人教版六年级数学下册第二单元圆柱圆锥教案2
人教版六年级数学下册第二单元《圆柱与圆锥》导学习型教学案

人教版六年级数学下册第二单元《圆柱与圆锥》导学案第二单元:《圆柱与圆锥》单元备课一、学习目标:.认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
认识圆柱、圆锥的底面、侧面和高。
2.理解圆柱的表面积、侧面积、体积的意义。
掌握圆柱、圆锥体积公式的推导过程,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4.培养学生仔细观察、勤于动手、大胆联想、善于分析、总结归纳的好习惯。
二、本单元教材分析:本单元主要包括:圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。
本单元是在学习了长方体和立方体的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都比较高,因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。
同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。
教材在编写上遵循了“特征—表面—体”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱的表面积和体积的计算。
化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。
教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。
本单元在教学方法上的一个显著特点是让学生积极、主动地实践探究,要让学生合作探究的过程中自主发现规律,获取知识,提高研究问题和解决问题的能力。
三、教学重难点及突破措施:重点:理解、掌握圆柱和圆锥的基本特征。
会运用公式计算体积,解决有关的简单实际问题。
难点:圆柱、圆锥体积计算公式的推导。
突破措施:.加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。
2.让学生经历探索知识的过程,培养自主解决问题的能力。
四、课时安排:圆柱的认识课时圆柱的表面积课时圆柱的体积课时圆锥的认识课时圆锥的体积课时圆柱的表面积导学目标:、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
六年级数学下册 2 圆柱与圆锥教案 人教版

圆柱、圆锥复习活动课教学目的:1、通过学生在复习中的整理、练习,系统掌握圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系。
2、进一步提高运用知识解决实际问题的能力。
教学重点:系统整理,系统掌握圆柱和圆锥的基础知识。
教学过程:一. 出示课题,引人复习内容;同学们,今天这节课,我们来复习——圆柱和圆锥(板书课题)课件出示课题和活动板块。
二、知识整理(一)圆柱1.形体特征两个底面:圆形,面积相等。
侧面:长方形或正方形或平行四边形。
(说出与圆柱的关系如:长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高,长方形的面积相当于圆柱的侧面积。
)2.基本公式(板书)因为长方形的面积=长×宽所以圆柱侧面积=底面周长×高追问:给出半径的怎样计算?直径呢?(补充公式)圆柱的表面积=底面积×2+侧面积圆柱的体积=底面积×高(二)圆锥1.形体特征一个底面:圆形。
侧面:扇形。
圆锥的高:从圆锥的顶点到底面圆心的距离叫做高。
2.基本公式(板书)圆锥的体积= 底面积×高(补充:给出半径或直径的公式)(三)圆柱与圆锥的关系1、等底等高的圆柱和圆锥:圆锥体积是1份,圆柱是3份,相差2份。
2、体积相等,高相等:圆锥底面是圆锥的3倍。
3、体积相等,底面积相等:圆锥高是圆柱的3倍。
等底等高锥1份,柱3份,相差2份一共4份等积等高锥底是柱底的3倍等积等底锥高是柱高的3倍三、必答部分(一)补充完整:求表面积:S水桶=(底面积+侧面积)S油桶=(底面积×2+侧面积)S茶叶桶=(底面积×2+侧面积)S烟囱=(侧面积)(二)实际应用1、做一个圆柱形状的水桶,底面直径4分米,高5分米,需要多少平方分米的铁皮?2、圆柱体容器,底面周长18.84分米,高2分米,它的容积是多少?3、一个圆锥形状的沙堆,底面直径6米,高4米,这堆沙子有多少立方米?4、圆锥体积是25.12立方厘米,底面半径是2厘米,它的高是多少厘米?四、抢答部分1、甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱()A高一定相等 B侧面积一定相等 C侧面积和高都相等 D侧面积和高都不相等2 、一个圆锥的体积是5立方米,和它等底等高的圆柱体的体积是()立方米。
六年级数学《(圆柱、圆锥)单元备课》的教案

六年级数学《圆柱圆锥单元备课》的教案一、教学目标1. 知识与技能:(1)理解和掌握圆柱、圆锥的特征及它们之间的关系。
(2)学会用圆柱、圆锥的体积公式计算体积,并能解决实际问题。
(3)培养学生的空间想象能力和创新思维。
2. 过程与方法:(1)通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
(2)学会从不同角度分析问题,提高学生的逻辑思维能力。
3. 情感态度价值观:(1)培养学生热爱数学,乐于探究的精神。
(2)感受数学与生活的紧密联系,培养学生的应用意识。
二、教学内容1. 圆柱的特征2. 圆柱的表面积和体积计算3. 圆锥的特征4. 圆锥的体积计算5. 圆柱、圆锥在实际生活中的应用三、教学重点与难点1. 教学重点:(1)圆柱、圆锥的特征及其关系。
(2)圆柱、圆锥体积的计算方法。
2. 教学难点:(1)圆锥体积公式的推导过程。
(2)解决实际问题时,如何灵活运用圆柱、圆锥体积公式。
四、教学方法1. 采用问题驱动法,引导学生主动探究圆柱、圆锥的特征。
2. 利用实物模型、多媒体课件等直观教学手段,帮助学生建立空间想象能力。
3. 创设生活情境,让学生体验数学与生活的紧密联系。
4. 组织小组合作交流,培养学生团队协作能力。
五、教学课时本单元共需4课时,具体分配如下:1. 圆柱的特征(1课时)2. 圆柱的表面积和体积计算(1课时)3. 圆锥的特征(1课时)4. 圆锥的体积计算(1课时)5. 圆柱、圆锥在实际生活中的应用(1课时)六、教学过程1. 导入:通过复习相关平面图形的知识,如三角形、四边形等,引出立体图形的概念,进而引入圆柱和圆锥。
2. 新课学习:(1)圆柱的特征:让学生观察实物,引导学生发现圆柱的底面、高、侧面等特征,并通过多媒体课件展示圆柱的内部结构。
(2)圆柱的表面积和体积计算:讲解圆柱表面积和体积的计算公式,并进行例题讲解。
(3)圆锥的特征:让学生观察实物,引导学生发现圆锥的底面、高、侧面等特征,并通过多媒体课件展示圆锥的内部结构。
人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。
本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。
为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。
学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。
学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。
因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。
但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。
教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。
3、体会数学与生活的密切联系,感受探究成功的快乐。
教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。
难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。
教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。
4、引入:看来,同学们对于圆锥体的特征掌握得很好。
你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。
2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。
3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。
三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。
2.能运用圆锥的体积计算公式解决有关的实际问题。
过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。
情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。
重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。
难点:理解圆锥的体积计算公式的推导过程。
课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。
把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。
2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。
生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。
生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。
生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。
3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。
(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。
板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。
圆柱体 教案

② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米 (2)直径是3厘米
(3)半径是2分米 (4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
《圆柱与圆锥》教学设计
《圆柱与圆锥》教学设计第一篇:《圆柱与圆锥》教学设计教学目标:1、梳理圆柱与圆锥的特征、面积、体积计算公式,能灵活地根据问题情境,选择合理的方法进行计算。
2、沟通立体图形之间的内在联系,构建图形网格,使所学知识进一步条理化和系统化。
3、引导学生以类的观点去观察与分析图形,体会解决问题的乐趣,发展空间观念教学重点、难点:重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力。
教学准备:多媒体课件,圆柱、圆柱图片教学过程:一、梳理知识,构建体系1、导入师:认识这个图形吗?如果它的一个底面向圆心无限缩小到一个点的时候,它变成了什么图形?生:圆锥师:圆柱和圆锥之间有什么关系?圆柱和圆锥之间还有很多的奥秘和联系,今天我们继续学习圆柱和圆锥。
板书:圆柱与圆锥2、梳理汇报圆柱圆锥的知识(1)特征(观察平面图形与立体图形的关系)(2)表面积、侧面积(3)体积【设计意图:为了让学生整体、系统地感悟知识,形成良好的认知结构,疏通环节很重要,通过圆柱变圆锥,及平面图形与圆柱圆锥的关系,唤醒已有的知识、方法及经验,以“平移”“旋转”等方式在再现与强化立体图形的运动,很好地完成了对单元知识纵向和横向的结构化】二、变式应用1、根据情境选择合适的解决策略师:运用我们所整理的这些知识,能够解决很多生活中的实际问题。
请看下图:师:这是一个圆柱形的木桶。
根据图中的信息,你能不能提出一些实际问题呢?生提问题师总结问题,并解决问题师:生活中能不能直接使用这些数据来准备材料?小结:解决问题时要结合生活实际确定最合适的取值2、根据圆柱的动态变化解决问题师:我们继续奔跑,都说孩子们有天生的创造力,我给你们一个圆柱,你想怎样加工和创造呢?生罗列加工方法师根据加工方法提出数学问题师:联系我们解决的问题,你有什么体会小结:复杂的数学问题都是有简单的数学问题演变而来的。
小学六年级数学下册 第2单元 冰淇淋盒有多大--圆柱和圆锥 教案+说课稿 青岛版六三制
回顾整理教学内容义务教育课程标准实验教科书青岛版小学数学六年级下册29-31页。
教材简析“回顾整理”部分由上、下两部分组成。
上半部分是以学生对话的方式引发学生对圆柱和圆锥的有关知识进行回顾,并以表格的形式从圆柱和圆锥的特征、体积计算公式两方面进行整理。
下半部分以框图的形式呈现出圆柱体积计算公式的推导过程。
这样在注重“知识与技能”的同时,着力凸显了“过程与方法”。
旨在引导学生对圆柱和圆锥有关知识及研究问题的过程进行系统的回顾,从知识与方法等不同的角度,自主完成对圆柱和圆锥有关知识的整理和复习。
教学目标,1过引导学生回顾整理,加深学生对圆柱和圆锥的特征、圆柱的侧面积、表面积和圆柱、圆锥体积计算公式的理解,进一步将知识系统化,形成知识网络。
2主动参与数学知识的整理过程,经历系统整理和复习所学数学知识的过程。
3进一步经历数学知识的应用过程,提高应用所学数学知识解决简单实际问题的能力培养创新意识,在应用数学解决问题的过程中进一步体会数学的价值。
教学过程:一、情境激趣,回顾旧知谈话:同学们在本单元的学习过程中,我们借助平时大家喜欢吃的冰淇淋的包装盒认识了两种常见的立体图形——圆柱和圆锥,想一想通过本单元的学习,你都学到了哪些知识?有什么收获?咱们交流一下吧!(学生自由发言)[设计意图]学生自主对学过的知识进行回顾,激发学习热情,使学生很快进入学习状态。
二、合作整理、归网建构1、自主整理,初步归网谈话:刚才同学们回顾了我们学过的圆柱和圆锥的知识,下面你能用你喜欢的方式把这一单元的主要知识点整理出来吗?。
(整理时要全面、系统、有条理而且重点要突出。
)学生自主整理,师巡视指导。
2、组内交流,补充完善(在学生交流的过程中,教师巡视,把整理的有特色的教师要做到心中有数,便于稍后的交流。
)3、全班交流。
谈话:哪个小组愿意把你们合作整理的成果向大家展示一下?学生利用实物投影展示自己整理的成果。
展示的同时给大家介绍一下整理的内容。
圆柱圆锥教学设计王作芳
三、从实际生活入手,培养学生的思维能力,提高学习数学的兴趣和学好数学的信心。
【教学重点】
1.教学重点:掌握圆柱、圆锥的特征,知道各部分的名称。
2.教学难点:认识圆锥的高。
【教学准备】课件。
三、教材分析:
该信息窗呈现了学生在日常生活中经常接触到的圆柱和圆锥形的冰淇淋盒,引发学生提出“这些物体都是什么形状的”、“圆柱和圆锥各有什么特点”等问题,引入对圆柱、圆锥的认识。
(一)认识圆柱的特征
1、观察提出问题
谈话:,你想知道圆柱和圆锥有关它们的什么问题?
学生回答,学生可能提出如下问题:
①:我我想知道圆锥有几个面?
②:想知道圆柱有几个面?
③:我想知道圆柱、圆锥每个面的是什么形状?
④:我想知道圆柱的高在哪儿?
圆柱和圆锥各有什么特点?……
谈话:同学们提了这么多问题,今天这节课我们就先来认识一下圆柱、圆锥的特点,其它问题我们下一节课再来研究,好吗?
板书:底面2个完全相同的圆
侧面1个曲面
3、认识圆柱的高
教师出示两个高矮、粗细不同的圆柱,提问:你有什么发现?
圆柱为什么会有粗有细?使学生明确圆柱的底面大就粗。
圆柱为什么有高有矮?使学生知道圆柱的高不同。
出示圆柱实物,
谈话:那是圆柱的高,谁来指一指?
出示圆柱形塑料牙签筒
谈话:里面的牙签是不是牙签筒的高?每个牙签的长度怎样?想象一下,假如牙签细一些,再细一些,能装多少根?想一想圆柱的高有多少条?
谈话:你知道你的圆柱形茶筒有多高吗?
同桌合作动手量一量圆柱的高,记下测量数据,多量几条,你能发现什么?
教师巡视指导
六年级数学教案《圆柱和圆锥》
中小学课外辅导专家教师授课教案学生姓名授课教师姓名张老师所授科目数学学生年级六年级上课时间:年月日时分至时分教学标题:《圆柱和圆锥》教学目的与要求:二、教学探究目标:1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。
会推导表面积、侧面积、体积的公式,认识“进一法”取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理性的解决问题的能力。
教学重难点掌握圆柱与圆锥的特征及公式的运用(1)圆柱体与圆锥体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(3)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
上次作业检查结果:学生作业按时完成,作业质量达到老师的要求教学过程:一、复习引导:1、什么叫做圆?2、圆主要包括那些内容?3、圆的应用是什么?4、圆的运算过程是什么?5、圆和长方形正方形构成什么样的图形?二、导入新课:本节课所要讲的是本节课的知识点《圆柱和圆锥》A、圆柱的认识1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
如下图所示:即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3. 圆柱的侧面展开图:a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的定义
1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。
如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。
如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱的表面积
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积S:
S=2*S底+S侧
=2*πr2+CH
圆柱的体积
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h
如S为底面积,高为h,体积为V:v=sh
圆柱的侧面积
圆柱的侧面积=底面周长乘高S侧=Ch
注:c为πd
圆柱各部分的名称
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。
二、圆锥
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径。
把圆锥沿高分成k分
每份高h/k,
第n份半径:n*r/k
第n份底面积:pi*n^2*r^2/k^2
第n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以
V锥是与它等底等高的V柱体积的1/3
圆锥的表面积
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式
圆锥的侧面积=高的平方*π*百分之扇形的度数
圆锥的侧面积=1/2*母线长*底面周长
圆锥的表面积=底面积+侧面积S=πr的平方+πra (注a=母线)
圆锥的体积=1/3SH 或1/3πr的平方h
如果圆锥和他的扇形联系在一起那么n=a/r*360
圆锥的其它概念
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
不相等的圆柱圆锥不相等。