合多项式。(课本P186习题3)
求解结果:
6、变步长梯形求积分
(1)算法原理:
设将积分区间 分成 等份,即有 个子区间,分点 ,其中步长
对于子区间 ,利用体型求其积分近似值
对于子区间 有
对于子区间 再取其中点
作新节点,此时区间数增加了一倍为 ,
输出变量: 解向量元素
(4)具体算例及求解结果:
例:用列选主元法求解下列线性方程组(课本P65例3-3)
求解结果:
3、 分解法求解线性方程组
(1)算法原理:
求解线性方程组 时,当对 进行 分解,则等价于求解 ,这时可归结为利用递推计算相继求解两个三角形(系数矩阵为三角矩阵)方程组,用顺代,由
求出 ,再利用回带,由 求出 。
华北电力大学
实验报告
|
|
实验名称数值计算方法》上机实验
课程名称数值计算方法
专业班级:电力实08学生姓名:李超然
学 号:200801001008成 绩:
指导教师:郝育黔老师实验日期:2010年04月
数值计算方法上机实验报告
一、各算法的算法原理及计算机程序框图
1、牛顿法求解非线性方程
(1)算法原理:
对于非线性方程 ,若已知根 的一个近似值 ,将 在 处展开成一阶泰勒公式
忽略高次项,有
右端是直线方程,用这个直线方程来近似非线性方程 。将非线性方程 的根 代入 ,即
解出
将右端取为 ,则 是比 更接近于 的近似值,即
这就是牛顿迭代公式。
(2)计算机程序框图:(见)
(3)输入变量、输出变量说明:
输入变量: 迭代初值, 迭代精度, 迭代最大次数
输出变量: 当前迭代次数, 当前迭代值
列选主元是当高斯消元到第 步时,从 列的 以下(包括 )的各元素中选出绝对值最大的,然后通过行交换将其交换到 的位置上。交换系数矩阵中的两行(包括常数项),只相当于两个方程的位置交换了,因此,列选主元不影响出变量说明:
输入变量: 系数矩阵元素, 常向量元素
称为改进欧拉公式。
(2)计算机程序框图:(见下页)
(3)输入变量、输出变量说明:
输入变量: 处置点, 区间长度, 计算次数
输出变量: 初值问题的数值解法结果
(4)具体算例及求解结果:
例:求解初值问题(课本P242例7-2)
求解结果:
0.1
1.095909
1.095909
0.6
1.485956
1.485955
求解结果:
5、最小二乘法的曲线拟合
(1)算法原理:
对于给定的一组数据 ,要在给定的函数空间
中找一个函数
使 满足
这种求拟合函数 的方法称为曲线拟合的最小二乘法, 称为最小二乘法的最小二乘解。
(2)计算机程序框图:
(3)输入变量、输出变量说明:
输入变量: 已知数据点
输出变量: 拟合多项式的系数
(4)具体算例及求解结果:
求解结果:
0.2
1.183229
1.183229
0.4
1.341667
1.341667
0.6
1.483281
1.483281
0.8
1.612514
1.612514
1.0
1.732142
1.732142
二、上机体验与收获
本次上机内容为牛顿法求解非线性方程、列主元素消去法求解线性方程组、LU分解法求解线性方程组、拉格朗日插值、最小二乘法的曲线拟合、变步长梯形求积分、改进欧拉方法求5解常微分方程的初值问题、四阶龙格-库塔法求解常微分方程的初值问题
对子区间 ,其积分近似值
对区间 有
(2)计算机程序框图:
(3)输入变量、输出变量说明:
输入变量: 积分区间, 精度
输出变量: 积分结果
(4)具体算例及求解结果:
例:用变步长梯形公式求积法计算 。(课本P209例6-13)
求解结果:
7、改进欧拉法
(1)算法原理:
当 取值较小时,让梯形法的迭代公式只迭代一次就结束。这样先用欧拉公式求得一个初步近似值 ,称之为预报值,预报值的精度不高,用它替代梯形法右端的 ,再直接计算得出 ,并称之为校正值,这时得到预报-校正公式。将预报-校正公式
由于 是一个关于 的 次多项式,所以 为关于 的不高于 次的代数多项式。当 时, ,满足插值条件。
(2)计算机程序框图:(见下页)
(3)输入变量、输出变量说明:
输入变量: 插值节点
输出变量: 插值所得到被插函数在插值点的近似值
(4)具体算例及求解结果:
例:已知 的值如下表所示。
的值
0
0
1
试用拉格朗日多项式计算 的估计值。
(2)计算机程序框图:(见下页)
(3)输入变量、输出变量说明:
输入变量: 系数矩阵元素, 常向量元素
输出变量: 解向量元素
(4)具体算例及求解结果:
例:用杜里特尔分解法求解方程组(课本P74例3-8)
求解结果:
4、拉格朗日插值法
(1)算法原理:
构造基函数 ,可以证明基函数满足下列条件:
,
对于给定 个节点, 次拉格朗日插值多项式由下式给出: