上师大高等数学下复习(2012.6.12) 同济大学第六版
同济六版高等数学(下)知识点整理

第八章1、向量在轴上的投影:性质:ϕcos )(a a u ϖϖ=(即Prj u ϕcos a a ϖϖ=),其中ϕ为向量a ϖ与u 轴的夹角;u u u b a b a )()()(ϖϖϖϖ+=+(即Prj u =+)(b a ϖϖPrj u a ϖ+ Prj u b ϖ);u u a a )()(ϖϖλλ=(即Prj u λλ=)(a ϖPrj u a ϖ).2、两个向量的向量积:设k a j a i a a z y x ϖϖϖϖ++=,k b j b i b b z y x ϖϖϖϖ++=,则=⨯b a ϖϖx x b a i ϖyy b a j ϖ z z b a kϖ=11)1(+-yy b az z b a i ϖ+21)1(+-x x b a zzb aj ϖ+31)1(+- x x b ayyb a k ϖ=k b a b a j b a b a i b a b a x y y x z x x z y z z y ϖϖϖ)()()(-+-+-注:a b b a ϖϖϖϖ⨯-=⨯3、二次曲面(1) 椭圆锥面:22222z by a x =+;(2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面:z ay x =+222(把把xOz 面上的抛物线z ax =22绕z 轴旋转))(3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122222=++cz a y x (把xOz 面上的椭圆12222=+cz a x 绕z 轴旋转))(4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122222=-+cz a y x (把xOz 面上的双曲线12222=-cz a x 绕z 轴旋转))(5) 双叶双曲面:1222222=--c z b y a x ; (旋转双叶双曲面:122222=+-c z y a x (把xOy 面上的双曲线12222=-cz a x 绕x 轴旋转)) (6) 双曲抛物面(马鞍面):z by a x =-2222;(7) 椭圆柱面:12222=+b y a x ; 双曲柱面:12222=-by a x ; 抛物柱面:ay x =24、平面方程(1) 平面的点法式方程:0)()()(000=-+-+-z z C y y B x x A ,其中),,(0000z y x M 是平面上一点,),,(C B A n =ϖ为平面的一个法向量.(2) 平面的一般方程:0=+++D Cz By Ax ,其中),,(C B A n =ϖ为平面的一个法向量.注:由平面的一般方程可得平面的一个法向量),,(C B A n =ϖ若D =0,则平面过原点;若⎩⎨⎧≠==轴,则平面平行于轴则平面过x D x D A 0,0,0若⎩⎨⎧≠===面,则平面平行于面,则平面表示,xOy D xOy D B A 000 (3) 平面的截距式方程:1=++czb y a x ,其中c b a ,,分别叫做平面在z y x ,,轴上的截距.5、两平面的夹角:222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ特殊:0212121=++⇔C C B B A A 两平面互相垂直 212121C C B B A A ==⇔两平面互相平行或重合 6、点),,000z y x P (到平面0=+++D Cz By Ax 的距离公式:222000CB A DCz By Ax d +++++=7、空间直线方程(1) 空间直线的一般方程:⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A(2) 空间直线的对称式(点向式)方程:pz z n y y m x x 000-=-=-,其中),,(p n m s =ϖ为直线的一个方向向量,),,(000z y x M 为直线上一点(3) 空间直线的参数方程:⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mt x x 0008、两直线的夹角:222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ特殊:0212121=++⇔p p n n m m 两直线互相垂直 212121p pn n m m ==⇔两直线互相平行或重合 9、直线与平面的夹角:222222sin pn m C B A Cp Bn Am ++⋅++++=ϕ特殊:pC n B m A ==⇔直线与平面垂直 直线与平面平行或在平面内:0=++Cp Bn Am 10、平面束的方程:设直线L 由方程组⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 所确定,其中222111,,,,C B A C B A 与不成比例,则平面0)(22221111=+++++++D z C y B x A D z C y B x A λ为通过直线L 的所有平面(不包含平面02222=+++D z C y B x A )第九章1、内点一定是聚点;边界点不一定是聚点2、二重极限存在是指),(y x P 以任何方式趋于),(000y x P 时,),(y x f 都无限接近于A ,因此当),(y x P 以不同方式趋于),(000y x P 时,),(y x f 趋于不同的值,那么这个函数的极限不存在3、偏导数:求x f∂∂时,只要把其他量),,(Λz y 看作常量而对x 求导数;求yf∂∂时,只要把其他量),,(Λz x 看作常量而对y 求导数; 注意:(1)偏导数都存在并不一定连续;(2)xz∂∂为整体,不可拆分;(3)分界点,不连续点处求偏导数要用定义求4、若函数),(y x f z =在点),(y x 可微分,则该函数在点),(y x 的偏导数x z ∂∂、yz∂∂必定存在,且函数),(y x f z =在点),(y x 的全微分为dy yz dx x z dz ∂∂+∂∂=5、若函数),(y x f z =的偏导数xz∂∂、y z ∂∂在点),(y x 连续,则函数在该点可微分 6、),(y x f 连续,偏导数不一定存在,偏导数存在,),(y x f 不一定连续; ),(y x f 连续,不一定可微,但可微,),(y x f 一定连续; 可微,偏导数一定存在,偏导数存在, ),(y x f 不一定可微; 可微,偏导数不一定都连续;偏导数都连续, ),(y x f 一定可微 7、多元复合函数的求导法则:(1)一元函数与多元函数符合的情形:若函数)(t u ϕ=及)(t v ψ=都在点t 可导,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)](),([t t f z ψϕ=在点t 可导,且有dtdvv z dt du u z dt dz ∂∂+∂∂= (2)多元函数与多元函数复合的情形:若函数),(y x u ϕ=及),(y x v ψ=都在点),(y x 具有对x 及对y 的偏导数,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 的两个偏导数都存在,且x v v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂;yvv z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ (3)其他情形:若函数),(y x u ϕ=在点),(y x 具有对x 及对y 的偏导数,函数)(y v ψ=在点y 可导,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)](),,([y y x f z ψϕ=在点),(y x 的两个偏导数都存在,且xuu z x z ∂∂∂∂=∂∂;yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ 8、隐函数求导公式: (1)函数),(y x F :yx F F dx dy-= (2)函数),,(z y x F :z x F F x z -=∂∂,zy F F y z-=∂∂9、空间曲线的切线与法平面:设空间曲线Γ的参数方程为⎪⎩⎪⎨⎧===),(),(),(t z t y t x ωψϕ ],[βα∈t ),,(000z y x M 为曲线上一点假定上式的三个函数都在],[βα上可导,且三个导数不同时为零则向量=T ϖ))('),('),('()('0000t t t t f ωψϕ=ϖ为曲线Γ在点M 处的一个切向量,曲线Γ在点M 处的切线方程为:)(')(')('000000t z z t y y t x x ωψϕ-=-=-,法平面方程为:0))(('))(('))(('000000=-+-+-z z t y y t x x t ωψϕ 如果空间曲线Γ的方程以⎩⎨⎧==),(),(x z x y ψϕ的形式给出,则Γ在点M 处的切线方程为:)(')('100000x z z x y y x x ψϕ-=-=-, 法平面方程为:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ如果空间曲线Γ的方程以⎩⎨⎧==,0),,(,0),,(z y x G z y x F 的形式给出,则Γ在点M 处的切线方程为:Myyx x M x x z z Mz z y y G F G F z z G F G F y y G F G F x x 000-=-=-法平面方程为:0)()()(000=-+-+-z z F F G F y y G F G F x x G F G F yy x x Mxx z z Mzz y y10、曲面的切平面与法线:设曲面方程为0),,(=z y x F ,),,(000z y x M 为曲面上一点,则曲面在点M 处的切平面方程为:0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x ,法线方程为:),,(),,(),,(0000000000z y x F z z z y x F y y z y x F x x o z o y x -=-=-11、方向导数:若函数),(y x f 在点),(000y x P 可微,那么函数在该点沿任一方向l 的方向导数存在,且 βαcos ),(cos ),(000o y x y x f y x f lf+=∂∂,其中βαcos ,cos 是方向l 的方向余弦 12、梯度:j y x f i y x f y x ϖϖ),(),(0000+称为函数),(y x f 在点),(000y x P 的梯度,记作),(),(000y x f y x gradf o ∇或,即),(),(000y x f y x gradf o ∇==j y x f i y x f y o x ϖϖ),(),(000+13、设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则0),(,0),(0000==y x f y x f y x14、设函数),(y x f z =在点),(00y x 的某邻域里连续且有一阶及二阶偏导数,又0),(,0),(000==y x f y x f y o x ,令C y x f B y x f A y x f yy xy o xx ===),(,),(,),(00000,则),(y x f 在点),(00y x 处是否取得极值的条件如下:(1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值; (2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也有可能没有极值 15、具有二阶连续偏导数的函数),(y x f z =的极值求法:第一步:解方程组0),(,0),(==y x f y x f y x ,求得一切实数解,即可求得一切驻点;第二步:对每一个驻点),(00y x ,求出二阶偏导数的值B A ,和C ;第三步:定出2B AC -的符号,按14的结论判定),(00y x f 是不是极值,是极大值还是极小值 注:上述步骤是求........具有二阶连续偏导数的函数得情况下,那么在考虑函数........................极值时,除了考虑函数的驻点.............外,如果有偏导数不存在的点,那么对这些点....................也要考虑....16、拉格朗日乘数法:要找函数),(y x f z =在附加条件0),(=y x ϕ下的可能极值点,可以先作拉格朗日函数),(),(),(y x y x f y x L λϕ+=,其中λ为参数.求其对x 及y 的一阶偏导数,并使之为零,然后与方程0),(=y x ϕ联立起来:⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ,由这方程组解出y x ,及λ,这样得到的),(y x 就是函数),(y x f 在附加条件0),(=y x ϕ下的可能极值点第十章1、二重积分的性质性质1:设βα、为常数,则⎰⎰⎰⎰⎰⎰+=+DDDd y x g d y x f d y x g y x f σβσασβα),(),()],(),([.性质2:如果闭区域D 被有限曲线分为有限个部分闭区域,则在D 上的二重积分等于在各个部分闭区域上的二重积分之和.(二重积分对于积分区域具有可加性)性质3:如果在D 上,1),(=y x f ,σ为D 的面积,则⎰⎰⎰⎰=⋅=DDd d σσσ1性质4:如果在D 上,),,(),(y x y x f ϕ≤则有:⎰⎰⎰⎰≤DDd y x d y x f .),(),((σϕσ特殊地,由于,),(),(),(y x f y x f y x f ≤≤-则⎰⎰⎰⎰≤DDd y x f d y x f σσ),(),(.性质5:设m M ,分别是),(y x f 在闭区域D 上的最大值和最小值,σ是D 的面积,则有⎰⎰≤≤DM d y x f m σσσ),(.性质6(二重积分的中值定理):设函数),(y x f 在闭区域D 连续,σ是D 的面积,则在D 上至少存在一点),(ηξ,使得⎰⎰⋅=Df d y x f σηξσ),(),(.2、二重积分直角坐标的计算法:(1)若积分区域D 可用不等式)()(21x y x ϕϕ≤≤,b x a ≤≤(X 型)来表示,其中)(1x ϕ、)(2x ϕ在区间],[b a 上连续.则⎰⎰⎰⎰=Dx x ba dy y x f dx d y x f )()(21.),(),(ϕϕσ(2)若积分区域D 可用不等式)()(21x x x φφ≤≤,b y a ≤≤(Y 型)来表示,其中)(1x φ、)(2x φ在区间],[d c 上连续.则⎰⎰⎰⎰=Dx x dc dx y x f dyd y x f )()(21.),(),(φφσ注:确定次序原则:(1) 函数原则:内层积分可以积出; (2) 区域原则; (3) 少分块原则.3、二重积分极坐标的计算法:(极坐标系中的面积元素:θρρd d )若积分区域D 可用不等式)()(21x x ϕρϕ≤≤,βθα≤≤来表示,其中)(1x ϕ、)(2x ϕ在区间],[βα上连续.则:⎰⎰⎰⎰⎰⎰==βαθϕθϕρρθρθρθθρρθρθρσ)()(21)sin ,cos ()sin ,cos (),(d f d d d f d y x f DD(详见P145,146)4、确定上下限原则:(1)每层下限小于上限;(2)内层一般是与外层积分变量的有关的函数,也可以是常数; (3)外层一定为常数.5、利用被积函数的奇偶性及积分区域的对称性简化: (1)若积分区域D 关于0=x 对称,则:⎰⎰⎰⎰⎪⎪⎩⎪⎪⎨⎧=--=-=DD y x f y x f dxdy y x f y x f y x f dxdy y x f 1),(),(,),(2),(),(,0),(当当, 其中}{0,),(),(1≥∈=x D y x y x D(2)若积分区域D 关于0=y 对称,则:⎰⎰⎰⎰⎪⎪⎩⎪⎪⎨⎧=--=-=DD y x f y x f dxdy y x f y x f y x f dxdy y x f 1),(),(,),(2),(),(,0),(当当, 其中}{0,),(),(2≥∈=y D y x y x D 6、直角坐标三重积分的计算:(1)先一后二:若}{xy D y x y x z z y x z z y x ∈≤≤=Ω),(),,(),(),,(21,闭区域}{b x a x y y x y y x D xy ≤≤≤≤=),()(),(21,则:⎰⎰⎰⎰⎰⎰=Ω),(),(2221),,(),,(y x z y x z y y badz z y x f dy dx dv z y x f (详见P158,159)(2)先二后一(截面法):S1:将Ω向某轴投影,如z 轴,],[21c c z ∈;S2:对],[21c c z ∈,用平行于xoy 面的平面截Ω,截出部分记为z D ;S3:计算⎰⎰zD dxdy z f )(;S4:计算⎰21),(c c dz y x F若空间区域{}21,),(),,(c z c D y x z y x z ≤≤∈=Ω,其中z D 是竖坐标为z 的平面截闭区域Ω所得到的一个平面闭区域,则:⎰⎰⎰⎰⎰⎰=Ω21),,(),,(c c D zdxdy z y x f dz dv z y x f注:适用于被积函数只有一个变量或为常数 7、柱面坐标三重积分的计算:+∞<≤ρ0;πθ20≤≤;+∞<<∞-zρ=常数,即以z 轴为轴的圆柱面; θ=常数,即过z 轴的半平面;z =常数,即与xoy 面平行的平面⎪⎩⎪⎨⎧===z z y x θρθρsin cos 柱面坐标系中的体积元素:dz d d dv θρρ=⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z F dxdydz z y x f θρρθρ),,(),,(,其中),sin ,cos (),,(z f z F θρθρθρ=再化为三次积分计算⎰⎰⎰⎰⎰⎰=Ω),(),(212121),,(),,(θρθρϕϕθθθρρρθz z dz z F d d dxdydz z y x f ,其中),(1θρz ,),(2θρz 为沿z 轴穿线穿过的两个平面方程(个人理解)8、球面坐标三重积分的计算:+∞<≤r 0,πϕ≤≤0,πθ20≤≤⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x 球面坐标系中的体积元素:θϕϕd drd r dv sin 2=⎰⎰⎰⎰⎰⎰ΩΩ=θϕϕθϕd drd r r F dxdydz z y x f sin ),,(),,(2,其中)cos ,sin sin ,cos sin (),,(ϕθϕθϕθϕr r r f r F =,再化为三次积分计算⎰⎰⎰⎰⎰⎰=Ω212121sin ),,(),,(2),(),(θθϕϕθϕθϕϕθϕϕθdr r r F d d dxdydz z y x f r r ,其中),(1θϕr ,),(2θϕr 为沿z 轴穿线穿过的两个平面方程(个人理解)典例:求由曲面a z y x 2222≤++与22y x z +≥所围成立体体积(利用三种坐标系求解)解:a z y x 2222≤++表示球心在原点,半径为a 2的球体,22y x z +≥表示xoy 上半面圆锥体 直角坐标:32222020)12(34)2(11a dz z a dz z dxdy dz dxdy dz dv V aaaaa D a D -=-+=+==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ωπππ柱面坐标:⎰⎰⎰⎰⎰⎰-Ω==aa dz d d v d V 022022ρρπρρθ球面坐标:⎰⎰⎰⎰⎰⎰==Ω402220sin ππϕϕθaodr r d d v d V十一章1、对弧长的曲线积分的计算法:设(,)f x y 在曲线弧L 上有定义且连续,L 的参数方程为()()x t y t ϕφ=⎧⎨=⎩ ,()t αβ≤≤,其中(t ϕ),)t φ(在[,]αβ上具有一阶连续导数,且22'()'()0t t ϕφ+≠,则曲线积分(,)Lf x y ds ⎰存在,且(,)[(),(Lf x y ds f t t βαϕφ=⎰⎰ ()αβ<同理:空间曲线Γ:()()()x t y t z t ϕφω=⎧⎪=⎨⎪=⎩(,,)[(),(),(f x y z ds f t t t βαϕφωΓ=⎰⎰2、对坐标的曲线积分的计算方法:设(,)P x y 、(,)Q x y 在有向曲线弧L 上有定义且连续,L 的参数方程为()()x t y t ϕφ=⎧⎨=⎩,当参数t 单调地由α变到β时,点(,)M x y 从L 的起点A 沿L 运动到终点B ,(t ϕ),)t φ(在以α及β为端点的闭区间上具有一阶连续导数,且22'()'()0t t ϕφ+≠,则曲线积分(,)(,)LP x y dx Q x y dy +⎰存在,且(,)(,){[(),()]'()[(),()]'()}LLP x y dx Q x y dy P t t t Q t t t dt ϕφϕϕφφ+=+⎰⎰(下限α对应于L 的起点,上限β对应于L 的终点)同理:空间曲线Γ:()()()x t y t z t ϕφω=⎧⎪=⎨⎪=⎩(,,)(,,)(,,){[(),(),()]'()[(),(),()]'()[(),(),()]}LLP x y z dx Q x y z dy R x y z dzP t t t t Q t t t t R t t t dtϕφωϕϕφωφϕφω++=++⎰⎰3、平面曲线L 上两类曲线积分的联系:(cos cos )LLPdx Qdy P Q ds αβ+=+⎰⎰,其中(,,),(,,)x y z x y z αβ为有向曲线弧L 在点(,)x y处的切向量方向角cos α=cos α=同理:空间曲线Γ上两类曲线积分的联系:(cos cos cos )Pdx Qdy Rdz P Q R ds αβγΓΓ++=++⎰⎰4、格林公式:设闭区域D 由分段光滑曲线L 围城,函数(,)P x y 及(,)Q x y 在D 上具有一阶连续偏导数,则有()L DQ Pdxdy Pdx Qdy x y∂∂-=+∂∂⎰⎰⎰,其中L 是D 的取正向的边界曲线注:取,P y Q x =-=,则2LDdxdy xdy ydx =-⎰⎰⎰Ñ,左端表示闭区D 的面积A 的两倍,因此,12L A xdy ydx =-⎰Ñ5、设D 为单连通区域,函数(,)P x y 及(,)Q x y 在D 上具有一阶连续偏导数,则下列四个命题等价:(1)沿D 内任一条光滑曲线有(,)(,)0LP x y dx Q x y dy +=⎰Ñ(2)对D 内任一条分段光滑曲线L 曲线积分(,)(,)LP x y dx Q x y dy +⎰与路径无关(3)存在(,)u x y D ∈,使得(,)(,)du P x y dx Q x y dy =+ (4)在D 内没一点都有Q Px y∂∂=∂∂6、对面积的曲面积分的计算法:(,,)[,,(,xyD f x y z dS f x y z x y ∑=⎰⎰⎰⎰(,,)[,(,),xzD f x y z dS f x y x z z ∑=⎰⎰⎰⎰(,,)[(,),,yzD f x y z dS f x y z y z ∑=⎰⎰⎰⎰7、对坐标的区面积分的计算法:(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰,等式右端符号取决于积分曲面上下侧(,,)[,(,),]zxD Q x y z dzdx Q x y z x z dzdx ∑=±⎰⎰⎰⎰,等式右端符号取决于积分曲面左右侧(,,)[(,),,]xyD P x y z dydz P x x y y z dydz ∑=±⎰⎰⎰⎰,等式右端符号取决于积分曲面前后侧8、两类曲面积分之间的联系:cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑++=++⎰⎰⎰⎰,其中cos ,cos ,cos αβγ时有向曲面∑在点(,,)x y z 处的法向量的方向余弦9、高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围城的,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有:()(cos cos cos )P Q R dv Pdydz Qdzdx Rdxdy P Q R dSx y z αβγΩ∑∑∂∂∂++=++=++∂∂∂⎰⎰⎰⎰⎰⎰⎰乙10、斯托克斯公式:设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在曲面∑(连同边界Γ)上具有一阶连续偏导数,则有:()()()R Q P R Q Pdydz dzdx dxdy Pdx Qdy Rdz y z z x x yΓ∑∂∂∂∂∂∂-+-+-=++∂∂∂∂∂∂⎰⎰⎰Ñ。
高等数学第六版(同济版)第十二章复习资料

注:r.级数是无穷多个数相加的结果./!-12°.级数£知的形成经历了一个有限到无限的过程.n-13•级数的和:称级数亍“”的前”项和s 产士%为级数的部分和.称数列{»}为级数的部分和数列. /r-l女■】 若部分和数列{片}有极限$,即lim»=s ,则称级数收敛,称s 为级数的和,即"K-1s = u { + u 2 + w 3+ ・・• + ll n + ….称差值/;,=5-5,_为级数的余项,显然lim/^0. 気 "T* 若数列{»}的极限不存在,则称发散.H-1X例1 •讨论等比级数(几何级数)5>/=0 +如+如2+…+呵“+…的敛散性,其中。
工0・ 解:(1)・若§工1 ,则部分和片=工彳/ =a + aq+ +aq n ^9a(l — q")_ a acfl_g l_g \-q当I ty 1< 1 0寸,有lim 片=—^―,则乞呵收敛.…1 _ qn-l综上,等比级数为诃在Iglvl 时收敛,在Iglni 时发散. F1-In-1 n-1当I g l> 1时,有lini s H = oo ,则为“q"发散n->xn-1⑵.若q = 1 ,则部分和s n = na* ,有liin s” = s ,则工发散fi->xn-1⑶•若§ = -1,则部分和》=<::二严,有呼不存在'则討发散X例2.证明等差级数2> = 1 + 2 + 3 +… n-l证明:由于部分和L + 2 +…卄冒有lim s = s从而发散.J7-1航判定级数£法r护右…躺r…的敛散性•解:由于通项= —=-—-L ,因此部分和片=1 一丄+丄一丄+…+丄一丄=丄n(n +1) n n + \12 2 3 n n + \ n + \且lim s n = lim 1 ---- !— I = 1,则, ! 收敛,其和为1.―丸n + \)/?(// +1)二、收敛级数的基本性质性质1 :若级数Y知收敛,和为$ ,则级数工《冷也收敛,和为愿,其中&H0. n-l n-1性质2 :若级数与$>"都收敛,其和分别为S和CT ,则土儿也收敛,其和为S±b.H-l K-l fl-1性质3 :在级数工“”中去掉、加上或改变有限项,不会改变级数丫心的敛散性. n-l n-i 性质4 :若级数丫匕收敛,则对该级数的项任意加括号后所形成的级数n-i(⑷+ …+5) +(仏+1+ •••+%) + ••• + (%” + ••• + %) + ••.仍收敛.注:r.反之不成立,即去掉收敛级数各项中的括号后得到的级数未必收敛.例如:为(1-1) = (1-1) +…+ (1-1) +…收敛于o,但去掉括号后所形成的级数“■】90工(・1)M =1_1 + 1_1 +・・・+ (_1)曲+・・・/I-1□0C Q 77 = 2£却发散•因为yc-ir1的部分和必=‘ "/ 不存在极限.”■11, n = 2k +1 ・XX2°.若级数乞叫的项加括号后所形成的级数发散,则也发散n-i/r-1x性质5 :若级数5X 收敛,则limw w =O.J?-l"T*X21若lim u n = 0 ,则,u n 未必收敛.x1例4•证明调和级数》丄发散.证明:用反证法.001假设级数工丄收敛于$,再令该级数的部分和为》,有,从而也有Um = 5 ,Iln->x n->» -即 lim(s 2 -5 ) = 0.但1 1 I 1 1 1 1 九一兀= ---- + ----- + …+— > — + — + …+—=-,n + \ n + 2 2n 2n 2n 2n 2x i这与鯉(%-$”)= 0矛盾,从而调和级数岁发散. 三.级数收敛的判别法一(柯西审敛原理)8定理:级数工心收敛、3N 已N ・、Pn>N Np 已W ,都有+/^2+ --- + ^p \<£/r-l成立.8证明:级数》©收敛O 数列{S 〃}收敛OVw>0 , mN , V/7 > N , Vp e ,都有;t-iI S 一 片 1=1 %】+ %2 + …+ J IV £ 成立.x 1例5•利用柯西审敛原理判定级数若占的敛散性.X 注:1°.若lim/HO ,则发散 n->xH-l解:V^>0 , V/r N+ ,要使不等式1 ---------- +…+(“ +1)(〃 + 2)] (/? + /7-l)(n + p)1 1 1 ------- -- —I ---------- n + \ n +2 n + p -11< - n 成立,只须"〉丄.由柯西审敛原理知,数收敛.叽+%+…+%匸时+ -------- T + …+ ---------- T ⑺ + 2)" 1 -- + n{n +1) 于是, Vw>0VpeAT ■都有l%】+%2 + ・第二节常数项级数的审敛法正项级数及其审敛法 1 •正项级数及其收敛性(1) .正项级数:若级数中的通项>0 ,则称为正项级数./|-1n-1(2).正项级数收敛:设正项级数£ 的部分和数列{»}收敛于s ,则称£叫收敛,其和为s. n-1 n-1注:正项级数工知的部分和数列{»}是单调增加的数列.“■1 (3) .正项级数收敛的性质:X 00定理1.正项级数为“”收敛O 工叫的部分和数列匕}有界.n-ln-I注:正项级数£血发散的部分和数列{»}无界./i-ln-l2.正项级数审敛法(敛散性判别法) (1) .比较审敛法,满足s 叫,/7 = (1,2,-),若£气,收敛,则£收敛;若”■】 H-18 X发散,则\>”发散(大的收敛保证小的必收敛;小的发散导致大的发散)n-ln-l证明:1°.设fl ,”收敛于和<7 ,则土叫的部分和n-1n-1S fJ = U x +U 2 + ・・• + ll n + ■' * < Vj + v 2 + • • • + \;, + ・・• V b ,即部分和数列{»}有上界,且单调增加,于是由单调有界准则知{»}收敛,从而也收敛.2°.假设收敛,由1知也收敛,出现矛盾,故发散.n-1 n-1 n-1X X定理2•对正项级数丫知和工叫 w-l n-l推论:对正项级数工冷和为匕,若Y匕收敛,且2N , V/7 > TV,有u n < kv n伙>0), n-l /t-l n-1□000 X则丫你收敛・若工X发散、且mN w N十,\fn>N , u H > kv n伙>0),则》叫发散n-l n-l n-ix 1例i•讨论〃-级数(广义调和级数)y4(p>0)的收敛性・解:(I).当0</虫1时,有-L>1 ,而调和级数发散,从而广义调和级数£占发散.(2).当P>1 时,由于m"时,有君 V 士,所以-L = ^l_dx<\k_^dx ,a>2). 从而级数的部分和『1+£存1+£匸占心出号心< 1 + —-—(72 = 2,3,…). ”一1=1 +00 1这表明数列{»}有界,从而广义调和级数工丄收敛.tin8 1综上,广义调和级数工丄当”>1时收敛,当0</7<1发散.n-l n例2•证明级数V , 1是发散的.台/心+ 1)I 1 x i证明:由于/?(« + 1)<(/: + 1)2 ,从而.1> —>而级数,丄是调和级数,发散•故级yjn(n +1) 7? + 1 铝"+ 1x ]数》,是发散的.禽3®+1)(2).比较审敛法的极限形式定理3.对正项级数和",满足!坐如=/n-l n-l 叫(1).若Ov/v+s ,为比与》心同敛态.n-l /?-!(2).若/ = 0 ,且£ v”收敛,则“收敛.n-l n-l(3) .若/ = +s ,且£卩”发散,则发散. n-l w-l证明:⑴•由 lim = / ,贝 1」对£ = — , mNwTT宀v n 2若£叫收敛,由于U n <^v n ,从而$>“收敛.若£叫发散,由于叫〉A ,从而发散. “■1 2 “■] “■】 2H-IX从而YX 收敛・n-i⑶•由lim/ = ”o 知lim — = 0 ,假设工心收敛,则由⑵知工匕收敛,矛盾,故工心发散xi例3•判定级数工sin 丄的收敛性.・1 sin- — x f解:由于1曲—^ = 1 ,又》丄发散,从而工sin 丄发散 “虫 1 粽n 粽 川 (3).比值审敛法©Alembert 判别法) X定理4.对正项级数,知,满足lim 也(1)•若pvl ,则工心收敛.12-1⑵.若Q>1或Q = +s ,则》"”发散./r-1(3) .若Q = 1 ,则£叫敛散性待定.n-1证明:,V/7 > N , W —-/ <£ =—⑵•由lim 乞=0 ,则对 £ =丄,3/Ve7V +, V/7 > N ,有性2VnV ,即u n <Lv n .^±v n 收敛,例6.判断级数£ 解:由于 lim 也=lim "°"7卩2"屮)=lim“y u n "TOC 1/(2〃-1)2” "TOC (2〃+ 1)(2”+ 2)1 1 x 1 x 1由于2—沁〃,从而十讣,而若+收敛,从而希坛收釵 (4) .根值审敛法(柯西判别法)(1) •由lim 上伫丄= /?vl ,取£>0 ,使/? + £ = /・vl ,存在正数加,当n > m B 寸,有或护"+ £ =厂‘即心V" •从而柿<",%2 <叽G …由于级数j^r ku m 收敛,于是根据比较判别法的推论知乞竹收敛. J1 “■】 (2).由limdd = Q>l ,取£>0,使°一£>1,存在正数加,当n > m 时,有 "T8 linlfn或也>° —£>1,即“心>©「即数列{血}是单调增加的,从而,因此工©发散. 心 “ 粽(3).当° = 1日寸,土叫可能收敛也可能发散,例如:广义调和级数£丄满足”■】 n-l “u ICC \/n P 1叫〃 + 1 丿P=1,但当301x1”>1时工二收敛,当0</,<1时工二发散n-i n/r-i nx1例4 •证明级数若聞的收敛性.证明:由于 lim = lim = Um - = 0< IS H "TOC /?! HT3C JJ x1I,故工时收敛.w-1 例5.判定级数£竺的收敛性."■1 1° 解:由于lim 乞日n->® 叫2* nl/\O n 10,故謠发散.⑵-1)2“=1 ,故比值判别法失效.n-l定理5・对正项级数为心,满足lim诉7 = °・/r-l(1).若pel ,则£©收敛.n-1⑵.若p>l或Q = +S ,则工"”发散./r-l(3)•若p = \ ,则工心敛散性待定.n-l注:当0=1时,£心可能收敛也可能发散,例如:广义调和级数£2满足“■】n-l “lim li/w? = limn->»v n->x但当”>1时£厶收敛,当0</7<l时£丄发散例7.判断级数£2 + 3的收敛性.W-1/— 1 i -------------------- 1 一训2+(-1*] 1 Um-ln|2+(-l)rt J 解:由于lim 呃=lim -r{l2 + (一1)“ = lim =lim _疋"““Tx> v— x> 2 “f00 2 “f00 2 =0,从而£2 + (-1)"/r-l收敛.(5) •极限审敛法定理6•对正项级数工匕,w⑴•若lim nu n = / (0 < / < +s),则Y u n发散.H—n-lg⑵•若〃 > 1 而lim n p u n =1 (0</ < +s),则乞收敛.n-ln-»»证明:(1).在比较审敛法的极限形式中,取V n=-,由调和级数E丄发散,结论成立. (2).在比较审敛法的极限形式中,取v…=J-,当p>l时,由“-级数丈丄收敛,结论成立.例&判断级数finn-lT 的收敛性.二.交错级数及其收敛法解:由于In ; 1+ 1 - ---- (〃 T s),有 lim /?2 In 1 i f 丿 rr 心30 V + -L ) = lim n 2- 1 zr 丿 gg 1 30 ' 1 '—=1 ,故工In 1 +眉 收敛.irn-l 例9.判断级数 n-l 的收敛性.1-COS- 77解:由于1- cos — = 2sin 2n 7t2n )、2 ,有3 lim n 2( 〃 1・ 》1 - cos — = lim 八"丿1 2= _7V21-COS-n 丿收敛.1.交错级数:称各项是正负交错的级数为交错级数,记作E (j )”「S”或£(j )s”("”no )・n-lw-12•交错级数审敛法:(莱布尼兹判别法)定理7•若交错级数工(_1)心知满足(1).给》也(〃 =123,…),(2). 收敛,且其和余项乙满足|/;?|<^rX oc简记:若交错级数为(-1广5”中数列{“”}单调减少趋近0 ,则为(-1)”“叫收敛.H-1W-1xi例io •判断交错级数yc-ir 1丄的收敛性.11 1 x解:由于(1 )・冷=—> -- =%](〃 = 1,2,3,…),(2). lim u n = lim — = 0 ,从而工(-1)心—收敛. n n + \ 『―30 28 口 訂 n II三.任意项级数及其绝对绝对收敛.条件收敛1.任意项级数:若级数$>”中各项为任意实数,则称$>”为任意项级数. n-ln-l00X2.绝对收敛:若级数£h/n l 收敛,则称级数绝对收敛・H-ln-l例如:$(j )心丄绝对收敛;yc-ir 1-条件收敛・ 3•级数收敛的绝对审敛法:定理8.若级数绝对收敛,则必定收敛.n-ln-l001证明:由已知,有刃"」收敛,设匕=一(冷+1"口1) >则有匕V"」,从而有工叫收敛. “■】 2□00C 130OC3030又亍匕=乞:7(如+1"」)’有刃匕=乞2叫-力叩’从而亍心收敛./i-l/r-1 乙/i-ln-l/r-1n-1注:「反之不成立,即收敛的级数未必是绝对收敛的.2°.—般来讲,£|“”1发散,办”未必发散 但若1心1不趙近0则由£|“”1发散可知n-ln-ln-ln-I发散.例11.判定级数£弓笋 的收敛性.条件收敛:若级数“收敛,而级数£|“」发散,则称级数条件收敛.n-1/i-lH-l/I-1解:由于sin na 活而洋收敛吨譽艸收敛,从而£耳笋也收敛•例12. x1 / 1 Y r判定级数£(_1)”厶1+丄 的收敛性.n=l2 Ifl )71=1 T £>1 (“TS),从而有©不趋近0 ,因此2工 I I工(T )发散.第三节幕级数—、函数项级数的相关概念1.函数项级数:设有区间/上的函数列{叫(力},将{n…(A)}中各项依次用加号连接起来,即n I(x) + H2(x)+ -- + zf/l(x) + - -,称为函数项无穷级数,简称函数项级数,记作£"“(尤).n-1注:1°.若x = x.el ,则函数项级数]>”(切成为常数项级数$>“(无).n-1 /r-l2°.函数项级数分两类:幕级数、三角级数.2.函数项级数的收敛域:若常数项级数(忑)收敛,则称儿是函数项级数£心(羽的收敛n-1 n-1点,收敛点的全体称为它的收敛域.若常数项级数£馮(无)发散,则称也是函数项级数/r-l£叫(劝的发散点,发散点的全体称为它的发散域.“■1X3•函数项级数的和函数:对收敛域内的任一数x ,常数项级数£知(0都有一个确定的和数/r-ls(x),称之为函数项级数£你(切的和函数,即=n-1 H-1注:和函数s(x)的定义域是£叫(切的收敛域. n-1x4•函数项级数的余项:若的部分和为片(x),其和函数为s(x),有lim s n(x) = s(x), n—l则称r n(x) = s n(x) - s(x)为工u… (x)的余项,有liny;(x) = 0.“■1"T*二、幕级数及其收敛性1.幕级数:称各项都是幕函数的函数项级数Xa n x"为幕级数,即/!-090为G*=a0 + a}x + a2x2 + ・・・ + a n x n + ….zi-0注:幕级数在兀=0处收敛于5.(幕级数还在X轴上哪些点收敛,又在哪些点n-0 n-0发散呢?下面的介绍的幕级数的收敛性能回答这些问题.)2 •幕级数的收敛性X例1 •考察幕级数E疋的收敛性・J7-0解:暂时固定X,则工弋为几何级数,从而当lxl<10寸,工0收敛,其和为5(x)=—;当H-0K-0 1 —XX 8lxl>lH寸,£対发散,即亍*在(一1,1)上收敛,在(V — l]U[l, + s)发散.□■0“■()由此可见幕级数壬疋的收敛域是一个区间,这个结论对一般的幕级数也成立,即: /!-(>定理l.(Abel定理)若级数工当% =儿工0时收敛,则Vx:lxl<x0 ,有工©0绝对收敛.”■()口■()若级数^a n x"当x =儿H 0时发散,则Vx: I x 1>心,有为发散./!-0 口■()注:由Abel定理可以看出,幕级数^a…x n的收敛域是以原点为中心的区间:(-1忑1,1忑1);/!-0(-lx0IJx0 I] ; [-lx0IJx D l) ; [-lx o IJx o l].推论:若幕级数工©0既不仅在x = 0 —点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R存在,使得1.当\x\<R时,幕级数绝对收敛./!-02•当\x\>R时,幕级数发散・/I-03•当1x1=/?时,幕级数工敛散性待定.zi-0注:称/?为幕级数工勺工的收敛半径.7!-02 •幕级数收敛半径的求法x定理2•设有幕级数工,若lim紜a ft =p ,则的收敛半径R = <H-0丄,Q H 0P+ s,p = 00, p = +sX X定理3.设有幕级数,若巴]呃| = °,则为©*的收敛半径/? = <n-0n-0 丄,"0 P+ s,p = 0・例2•求幕级数$(-1)心匸=兀-少+匸+・・・+ (-1)心匸+…的收敛半径与收敛区间. 铝n 2 3 n1= lim 斗1 = 1,则该级数的收敛半径为/? = ! = !."T8 1 1nX 1 X 1 X 1又当X = -\时,工(—1尸7丄=_工丄发散;当*1时,工(—1)^丄是交错级数,H-l f1/i-l ,l/r-1 n,从而收敛区间为(-1, 1]・例3.求幕级数£匚=w-0料・心+計・丄+…的收敛区间.IV.解:由于Q = lim 土=1曲竺岂=1曲丄=0,从而级数歹匸的收敛半径R=W2 8 1 2" n + \粽川收敛区间为(_S,+QO)・例4•求幕级数为川疋= l + x + 2!/ +…+川疋+…的收敛区间.n-0解:由于p = lim =亦也士 = lim〃+ l = +s ,从而级数丈匸的收敛半径R = 0 MT* n\ “TOC粽 /?!从而例g 级数£器0的收敛半径.收敛;当4I X I 2>1 ,即lx 卜丄时,级数£ 斗0发散,从而级数£ 半的收敛半2 /r-o (川) /I-O (n!) 径R =丄.2例6.求幕级数£口匕的收敛区间.n-0 2"・〃解:令y = x-l ,则有级数■*于Q = lim|加|=lim ——/—=-,从而级数幺 2"•” ” | "2间心 + 1)/ 2” •“ 2 £恙的收敛半径X X 1 X / [ W"001当"2时,工4 =工丄发散;当尸一2时,工畔二=工(一1)“丄收敛;因此级数 /I-0 乙• n/r-(> n/r-(>Z •11 /r-() 口-的收敛区间为[-2, 2).n-o 2 • n由-2<x-\<2 , fiP-l<x<3 ,于是级数f的收敛区间为[—1,3)n-0 2 • ll三. 幕级数的运算x x定理4.设幕级数为如卍与工>屏的收敛半径分别为&和鸟,令/? = nin{/?1,/?2},则有n-0n-»0□c 00吃认=工加* , 2为常数,H</?j ;“■0£%"±£加"=£("“±»)x", \x\<R ;/I «B 0//-()n»0= ,其中 C n =^a k b n _k , \X \<R ;n=0 A-0级数n-0仅在x = 0收敛.解:由于lim/t->x ⑵2+ 2)!宀+2 /⑵叭2〃 W + 1)!]' / 耐.—当仆"即I 吨时,级哼霧0x / oo x n工工仇x"=》C 詁川,其中5=工%5“ ,凶 <凡,&比&和心都小> /|-0 / /i-O n-0 X:-()x例如:工%疋=1 ,其中(q = 1“ =0昇2 = 1,2,…),/|-0^b n x'' = \-x ,其中 % = 1,勺=一1,戈=0, “ = 2,3,…,这两个级数的收敛半径均为R = +s ,但是Z唧/ E X” =一=工八1+%+F +…+疋+… /I-0 /n-0 1 — X /!-()的收敛半径只是/? = !.四. 幕级数和函数的性质 定理5•若幕级数的收敛半径7?>0 ,则其和函数$(对满足:n-0 ⑴.在收敛区间(-ER)上连续;90f3D(2)•在收敛区间内可逐项求导,且F(x) =》(d =£叫严,xw(—R 、R);/T -O/r-J(3).在收敛区间内可逐项积分,且匚$(x)〃x = £qJ (X 血,xe(-R.R). n»0 注:逐项积分时,运算前后端点处的敛散性不变. 例7.求幕级数£匚的和函数5(x). 緬n\解:由于R = lim 厶=血]化丄=+00 ,所以该级数的收敛域为(-1 + 00),设其函数为 1计川两端乘以「,有(e~v s(x)) =0 •因此s(x) = Ce" •由 s(0) = 1 得 s(x) = e",故有 V — = e v . 紜n\X yfl,(一OOVXV+S ),贝9s'M = X/?=|⑺一1)!(一 oo <X< +s)・例8.求幕级数的和函数s(x).w-0—[——f/x = - —ln(l -x) , [0<lxl<l)及 x = -l ・ x Jo l-x x 而$(o )= q = i 或由和函数的连续性得到5(0) = lim s(x) = lim | - ln (1~ V )=1,于是5 XT 叭 X 丿心-抑-"[7叽(0'1) 1,x = 0第四节函数展开成幕级数—、函数展开成幕级数的相关概念1. 函数展开成幕级数:若在区间/上存在幕级数j^a n x n收敛于给定的函数/(x),则称/(x)n.O在I 上能展开成幕级数,即/(A ) = Xa n x n .n-02. 泰勒级数:若函数/(x)在儿的某邻域内具有” + 1阶导数,则称乞£2学2(X _站 *(勺)+几G (—勺)+今2(一勺)2+…+£2^2(兀—勺)”+…为/(对的泰勒级数,即 心)〜歹口^2(—观)”.解:由于 /? = lim|^|=lim —= 1 ”鬥勺+] | “* n又x = ±l 时,级数<>(±1)"发散,所以该级数的收敛11-0域为(-1,1),设其函数为 s(x) = £nx" , (-lvxvl),则 ;r-()5(x)=为必"=xy' nx n ~l;r —0 口 ■()X 川例9.求幕级数y — E+i 的和函数s(x)・ 解:由于/? = liman= lim 出.=1,又x = 10寸,级数Y —发散,% = -!时,级数Y — E “ + 1 忍"+ 1 禺八+ 1收敛,所以该级数的收敛域为[-1,1),设其和函数为s(x) , 1-1<X<1),当XH0日寸,有心)=£n-0= xE (x”)'=x(£x")= ;t -0 /r-1[IFH +1当心=0时,泰勒级数又叫麦克劳林级数.注:泰勒级数£ 匚如(―勺)"在“儿处收敛于f(x0).為n\3.函数展成幕级数的条件定理1 .函数/(X)在点儿的某一邻域t/(x(J内具有各阶导数,则/(x)在该邻域内能展开成泰勒级数的充要条件是/G)的泰勒公式的余项满足liin/?w(x) = O.证明:设S”+") = 土心如(―勺)*为泰勒级数£匚如(—和”的” + 1项余和,/⑴的z k!n=o ”!〃阶泰勒公式为fM = S ll+l(x) + ^(x),其中R ii(x) = J^l(x-x o y l+l为拉格朗日余项.S + 1)!必要性:若_/3在邻域“忑)内能展开成泰勒级数/W = y£2^(x-x(>)« ,则有伺川lim R tl(x) = -S”+](x)] = O.HTOC n->®充分性:若lim R ti(A) = 0,则有f(x) = lini 5ZI+1(A)=工一(x-x0)".,l /F n=0 料・思考:函数_/3在儿处“有泰勒级数”与“能展成泰勒级数”有何不同?定理2•若/(x)能展成x的幕级数,则这种展开式是唯一的,且与它的麦克劳林级数相同.证明:设/(X)所展成的幕级数为f(x) = a0 + a x x + a2x2 + - - - + a tl x n + • •,有勺=/(。
(整理)高等数学第六版下册复习纲要

第八章:空间解析几何与向量代数一、向量 ),,(),,,(),,,(c c c b b b a a a z y x c z y x b z y x a ===1.向量),,(a a a z y x a =与),,(b b b z y x b = 的数量积:b a b b b a z z y x x x b a b a ++==⋅ϕcos;2. 向量),,(a a a z y x a = 与),,(b b b z y x b = 的向量积:bb b a a a z y x z y x kj i b a=⨯.ϕsin b a b a=⨯的几何意义为以b a ,为邻边的平行四边形的面积.3. 向量),,(z y x r=的方向余弦:222222222cos ,cos ,cos zy x y zy x y zy x x ++=++=++=γβα,1cos cos cos 222=++γβα;2sin sin sin 222=++γβα. 4. 向量),,(a a a z y x a =与),,(b b b z y x b =垂直的判定:00=++⇔=⋅⇔⊥b a b b b a z z y x x x b a b a.5. 向量),,(a a a z y x a =与),,(b b b z y x b =平行的判定:k z z y x x x k b k a b a b a ba b b b a ===⇔≠=⇔=⨯⇔0,0//.6. 三向量共面的判定: ⇒=++0c n b m a k c b a ,,共面.7. 向量),,(a a a z y x a = 在),,(b b b z y x b = 上的投影:222Pr aa a ba b b b a a z y x z z y x x x a b a b j ++++=⋅= .二、平面1. 过点),,(000z y x P ,以),,(C B A n=为法向量的平面的点法式方程:0)()()(000=-+-+-z z C y y B x x A .2. 以向量),,(C B A n=为法向量的平面的一般式方程:0=+++D Cz By Ax .3. 点),,(111z y x M 到平面0=+++D Cz By Ax 的距离222111CB A D cz By Ax d +++++=.4. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏平行的判定:212121212121////D D C C B B A A n n ≠==⇔⇔∏∏.5. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏垂直的判定:021********=++⇔⊥⇔⊥C C B B A A n n∏∏.6. 平面0:11111=+++D z C y B x A ∏与0:22222=+++D z C y B x A ∏的夹角:222222212121212121cos CB AC B A C C B B A A ++⋅++++=θ三、直线1. 过点),,(000z y x P ,以),,(p n m s=为方向向量的直线的点向式(对称式、标准)方程:pz z n y y m x x 000-=-=-.2. 过点),,(000z y x P ,以),,(p n m s = 为方向向量的直线的参数式方程:⎪⎩⎪⎨⎧=-=-=-tpz z tn y y tm x x 000.3. 直线的一般式方程:⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .方向向量为21n n s⨯=.4.直线方程之间的转化: i) 点向式↔参数式 ii) 一般式→点向式 第一步:找点 第二步:找方向向量21n n s⨯=5. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-平行的判定:2121212121////p pn n m m s s L L ==⇔⇔ .6. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-垂直的判定:021********=++⇔⊥⇔⊥p p n n m m s s L L.7. 直线1111111:p z z n y y m x x L -=-=-与2222222:p z z n y y m x x L -=-=-的夹角:222222212121212121cos pn m p n m p p n n m m ++⋅++++=ϕ.8. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏垂直的判定: CnB m A l N S L ==⇔⇔⊥ //∏.9. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏平行的判定: 0//=++⇔⊥⇔Cn Bm Al N S L∏.10. 直线nz z m y y l x x L 000:-=-=-与平面0:=+++D Cz By Ax ∏的夹角:222222sin pn m C B A Cp Bn Am ++⋅++++=ϕ.11.点),,(000z y x P 到直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的距离:s s PM d⨯=,其中M是直线上任意一点,21n n s⨯=.四、曲线、曲面 1.yoz 平面上的曲线C :0),(=z y f 绕z 轴旋转一周所得的旋转曲面为S :0),(22=+±z y x f .2.空间曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 关于xoy 平面上的投影柱面方程为:0),(=y x H ;在xoy 平面上的投影曲线为C :⎩⎨⎧==00),(z y x H .第九章:多元函数微分法及其应用一、平面点集1.内点一定在点集内,但点集内的点未必是点集的内点,还有孤立点;2.聚点可以是点集的边界点,也可以是点集的内点,但不可以是点集的外点和点集内的孤立点;3.开集和闭集内的所有点都是聚点. 二、二元函数的极限、连续性的相关知识点1.二元函数),(y x f 在),(00y x 点的二重极限:A y x f y x y x =→),(lim ),(),(00.2.二元函数),(y x f 在),(00y x 点的连续性:),(),(lim00),(),(00y x f y x f y x y x =→.3.二元初等函数在其定义区域内连续. 二、二元函数的偏导数的相关知识点 1.函数),(y x f z= 对自变量y x ,的偏导数:x z ∂∂及yz ∂∂. 2. 函数),(y x f z = 对自变量y x ,的二阶偏导数:22x z∂∂、22y z ∂∂、y x z ∂∂∂2、xy z ∂∂∂2 注:若二阶混合偏导数y x z ∂∂∂2与xy z∂∂∂2连续,则二者相等.三、二元函数的全微分:dy yz dx x z dz∂∂+∂∂=四、二元函数连续性、偏导数存在性以及全微分存在性三者之间的关系 1. 函数连续性与偏导数存在性的关系:二者没有任何的蕴涵关系. 2. 偏导数存在性与全微分存在性的关系:全微分存在,偏导数存在;反之未必.(偏导数不存在,全微分一定不存在) 偏导数连续,全微分存在,反之未必. 3. 连续性与全微分存在性的关系:全微分存在,函数一定连续;(函数不连续,全微分一定不存在) 函数连续,全微分未必存在. 五、二元复合函数的偏(全)导数1.中间变量为两个,自变量为一个的复合函数的全导数:))(),((),(),(),,(t t f z t v t u v u f z ψϕψϕ====,dtdv v z dt du u z dt dz ∂∂+∂∂= 2.中间变量为两个,自变量为两个的复合函数的偏导数:)),(),,((),,(),,(),,(y x y x f z y x v y x u v u f z ψϕψϕ====,xv v z x u u z y z x v v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂∂∂∂∂+∂∂∂∂=∂∂, 六、隐函数微分法1.由一个方程确定的隐函数微分法:0),,(=z y x F 确定隐函数),(y x f z=,直接对方程左右两端关于自变量求偏导数,即0=∂∂∂∂+∂∂+∂∂xzz F dx dy y F dx dx x F ,即001=∂∂∂∂+⋅∂∂+⋅∂∂x z z F y F x F ,解得''zx F F x z-=∂∂2.由方程组确定的隐函数组微分法:⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 确定隐函数⎩⎨⎧==),(),(y x v v y x u u ,直接对方程组左右两端关于自变量求偏导数,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂+∂∂00xv v G x u u G dx dy y G dx dx x G x vv F x u u F dx dy y F dx dx x F ,即⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂+∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂00xv v G x u u G x G xvv F x u u F x F ,可以解出x v x u ∂∂∂∂,. 七、偏导数的几何应用 1.曲线的切线方程和法平面方程1). 以参数式方程⎪⎩⎪⎨⎧===)(),(),(t z t y t x χψϕ表示的曲线在0t t =对应的点),,(000z y x M 的切线方程:)()()(0'00'00'0t z z t y y t x x χψϕ-=-=- 法平面方程:0))(())(())((00'00'00'=-+-+-z z t y y t x x t χψϕ2). 以一般式方程⎩⎨⎧==0),,(0),,(z y x G z y x F 表示的曲线在点),,(000z y x M 的切线和法平面方程:先用方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 确定的隐函数组⎩⎨⎧==)()(x g z x f y 微分法求出dx dzdx dy ,,然后得到切线的方向向量⎪⎭⎫ ⎝⎛===00,,1x x x x dxdz dxdy n切线方程:)()(10'00'00x g zz x f y y x x -=-=- 法平面方程:0))(())((00'00'0=-+-+-z z x g y y x f x x2.曲面的切平面方程和法线方程1).以一般式方程0),,(=z y x F 表示的曲面在点),,(000z y x M 的切平面和法线方程: 切平面线方程:0))(())(())((0'0'0'=-+-+-z z M F y y M F x x M F z y x法方程:)()()('0'0'0M F z z M F y y M F x x z x x -=-=-2).以特殊式方程),(y x f z =表示的曲面在点),,(000z y x M 的切平面和法线方程:令0),(),,(=-=z y x f z y x F ,有曲面在点),,(000z y x M 的切平面的法向量)1),,(),,(())(),(),((00'00''''-==y x f y x f M F M F M F N y x z y x切平面线方程:0)())(,())(,(0000'000'=---+-z z y y y x f x x y x f y x法方程:1),(),(000'000'0--=-=-z z y x f y y y x f x x x x .3.方向导数与梯度:1). 方向导数:ρ∆∆ρ).(),(lim 0y x f y y x x f l f -++=∂∂→ 2). 方向导数存在条件:可微分函数),(y x f z =在一点沿任意方向l 的方向导数都存在,并且βαcos cos yzx z l f ∂∂+∂∂=∂∂,其中βαcos ,cos 是方向l 的方向余弦.3). 梯度:函数),,(z y x f 在点),,(000z y x M 处的梯度k z y x f j z y x f i z y x f z y x f grad z y x ),,(),,(),,(),,(000000000000++=( ).4). 方向导数与梯度的关系: ①.函数),,(z y x f 在点),,(000z y x M 处增加最快的方向是其梯度),,(000z y x f grad 的方向,减小最快的方向是),,(000z y x f grad -的方向.②. 函数),,(z y x f 在点),,(000z y x M 沿任意方向的方向导数的最大值为),,(000z y x f grad .八、极值、条件极值 1. 函数),(y x f z=的极值点和驻点的关系:函数),(y x f z =的极值在其驻点或不可偏导点取得.2.求函数极值的步骤:(1).对函数),(y x f z =求偏导数,解方程组⎪⎩⎪⎨⎧==0),(0),(''y x f y x f y x ,得所有驻点),(i i y x .(2).对每一个驻点),(i i y x ,求出二阶偏导数的值),(),,(),,(''''''i i yy i i xy i i xx y x f C y x f B y x f A ===.(3).计算AC B -2,根据AC B -2以及A 的符号判定),(i i y x f 是否是极值:若0,02><-A AC B ,则),(i i y x f 是极小值; 若0,02<<-A AC B ,则),(i i y x f 是极大值; 若,02>-AC B ,则),(i i y x f 不是极小值;若,02=-AC B,则),(i i y x f 是否是极值不能判定,需其他方法验证.3.求函数),(y x f z =在附加条件0),(=y x ϕ下的条件极值的方法:做拉格朗日函数),(),(),(y x y x f y x F λϕ+=,对自变量y x ,求偏导,建立方程组⎪⎩⎪⎨⎧=+==+=0),(),(),(0),(),(),(''''''y x y x f y x F y x y x f y x F y y yx x x λϕλϕ 与附加条件联立的方程组⎪⎩⎪⎨⎧==+==+=0),(0),(),(),(0),(),(),(''''''y x y x y x f y x F y x y x f y x F y y y x x x ϕλϕλϕ,解出的y x ,就是函数),(y x f z =的可能极值点.第十章:重积分一、二重积分的相关性质 1.有界闭区域上的连续函数),(y x f 在该区域D 上二重积分⎰⎰Dd y x f σ),(存在;2.若函数),(y x f 在有界闭区域D 上二重积分存在⎰⎰Dd y x f σ),(,则),(y x f 在该区域上有界;3.中值性:若函数),(y x f 在有界闭区域D 上连续,区域D 的面积为σ,则在D 上至少存在一点),(ηξ,使得σσ⋅=⎰⎰),(),(y x f d y x f D.4.σσ=⎰⎰Dd 1,区域D 的面积为σ.二、二重积分的计算1.利用平面直角坐标计算二重积分 1).先对y 后对x 积分,由于积分区域:D b x a <<;)()(21x y x ϕϕ<<,有⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.2).先对x 后对y 积分,由于积分区域:D d y c <<;)()(21y x y ψψ<<,有⎰⎰⎰⎰=dcy y Ddx y x f dy d y x f )()(21),(),(ψψσ.3).积分换序:⎰⎰⎰⎰⎰⎰==dcy y Dbax x dx y x f dy d y x f dy y x f dx )()()()(2121),(),(),(ψψϕϕσ.2.利用极坐标计算二重积分令⎩⎨⎧==θρθρsin cos y x ,由于积分区域:D βθα<<;)()(21θρθρ<<x ,有⎰⎰⎰⎰=βαθρθρρρθρθρθσ)()(21)sin ,cos (),(d f d d y x f D.三、三重积分的相关性质:V dV =⎰⎰⎰Ω1,区域Ω的体积为V . 四、三重积分的计算1.利用直角坐标计算三重积分 积分区域V :b x a<<;)()(21x y y x y <<;),(),(21y x z z y x z <<,有⎰⎰⎰⎰⎰⎰=),(),()()(2121),,(),,(y x z y x z bax y x y dz z y x f dy dx dV x y x f Ω第十一章:曲线积分 曲面积分一、曲线积分的计算 1.第一型曲线积分的计算: 若曲线C 的参数方程是:10),(),(t t t t y t x ≤≤⎩⎨⎧==ψϕ,则第一型曲线积分⎰⎰+=Ct t dt t t t t f ds y x f 10)()()](),([),(2'2'ψϕψϕ2.第二型曲线积分的计算:若曲线C 的参数方程是:10),(),(t t t t y t x ≤≤⎩⎨⎧==ψϕ,B A t t t t ==10,分别对应曲线的两个端点,则第一型曲线积分⎰⎰+=+1)())(),(()())(),((),(),(''t t Cdt t t t Q t t t P dy y x Q dx y x P ψψϕϕψϕ3.格林公式(联系曲线积分和二重积分)设有界闭区域D 由分段光滑曲线C 所围成,C 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则有格林公式⎰=+CQdy Pdx dxdy y P x Q D ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂.注:1.可用第二型曲线积分计算该曲线所围成区域的面积:设有界闭区域D 由取正向的光滑曲线C 所围成,则区域D 的面积为⎰⎰⎰+-==CDxdy ydx dxdy 21σ. 2. 函数),(),,(y x Q y x P 在区域D 上连续. 二、曲面积分的计算 1.第一型曲面积分的计算: 若曲面S 的方程是:),(y x z z =具有连续偏导数,且在xoy 平面上的投影区域为xy D ,函数),,(z y x f 在S 上连续,则第一型曲面积分dxdy z z y z z y z f dS z y x f xyD y x S⎰⎰++=2'2'1)],(,,[),,(2.第二型曲面积分的计算: 若正向曲面S 的方程是:),(y x z z =,且在xoy 平面上的投影区域为xy D ,函数),,(z y x R 在S 上连续,则第二型曲面积分dxdy y x z y x R dxdy z y x R xyD S⎰⎰=)],(,,[),,(, 同理可得dydz z y z y x R dydz z y x P yzD S⎰⎰=)],),,([),,(;dzdx z x z y x Q dzdx z y x Q zxD S⎰⎰=)]),,(,[),,(3.高斯公式(联系曲面积分和三重积分)若函数),,(),,,(z y x Q z y x P 在空间有界闭区域Ω及其光滑边界曲面S 上具有连续偏导数,则有高斯公式:⎰⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++S dxdydz z R y Q x P Rdxdy Qdzdx Pdydz Ω.注:设空间有界闭区域Ω由光滑封闭曲面S 所围成,则区域Ω的体积为⎰⎰++=Szdxdy ydzdx xdydz V 31. 4.斯托克斯公式(联系曲面积分和三重积分) 若函数),,(),,,(z y x Q z y x P 在光滑曲面S 及其光滑的边界曲线C 上具有连续偏导数,则有斯托克斯公式⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=++L D dxdy y P x Q dzdx x R z P dydz z Q y R Rdz Qdy Pdx . 三、曲线积分与路径无关的条件 (1). 曲线积分⎰+),(),(),(B A C dy y x Q dx y x P 与路径无关;(2).0),(),(=+⎰Cdy y x Q dx y x P ;(3). 存在函数),(y x u ,使得dy y x Q dx y x P du ),(),(+=;(4).yPx Q ∂∂=∂∂ 第十二章:无穷级数一、级数敛散性的相关性质1.∑∞=1n n a 敛散⇔⎭⎬⎫⎩⎨⎧=∑=n k k n a S 1}{敛散 2.∑∞=1n na收敛⇒0lim =∞→n n a3. 0lim ≠∞→nn a ⇒∑∞=1n na 发散4. 正项级数∑=n i n a 1的部分和数列}{n S 有界⇒级数∑=ni n a 1收敛5. ∑=ni na 1收敛⇒∑=ni na 1收敛.二、级数敛散性判别 1.正项级数敛散性判别 (1).比较判别法; (2).比值判别法; (3).根值判别法.2.交错级数收敛性判别法:莱布尼兹判别法精品文档精品文档3.任意项级数敛性判别法:绝对收敛判别法4.两种常用级数收敛和发散的条件(1). 等比级数∑∞=-11n n aq收敛条件是1<q ;发散条件是1≥q .(2). p 级数∑=ni p n11收敛条件是1>p ;发散条件是1≤p .二、幂级数的相关概念 1.收敛域的求法 (1).对标准幂级数∑∞=0n nn xa ,先求其收敛半径nn n a a R 1lim11+∞→==ρ,再判断级数∑∞=0n nn Ra 以及∑∞=-0)(n nnR a的敛散性,最后确定收敛域是),(R R -、R],(R -、)R ,[R -以及]R ,[R -中的哪一个.(2). 对非标准幂级数∑∞=0)(n nx a,先求极限)()()(lim1x x a x a n n n ϕ=+∞→,当1)(<x ϕ时,∑∞=0)(n n x a 绝对收敛,解出),(b a x ∈,再判断级数∑∞=0n nn aa 以及∑∞=0n nn ba 的敛散性,最后确定收敛域是),(b a 、],(b a 、),[b a 以及],[b a 中的哪一个.2.和函数的求法:利用和函数的性质(1).连续性;(2).逐项可微分;(1).逐项可积分.3.函数的幂级数展开式.。
高数复习大纲同济六版下册

高等数学下册复习提纲 (向量代数—>无穷级数)第一次课1、向量与空间几何 向量:向量表示((a^b));向量的模: 向量的大小叫做向量的模.向量a 、→a 、→AB 的模分别记为|a |、||→a 、||→AB . 单位向量: 模等于1的向量叫做单位向量.零向量: 模等于0的向量叫做零向量, 记作0或→0. 零向量的起点与终点重合, 它的方向可以看作是任意的.向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a 与b 平行, 记作a // b . 零向量认为是与任何向量都平行. 向量运算(向量积); 1. 向量的加法 2. 向量的减法3.向量与数的乘法设a =(a x , a y , a z ), b =(b x , b y , b z )即 a =a x i +a y j +a z k , b =b x i +b y j +b z k ,则 a +b =(a x +b x )i +(a y +b y )j +(a z +b z )k =(a x +b x , a y +b y , a z +b z ). a -b = (a x -b x )i +(a y -b y )j +(a z -b z )k =(a x -b x , a y -b y , a z -b z ).λa =λ(a x i +a y j +a z k ) =(λa x )i +(λa y )j +(λa z )k =(λa x , λa y , λa z ). 向量模的坐标表示式 222||z y x ++=r点A 与点B 间的距离为 →212212212)()()(||||z z y y x x AB AB -+-+-==向量的方向:向量a 与b 的夹角 当把两个非零向量a 与b 的起点放到同一点时, 两个向量之间的不超过π的夹角称为向量a 与b 的夹角, 记作^) ,(b a 或^) ,(a b . 如果向量a 与b 中有一个是零向量, 规定它们的夹角可以在0与π之间任意取值. 类似地, 可以规定向量与一轴的夹角或空间两轴的夹角.数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的 余弦的乘积称为向量a 和b 的数量积, 记作a ⋅b , 即a ·b =|a | |b | cos θ .数量积与投影:由于|b | cos θ =|b |cos(a ,^ b ), 当a ≠0时, |b | cos(a ,^ b ) 是向量 b 在向量a 的方向上的投影, 于是a ·b = |a | Prj a b .同理, 当b ≠0时, a·b = |b | Prj b a . 数量积的性质: (1) a·a = |a | 2.(2) 对于两个非零向量 a 、b , 如果 a·b =0, 则 a ⊥b 反之, 如果a ⊥b , 则a·b =0.如果认为零向量与任何向量都垂直, 则a ⊥b ⇔ a ·b =0. 两向量夹角的余弦的坐标表示:设θ=(a , ^ b ), 则当a ≠0、b ≠0时, 有222222||||cos zy x z y x zz y y x x b b b a a a b a b a b a ++++++=⋅=b a b a θ向量积: 设向量c 是由两个向量a 与b 按下列方式定出:c 的模 |c |=|a ||b |sin θ , 其中θ 为a 与b 间的夹角c 的方向垂直于a 与b 所决定的平面, c 的指向按右手规则从a 转向b 来确定.那么, 向量c 叫做向量a 与b 的向量积, 记作a ⨯b , 即 c = a ⨯b . 坐标表示:zy x z y x b b b a a a kj i b a =⨯=a y b z i +a z b x j +a x b y k -a y b x k -a x b z j -a z b y i= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . . 向量的方向余弦:设r =(x , y , z ), 则 x =|r |cos α, y =|r |cos β, z =|r |cos γ . cos α、cos β、cos γ 称为向量r 的方向余弦.||cos r x =α, ||cos r y=β, ||cos r z =γ. 从而 r e r r ==||1)cos ,cos ,(cos γβα向量的投影向量在轴上的投影设点O 及单位向量e 确定u 轴.任给向量r , 作→r =OM , 再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫作点M 在u 轴上的投影), 则向量→M O '称为向量r 在u 轴上的分向量. 设→e λ='M O , 则数λ称为向量r 在u 轴上的投影, 记作Prj u r 或(r )u .按此定义, 向量a 在直角坐标系Oxyz 中的坐标a x , a y , a z 就是a 在三条坐标轴上的投影, 即a x =Prj x a , a y =Prj y a , a z =Prj z a . 投影的性质:性质1 (a )u =|a |cos ϕ (即Prj u a =|a |cos ϕ), 其中ϕ为向量与u 轴的夹角; 性质2 (a +b )u =(a )u +(b )u (即Prj u (a +b )= Prj u a +Prj u b ); 性质3 (λa )u =λ(a )u (即Prj u (λa )=λPrj u a );空间方程:曲面方程(旋转曲面和垂直柱面); (1)椭圆锥面由方程22222z by a x =+所表示的曲面称为椭圆锥面. (2)椭球面由方程1222222=++cz b y a x 所表示的曲面称为椭球面.(3)单叶双曲面由方程1222222=-+cz b y a x 所表示的曲面称为单叶双曲面. (4)双叶双曲面由方程1222=--cz b y a x 所表示的曲面称为双叶双曲面.(5)椭圆抛物面由方程z by a x =+2222所表示的曲面称为椭圆抛物面 (6)双曲抛物面.由方程z b y a x =-2222所表示的曲面称为双曲抛物面. 椭圆柱面12222=+b y a x ,双曲柱面122=-by a x , 抛物柱面ay x =2, .直线方程(参数方程和投影方程) 空间直线的一般方程空间直线L 可以看作是两个平面∏1和∏2的交线.如果两个相交平面∏1和∏2的方程分别为A 1x +B 1y +C 1z +D 1=0和A 2x +B 2y +C 2z +D 2=0, 那么直线L 上的任一点的坐标应同时满足这两个平面的方程, 即应满足方程组 ⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线, 这个向量就叫做这条直线的方向向量. 容易知道, 直线上任一向量都平行于该直线的方向向量.确定直线的条件: 当直线L 上一点M 0(x 0, y 0, x 0)和它的一方向向量s = (m , n , p )为已知时, 直线L 的位置就完全确定了.直线方程的确定: 已知直线L 通过点M 0(x 0, y 0, x 0), 且直线的方向向量为s = (m , n , p ), 求直线L 的方程.设M (x , y , z )在直线L 上的任一点, 那么(x -x 0, y -y 0, z -z 0)//s , 从而有pz z n y y m x x 000-=-=-. 这就是直线L 的方程, 叫做直线的对称式方程或点向式方程 ⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 直线L 1和L 2的夹角ϕ可由 |) ,cos(|cos 2^1s s =ϕ222222212121212121||p n m p n m p p n n m m ++⋅++++=直线与平面的夹角设直线的方向向量s =(m , n , p ), 平面的法线向量为n =(A , B , C ), 直线与平面的夹角为ϕ , 那么|) , (2|^n s -=πϕ, 因此|) , cos(|sin ^n s =ϕ. 按两向量夹角余弦的坐标表示式, 有222222||sin p n m C B A Cp Bn Am ++⋅++++=ϕ平面方程:点法式(法向量)、一般式、任一平面都可以用三元一次方程来表示 . Ax +By +Cz +D =0.其中x , y , z 的系数就是该平面的一个法线向量n 的坐标, 即 n =(A , B , C ). 提示:D =0, 平面过原点.n =(0, B , C ), 法线向量垂直于x 轴, 平面平行于x 轴. n =(A , 0, C ), 法线向量垂直于y 轴, 平面平行于y 轴. n =(A , B , 0), 法线向量垂直于z 轴, 平面平行于z 轴.n =(0, 0, C ), 法线向量垂直于x 轴和y 轴, 平面平行于xOy 平面. n =(A , 0, 0), 法线向量垂直于y 轴和z 轴, 平面平行于yOz 平面. n =(0, B , 0), 法线向量垂直于x 轴和z 轴, 平面平行于zOx 平面.截距式;平面夹角和距离两平面的夹角: 两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面∏1和∏2的法线向量分别为n 1=(A 1, B 1, C 1)和n 2=(A 2, B 2, C 2), 那么平面∏1和∏2的夹角θ 应是) ,(2^1n n 和) ,() ,(2^12^1n n n n -=-π两者中的锐角, 因此, |) ,cos(|cos 2^1n n =θ. 按两向量夹角余弦的坐标表示式, 平面∏1和∏2的夹角θ 可由2222222121212121212^1|||) ,cos(|cos C B A C B A C C B B A A ++⋅++++==n n θ.来确定.从两向量垂直、平行的充分必要条件立即推得下列结论: 平面∏1和∏2垂直相当于A 1 A 2 +B 1B 2 +C 1C 2=0;平面∏ 1和∏ 2平行或重合相当于212121C C B B A A == 空间曲线的一般方程空间曲线可以看作两个曲面的交线. 设F (x , y , z )=0和G (x , y , z )=0是两个曲面方程, 它们的交线为C . 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组⎩⎨⎧==0),,(0),,(z y x G z y x F空间曲线的参数方程(33)空间曲线C 的方程除了一般方程之外, 也可以用参数形式表示, 只要将C 上动点的坐标x 、y 、z 表示为参数t 的函数:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x .当给定t =t 1时, 就得到C 上的一个点(x 1, y 1, z 1); 随着t 的变动便得曲线C 上的全部点. 方程组(2)叫做空间曲线的参数方程. 切平面和切线: 切线与法平面;设空间曲线Г的参数方程为),(),(),(t z t y t x ωφϕ=== 曲线在点),,(000z y x M 处的切线方程为)(00t x x ϕ'-=.)()(0000t z z t y y ωφ'-='- 向量 )}('),('),('{000t t t T ωφϕ=就是曲线Г在点M 处的一个切向量 法平面的方程为0))(('))(('))( ('000000=-+-+-z z t y y t x x t ωφϕ切平面与法线隐式给出曲面方程((,,)0F x y z =)法向量为:)},,,(),,,(),,,({000000000z y x Fz z y x F z y x F n y x = 切平面的方程是))(,,())(,,())(,,(000000000000z z z y x F y y z y x F x x z y x F z y x -+-+-法线方程是.),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-),(y x z =在点),(00y x如果用α、β、γ表示曲面的法向量的方向角,并假定法向量的方向是向上的,即使得它与z 轴的正向所成的角γ是一锐角,则法向量的方向余弦为 ,1cos 22yxx ff f ++-=α ,1c o s 22yxy ff f ++-=β.11cos 22yxff ++=γ2、多元函数微分学多元函数极限:简单复习讲解 偏微分全微分:如果三元函数),,(z y x u φ=可以微分,那么它的全微分就等于它的三个偏微分之和, du =x u ∂∂dx +y u ∂∂dy +zu ∂∂dz 第二次课3、重积分二重积分:利用直角坐标计算二重积分我们用几何观点来讨论二重积分f x y d D(,)σ⎰⎰的计算问题。
高数下册总结(同济第六版)

高数同济版下高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法求出其通解. 一阶微分方程的解法小结:高数同济版下二阶微分方程的解法小结:非齐次方程的特解的形式为:高数同济版下主要一阶1、可分离变量方程、线性微分方程的求解; 2、二阶常系数齐次线性微分方程的求解; 3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法 1、显函数的偏导数的求法时,应将看作常量,对求导,在求时,应将看作常量,对求导,所运用的是一元函数的求导法则与求导公式2、复合函数的偏导数的求法设,,,则,几种特殊情况: 1),,,则2),,则 3),则3、隐函数求偏导数的求法 1)一个方程的情况,设是由方程唯一确定的隐函数,则,高数同济版下或者视,由方程两边同时对 2)方程组的情况由方程组 . 两边同时对求导解出即可二、全微分的求法方法1:利用公式方法2:直接两边同时求微分,解出即可.其中要注意应用微分形式的不变性:三、空间曲线的切线及空间曲面的法平面的求法 1)设空间曲线Г的参数方程为,则当时,在曲线上对应处的切线方向向量为,切线方程为法平面方程为2)若曲面的方程为,则在点处的法向,切平面方程为法线方程为高数同济版下若曲面的方程为,则在点处的法向,切平面方程为法线方程为四、多元函数极值(最值)的求法 1 无条件极值的求法设函数在点的某邻域内具有二阶连续偏导数,由,解出驻点,记, 1)若时有极小值 2)若,则在点处无极值 3)若,不能判定在点处是否取得极值,则在点处取得极值,且当时有极大值,当2 条件极值的求法函数在满足条件下极值的方法如下: 1)化为无条件极值:若能从条件解出代入中,则使函数成为一元函数无条件的极值问题 2)拉格朗日乘数法作辅助函数,其中为参数,解方程组高数同济版下求出驻点坐标,则驻点可能是条件极值点 3 最大值与最小值的求法若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值. 主要1、偏导数的求法与全微分的求法;2、空间曲线的切线及空间曲面的法平面的求法3、最大值与最小值的求法三、多元函数积分学复习要点七种积分的概念、计算方法及应用如下表所示:高数同济版下高数同济版下*定积分的几何应用定积分应用的常用公式: (1)面积 (2)体积(型区域的面积)(横截面面积已知的立体体积)(所围图形绕的立体体积)(所围图形绕体体积)(所围图形绕轴的立体体积)。
(完整word版)高数答案(下)习题册答案第六版下册同济大学数学系编

(完整word版)高数答案(下)习题册答案第六版下册同济大学数学系编高数答案(下)习题册答案第六版下册同济大学数学系编第八章多元函数的微分法及其应用§ 1 多元函数概念一、设f(x,y)x2y2,(x,y)x2y2,求:f[(x,y),y2]. 答案:f((x,y),y2)(x2y2)2y4x42x2y22y4二、求下列函数的定义域:x2(1y)221、f(x,y){(x,y)|y x1}; 221x yy2、z arcsin {(x,y)|y x,x0}; x三、求下列极限:x2siny 1、lim (0)2(x,y)(0,0)2x y2、y(1)3x (e6) (x,y)(,2)xlimx2y四、证明极限lim不存在. 2(x,y)(0,0)4x y证明:当沿着x轴趋于(0,0)时,极限为零,当沿着y x趋于(0,0)时,极限为二者不相等,所以极限不存在21, 21,(x,y)(0,0)xysin22五、证明函数f(x,y)在整个xoy面上连续。
x y0,(x,y)(0,0)证明:当(x,y)(0,0)时,f(x,y)为初等函数,连续。
当(x,y)(0,0)时,1xysi0f(0,0),所以函数在(0,0)也连续。
所以函数(x,ylim)(0,0)22x y在整个xoy面上连续。
六、设z x y2f(x y)且当y=0时z x2,求f(x)及z的表达式. 解:f(x)=x2x,z x22y22xy y§ 2 偏导数y z z xy z 1、设z=xy xex ,验证x y x yzy z z z y ex ex,x ex,x y xy xy xex xy z 证明:xx y x yyyyyz x2y212、求空间曲线:在点(,,1)处切线与y轴正向夹角() 1y224 2x23、设f(x,y)xy(y1)arcsin, 求fx(x,1) ( 1) y4、设u x, 求zzy u u u ,,y x zzz uz u1y uzy12xylnx xlnx x 解:,y zy xyy 2u2u2u2 5、设u x y z,证明: x2y2z2u6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由222122xsin,x y022f(x,y)x y220,x y0100 limf(x,y)0f(0,0) 连续;fx(0,0)lim fy(0,0)limsi2 不存在,0 x0y0x0y0xy07、设函数f(x,y)在点(a,b)处的偏导数存在,求limx0f(a x,b)f(a x,b) x(2fx(a,b))§ 3 全微分1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的__________(A) 必要条件而非充分条件(B)充分条件而非必要条件(C)充分必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在(C)全微分存在,则偏导数必连续(D)全微分存在,而偏导数不一定存在2、求下列函数的全微分:yyy11)z ex dz ex(2dx dy) xx22 2)z sin(xy) 解:dz cos(xy)(y2dx2xydy)yz11y 3)u x 解:du xdx xzlnxdy2xzlnxdz zzzyzyyy3、设z ycos(x2y),求dz(0,)4解:dz ysin(x2y)dx(cos(x2y)2ysin(x2y))dy dz|(0,4)=4dx2dy4、设f(x,y,z)z1(2dx4dy5dz) 求:df(1,2,1)2225x y122(x y)sin5、讨论函数f(x,y)x2y20,,(x,y)(0,0)(x,y)(0,0)在(0,0)点处的连续性、偏导数、可微性1(x2y2)sin0f(0,0) 所以f(x,y)在(0,0)点处连续。
高数下(同济六)知识点
高等数学下册习题常见鬓型求向疑得坐标、模、方向角、方向余弦、数量积、向量积计算一阶偏导数及高阶偏导数利用直角坐标计算二重枳分利用二重积分证明恒等式例1. 求解:(将二次积分交换顺序);沁4,胡注如y+JJ 空竺畑y 才 y " y Di y 址 y= JJ sin 兀'y dxdy = J" d)j 对 n "舐=Jjy -1) sin 九•ydy = cos1 — sin 1 qua y I y y ' 题型14利用投影法讣算三重积分题型27—阶线性微分方程 题型29可降阶方程题型15 利用柱坐标计算三重积分题型16 利用球坐标讣算三重积分 题型17 利用切片法讣算三重积分 题型18 利用三重积分计算立体得体积 题型19 il 算对弧长得曲线积分 题型20 il 算对而积得曲而积分 题型21 讣算对坐标得曲线积分题型22 利用格林公式计算对坐标得曲线枳分 题型23 曲线枳分与路径无关及全微分求枳 题型24 讣算对坐标得曲而积分题型25 利用高斯公式计算对坐标得曲面积分题型26 可分离变量得微分方程、齐次方程 题型1 题型2 由已知条件求平而与直线方程题型4 求多元复合函数得偏导数 题型5 求方程所确定得隐函数得偏导数题型6 求方向导数、梯度、曲线得切线、曲而得切平而 题型7 求极值、利用拉格郎日乘数法求最值题型9 利用极坐标讣算二重积分 题型10 计算带绝对值得二重积分题型12 利用对称性质计算二重枳分 题型13只有一种积分次序可计算得积分题型30二阶常系数非齐次线性方程第八章向量与解析几何切向量切“线”方程:法平“面”方程:法向量切平“面”方程:法“线“方程:或切平“面”方程:法“线“方程:第十章重积分(1) 积分区域得边界曲线易于用极坐标方程表示(含圆弧,宜线段); (2) 被枳函数用极坐标变量表示较简单(含;为实数)积分类型 二重枳分 平面薄片得质 质量=而密度而积重积分 计算方法(1) 利用直角坐标系X-型 y —型①利用极坐标系使用原则典型例题P141-例 I 、例3PI47-例 5⑶利用积分区域得对称性与被积函数得奇偶性当D 关于y 轴对称时,(关于X 轴对称时,有类似结PI41-例 2 应用该性质更方便计算步骤及注意事项1・画出积分区域 2・选择坐标系 3.确定积分次序 t 确定枳分限 5.计算要简便标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离原则:积分区域分块少,累次积分好算为妙 方法:图示法先积一条线,后扫枳分域 注意:充分利用对称性,奇偶性X三重积分空间立体物得质量质量=密度而积①定义:四步法一分割、代替、求与、取极限:②性质:对积分得范用具有可加性,具有线性性:③对坐标得积分,积分区域对称与被积函数得奇偶性。
高等数学第六版(同济版)第九章复习资料
第九章 多元函数微分法及其应用引入:在上册书中,我们学习了一元函数微积分学,所讨论的对象都只有一个自变量的函数,而在实际应用中,研究的问题往往要涉及多方面的因素,反映在数量上就是一个变量要依赖几个自变量,即数学上的多元函数,从这节课开始,我们进入多元函数微积分学的学习阶段.先来学习多元函数微分学.由于从一元函数到二元函数,单与多的差异已能充分体现,我们由二元函数入手来研究多元函数微分学,然后把相关概念及性质推广到三元、四元直至n 元函数上去.第一节 多元函数的基本概念一、平面点集的相关概念1. 平面点集:),|}(),{(y x y x E =具有性质}P},|}),{(2R y R x y x R R R E ∈∈=⨯=⊂例如:}|||{}|}),{(222r OP P r y x y x C <=<+=,其中点P 表示点),(y x . 2. 邻域:2000),(R y x P ∈.(1). 邻域:})()()(),{(}||{),(20202000δδδ<-+-+-=<=z z y y x x y x P P P P U (2). 去心邻域:)(}||0{),(000P U P P P P U oo∧=<<=δδ 3. 坐标面上的点P 与平面点集E 的关系:22,R E R P ⊂∈ (1). 内点:若0>∃δ,使E P U ⊂),(δ,则称P 为E 的内点. (2). 外点:若0>∃δ,使Φδ=⋂E P U ),(,则称P 为E 的外点.(3). 边界点:若0>∀δ,Φδ≠⋂E P U ),(,且E P U ⊄),(δ,则称P 为E 的边界点.边界:E 的边界点的全体称为它的边界,记作E ∂. (4). 聚点:若0>∀δ,Φδ≠⋂E P U o),(,则称P 为E 的聚点.导集:E 的聚点的全体称为它的导集.注:1°. 若P 为E 的聚点,则P 可以属于E ,也可以不属于E .2°. 内点一定是聚点;外点一定不是聚点;边界点也不总是聚点,如孤立的边界点.例如:}21),{(221≤+<=y x y x E ;)}0,0{(}21),{(222⋃≤+<=y x y x E . 4. 一些常用的平面点集:(1). 开集:若点集E 的点都是其内点,则称E 为开集.(2). 闭集:若点集E 的边界E E ⊂∂,则称E 为闭集. (开集加边界) (3). 连通集:若E 中任何两点都可用属于E 的折线连接,则称E 为连通集. (4). 开区域:连通的开集称为开区域,也称为区域. (5). 闭区域:开区域加上其边界称为闭区域.例如:}21),{(221≤+<=y x y x E 为区域. }21),{(222≤+≤=y x y x E 为闭区域. (6). 有界集:若0>∃r ,使),(r O U E ⊂,则称E 为有界集. (7). 无界集:若0>∀r ,使),(r O U E ⊄,则称E 为无界集.二、n 维空间:对取定的自然数n ,称n 元数组),,,(21n x x x 的全体为n 维空间,记为n R . 注:前述的邻域、区域等相关概念可推广到n 维空间. 三、多元函数的概念 1. 定义:.y x f z ↓↓↓=),(,或)(P f z =,其中D y x P ∈),(.因 映 自 变 变 量 射 量定义域:D .值 域:R D y x y x f z z D f ⊂∈==}),(),,({)(.注:可推广:n 元函数:),,,(21n x x x f u =,n n R D x x x ⊂∈),,,(21 . 例: 1. )arcsin(22y x z +=,}1),{(22≤+=y x y x D .2. )ln(y x z +=,}0),{(>+=y x y x D .2. 几何表示:函数),(y x f z =对应空间直角坐标系中的一张曲面:0),(),,(=-=y x f z z y x F . 四、二元函数的极限1.定义:设函数),(y x f 的定义域为D ,点),(000y x P 为D 的聚点,若R A ∈∃,0>∀ε,0>∃δ,),(),(0δP U D y x P o⋂∈∀,满足ε<-|),(|A y x f ,则称A 为),(y x f 当),(),(000y x P y x P →时的极限,记作A y x f y x y x =→),(lim ),(),(00,称之为),(y x f 的二重极限.例1. 设22221sin )(),(y x y x y x f ++=,求证0),(lim )0,0(),(=→y x f y x .证明:0>∀ε,要使不等式ε<+≤++=-++22222222221sin )(01sin)(y x yx y x y x y x 成立,只须取εδ=,于是,0>∀ε,εδ=∃,),0(),(δoU D y x P ⋂∈∀,总有ε<-++01sin)(2222yx y x ,即 0),(lim )0,0(),(=→y x f y x .例2. 证明),(lim)0,0(),(y x f y x →不存在,其中⎪⎩⎪⎨⎧=+≠++=0,00,),(222222y x y x y x xy y x f . 证明:当),(y x P 沿直线)0(≠=k kx y 趋于)0,0(O 时,总有222220)0,0(),(1lim ),(limkkx k x kx y x f x kxy y x +=+=→=→, ),(y x f 随着k 的不同而趋于不同的值,故极限),(lim )0,0(),(y x f y x →不存在.例3. 求极限x xyy x sin lim)2,0(),(→.解:221lim sin lim sin lim sin lim20)2,0(),()2,0(),(=⋅=⋅=⋅=→→→→y xy xyy xy xy x xy y xy y x y x .五、二元函数的连续性1. 二元函数的连续性:设函数),(y x f 的定义域为D ,点),(000y x P 为D 的聚点,且D P ∈0,若),(),(lim00),(),(00y x f y x f y x y x =→,则称),(y x f z =在点),(000y x P 连续.2. 二元函数的间断点: 设函数),(y x f 的定义域为D ,点),(000y x P 为D 的聚点,若),(y x f 在点),(000y x P 不连续,则称),(000y x P 为),(y x f 的间断点.注:间断点可能是函数有定义的孤立点或无定义的点. 3. 性质:设D 为有界闭区域.(1). 有界性:0>∃M , D y x ∈∀),(,有M y x f ≤|),(|.(2). 最值性:D P P ∈∃21,,使得D P D P P f P f D P P f P f ∈∀⎩⎨⎧∈=∈=,|)(min{)(}|)(max{)(21,有)()()(21P f P f P f ≤≤. (3). 介值性:])(),([21P f P f C ∈∀,D y x P ∈∃),(,使得C y x f =),(. 4. 二元连续函数的运算性质 (1). 和、差、积仍连续; (2). 商 (分母不为零) 连续; (3). 复合函数连续. 5. 二元初等函数及其连续性(1). 二元初等函数:由二元多项式和基本初等函数经过有限次四则运算和有限次复合所构成的、并用一个式子表示的二元函数称为二元初等函数. (2). 二元初等函数在其定义区域内连续. 例4. 求xy yx y x +→)2,1(),(lim.解:令xy y x y x f +=),(,则23)2,1(lim)2,1(),(==+→f xy y x y x . 例5. 求xyxy y x 11lim)0,0(),(-+→. 解:=-+→xy xy y x 11lim)0,0(),((分子有理化) 21111lim )11(11lim)0,0(),()0,0(),(=++=++-+→→xy xy xy xy y x y x .第二节 偏导数引入:在一元函数微分学中,我们研究了一元函数的变化率—导数,并利用导数研究了函数的性态.对于多元函数,我们也要讨论它的变化率,但由于多元函数的自变量不止一个,所以多元函数的变化率要比一元函数的变化率复杂得多.我们还是以二元函数为例来研究多元函数的变化率,先把二元函数中某一自变量暂时固定,再讨论二元函数关于另一个自变量的变化率,这就是数学上的偏导数. 一、偏导数的相关概念1. 偏导数:设函数),(y x f z 在点),(000y x P 的某邻域内有定义,把y 暂时固定在0y ,而x 在0x 处有增量x ∆时,z 相应地有增量),(),(0000y x f y x x f -+∆.若极限xy x f y x x f x ∆∆∆),(),(lim00000-+→存在,则称此极限值为函数),(y x f z =在点),(000y x P 处对x 的偏导数,记为00y y x x xz ==∂∂;0y y x x xf ==∂∂;00y y x x xz ==或),(00y x f x .注: 1°. 0),(),(),(lim),(00000000x x x x y x f x d dx y x f y x x f y x f =→=-+=∆∆∆.2°. 0),(),(),(lim),(00000000y y y y y x f yd dy y x f y y x f y x f =→=-+=∆∆∆.2. 偏导函数:若函数),(y x f z =在区域D 内每一点),(y x 处对x 或y 偏导数存在,则该偏导数称为偏导函数,也简称为偏导数,记为x z x f x z ,,∂∂∂∂或),(y x f x ;y z yfy z ,,∂∂∂∂或),(y x f y . 注:可推广:三元函数),,(z y x f u =在点),,(z y x 处对x 的偏导数定义为xz y x f z y x x f z y x f x x ∆∆∆),,(),,(lim),,(0-+=→.例1. 求223y xy x z ++=在)2,1(处的偏导数. 解:先求偏导函数:y x x z 32+=∂∂,y x yz 23+=∂∂. 再求偏导数:821=∂∂==y x xz ,721=∂∂==y x yz .例2. 求y x z 2sin 2=的偏导数. 解:y x x z 2sin 2=∂∂,y x yz 2cos 22=∂∂. 例3. 求222z y x r ++=的偏导数. 解:rxz y x x x r =++=∂∂22222.由轮换对称性可知r y y r =∂∂,r z z r =∂∂. 3. 偏导数的几何意义(1). 偏导数),(00y x f x 是曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(00000y x f y x M 处的切线关于x 轴的斜率.(2). 偏导数),(00y x f y 是曲线⎩⎨⎧==0),(x x y x f z 在点)),(,,(00000y x f y x M 处的切线关于y 轴的斜率.4. 函数偏导数存在与函数连续的关系:函数偏导数存在与函数连续之间无必然的蕴含关系. (1). 函数),(y x f z =在点),(000y x P 处偏导数存在,但它在点),(000y x P 却未必连续.例如:函数⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(的两个偏导数都存在,即00lim )0,0()0,0(lim)0,0(00==-+=→→x x x x f x f f ∆∆∆∆, 00lim )0,0()0,0(lim)0,0(00==-+=→→y y y yf y f f ∆∆∆∆. 但二重极限),(lim )0,0(),(y x f y x →不存在,故),(y x f z =在点)0,0(不连续.(2). 函数),(y x f z =在点),(000y x P 连续,但它在点),(000y x P 处却未必存在偏导数.例如:函数22),(y x y x f z +==在点)0,0(连续,但它在点)0,0(对x 及y 的偏导数都不存在,这是因为:⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00x x x x x f x f x x ∆∆∆∆∆∆∆∆, ⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00y y y y y f y f x y ∆∆∆∆∆∆∆∆, 即),(y x f z =在点)0,0(对x 及y 的偏导数都不存在. 二、高阶导数1.二阶偏导数:若函数),(y x f z =对x 及y 的偏导数),(y x f x 及),(y x f y 对x 及y 的偏导数也存在,则称它们是函数),(y x f z =的二阶偏导数.记作:),(22y x f x z x z x xx =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂; ),(22y x f yz y z y yy =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂ ;(二阶纯偏导数) ),(2y x f y x z x z y xy =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂;),(2y x f x y zy z x yx =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂. (二阶混合偏导数) (二阶纯偏导数)注:1°. 一般地,二元函数),(y x f z =的1-n 阶偏导数的偏导数称为它的n 阶偏导数.2°. 二阶以及二阶以上的偏导数统称为高阶导数.3°. 二元函数),(y x f z =的n 阶偏导数至多有n 2个. 例4. 设13323+--=xy xy y x z ,求它的二阶偏导数. 解:y y y x x z --=∂∂32233;x xy y x yz --=∂∂2392; 2226xy x z =∂∂;xy x yz 182322-=∂∂; 196222--=∂∂∂y y x y x z ;196222--=∂∂∂y y x xy z . 总结:从这一例题,我们看到:x y z y x z ∂∂∂=∂∂∂22,即两个二阶混合偏导数相等,与求导顺序无关.那是不是每个二元函数都有这样的相等的二阶混合偏导数呢我们说不是的,例如:⎪⎩⎪⎨⎧=+≠++-==0,00,),(22222222y x y x y x y x xy y x f z ,在点)0,0(,有)0,0()0,0(yx xy f f ≠,事实上,yf y f f x x y xy ∆∆∆)0,0()0,0(lim)0,0(0-+=→;xf x f f y y x yx ∆∆∆)0,0()0,0(lim)0,0(0-+=→.而0)0,0()0,0(lim)0,0(0=-+=→xf x f f x x ∆∆∆,0)0,0()0,0(lim)0,0(0=-+=→y f y f f y y ∆∆∆, y xy x y x yx x y f y x f y f x x x -=+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim ),0(),0(lim ),0(,x y y x y x x y y x f y x f x f y y y =+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim )0,()0,(lim )0,(.于是,1lim )0,0()0,0(lim)0,0(00-=-=-+=→→y yyf y f f y x x y xy ∆∆∆∆∆∆, 1lim)0,0()0,0(lim)0,0(00==-+=→→xxxf x f f x y y x yx ∆∆∆∆∆∆,即)0,0()0,0(yx xy f f ≠.那么满足什么条件得二元函数的两个二阶混合偏导数与求导顺序无关呢有下面的定理: 2. 二阶混合偏导数的性质定理:若函数),(y x f z =的两个二阶混合偏导数),(y x f xy 与),(y x f yx 在区域D 内连续,则它们在D 内必相等,即),(),(y x f y x f yx xy =.注:1°. 可推广:高阶混合偏导数在连续的条件下与求导顺序无关.2°. 一般地,若二元函数),(y x f z =的高阶混合偏导数都连续,则),(y x f z =的n 阶偏导数只有1+n 个.第三节 全微分一、全微分的相关概念1. 偏增量:称),(),(y x f y x x f z x -+=∆∆为函数),(y x f z =对x 的偏增量;称),(),(y x f y y x f z y -+=∆∆为函数),(y x f z =对y 的偏增量.2. 偏微分:称x y x f x ∆),(与y y x f y ∆),(为),(y x f z =对x 及y 的偏微分. 注:x y x f y x f y x x f x ∆∆),(),(),(≈-+,y y x f y x f y y x f y ∆∆),(),(),(≈-+.但在实际应用中,往往要知道函数的全面的变化情况,即当自变量有微小增量x ∆、y ∆时,相应的函数增量z ∆与自变量的增量x ∆、y ∆之间的依赖关系,这涉及到函数的全增量. 3. 全增量:称),(),(y x f y y x x f z -++=∆∆∆为函数),(y x f z =在点),(y x P 对应于自变量增量x ∆、y ∆的全增量.一般来讲,计算全增量z ∆是比较困难的,我们总希望像一元函数那样,利用x ∆、y ∆的线性函数来近似代替函数的全增量z ∆,为此,引入了全微分.4. 全微分:若函数),(y x f z =在点),(y x P 的某领域内有定义,且在),(y x P 的全增量),(),(y x f y y x x f z -++=∆∆∆可表示为)(ρ∆∆∆o y B x A z ++=,其中A 、B 不依赖于x ∆、y ∆,而仅与x 、y 有关,22)()(y x ∆∆ρ+=,则称),(y x f z =在点),(y x P 可微分,而称y B x A ∆∆+ 为),(y x f z =在点),(y x P 的全微分,记作dz ,即y B x A dz ∆∆+=.若),(y x f z =在区域D 内每一点都可微分,则称),(y x f z =在D 内可微分. 注:)(ρ∆o z dz -=.我们知道,当一元函数)(x f y =在点x 的微分x A dy ∆=存在时,)('x f A =,那么,当二元函数),(y x f z =在点),(y x P 的全微分y B x A dz ∆∆+=存在时,A 、B 又为何值呢下面讨论二元函数可微分与连续、可微分与偏导数存在的关系,从中得到A 、B 的值. 二、二元函数可微分与偏导数存在、可微分与连续的关系 1.函数可微分的必要条件定理 1.若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 的两个偏导数),(y x f x 及),(y x f y 必定存在,且),(y x f z =在点),(y x P 的全微分dy y x f dx y x f dz y x ),(),(+=.证明:由于),(y x f z =在点),(y x P 可微分,则有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,当0=y ∆时,有|)(|),(),(x o x A y x f y x x f z x ∆∆∆∆+=-+=,从而A xx o x A x y x f y x x f x x =+=-+→→∆∆∆∆∆∆∆|)(|lim ),(),(lim00, 即),(y x f A x =,同理可得),(y x f B y =,于是y y x f x y x f dz y x ∆∆),(),(+=.特殊地,令x y x f =),(,有1),(=y x f x ,0),(=y x f y ,从而有x dx ∆=,同理令y y x f =),(,有0),(=y x f x ,1),(=y x f y ,从而有y dy ∆=.于是有dy y x f dx y x f dz y x ),(),(+=,也称之为二元函数微分学的叠加原理.注:定理说明:函数),(y x f z =可微分,),(y x f z =一定可偏导,且全微分可用偏导数表示. 但反之未必,即偏导数存在,函数),(y x f z =未必可微分.例如:⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(处两个偏导数都存在,且)0,0()0,0(y x f f =,但),(y x f z =在点)0,0(却不可微分.事实上,假设),(y x f z =在点)0,0(可微分,则y y x f x y x f dz y x ∆∆),(),(+=,又)(ρ∆o dz z +=,从而0→-ρ∆dzz ,当0→ρ时. 而22)()(0)0,0()0,0(y x yx f y x f dz z ∆∆∆∆∆∆∆+⋅=-+++=-,有222)0,0(),(0))()((lim),(),(limy x yx x y x f y x x f y x x ∆∆∆∆∆∆∆∆∆+⋅=-+→→不存在,更谈不上等于0,从而假设不成立,即),(y x f z =在点)0,0(不可微分. 2. 函数可微分的必要条件定理2若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 连续.证明:由于),(y x f z =在点),(y x P 可微分,有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,于是有,0lim 0=→z ∆ρ.又),(y x f z =的全增量为),(),(y x f y y x x f z -++=∆∆∆,从而0),(),(lim )0,0(),(=-++→y x f y y x x f y x ∆∆∆∆,即),(),(lim)0,0(),(y x f y y x x f y x =++→∆∆∆∆,这说明),(y x f z =在点),(y x P 连续.注:函数连续,未必可微分.例如:函数22),(y x y x f z +==在点)0,0(连续,但由于偏导数不存在,从而不可微分. 3. 函数可微分的充分条件定理3若函数),(y x f z =的偏导数),(y x f x 与),(y x f y 在点),(y x 都连续,则),(y x f z =在点),(y x 可微分.注:反之未必.例如:⎪⎩⎪⎨⎧=+≠+++==0,00,1sin )(),(22222222y x y x y x y x y x f z 在点)0,0(可微分,但),(y x f x 与),(y x f y 在点)0,0(都不连续.(1).先说明),(y x f z =在点)0,0(可微分. 设0)0,0()0,0(),(=+=y f x f y x y x ∆∆∆∆ϕ,因为01sin lim )0,0()0,(lim)0,0(2200==-=→→xx x xf x f f x x x ,01sinlim )0,0(),0(lim)0,0(2200==-=→→yy y yf y f f y y y ,令2222)()(1sin])()[()0,0()0,0(y x y x f y x f u ∆∆∆∆∆∆∆++=-++=,由于01sinlim ),(lim2200==-→→ρρρρ∆∆ϕ∆ρρy x u ,其中22)()(y x ∆∆ρ+=,于是)()0,0()0,0()(),(ρ∆∆ρ∆∆ϕ∆o y f x f o y x u y x ++=+=,由全微分的定义知),(y x f z =在)0,0(可微分.(2). 再说明偏导数),(y x f x 及),(y x f y 在点)0,0(不连续. 易知 0,1cos 21sin2),(22222222≠+++-+=y x yx y x x y x x y x f x , 由于⎪⎭⎫ ⎝⎛-==→→=→2200)0,0(),(21cos 121sin 2lim ),(lim ),(limx x x x x x f y x f x x x x xy y x 不存在,从而),(y x f x 在点)0,0(不连续.同理可知)0(1cos 21sin2),(22222222≠+++-+=y x yx y x y y x y y x f y 在点)0,0(也不连续. 例1. 计算函数22y y x z +=的全微分. 解:dy y x xydx dy yzdx x z dz )2(22++=∂∂+∂∂=. 例2. 计算函数xy e z =在点)1,2(处的全微分. 解:由于xy xy xe y z ye x z =∂∂=∂∂,,有2122122,e yz e xz y x y x =∂∂=∂∂====,所以dy e dx e dz y x 22122+===.例3. 计算yz e yx u ++=2sin 的全微分. 解: dz ye dy ze y dx dz z u dy y u dx x u du yz yz +⎪⎭⎫ ⎝⎛++=∂∂+∂∂+∂∂=2cos 21.第四节 多元复合函数的求导法则一、一元函数与多元函数复合的情形定理1.若函数)(t u ϕ=及)(t v ψ=在点t 都可导,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)](),([t t f z ψϕ=在点t 可导,且dtdvv z dt du u z dt dz ⋅∂∂+⋅∂∂=.(全导数公式) 注:可推广:),,(ωv u f z =,)(t u ϕ=,)(t v ψ=,)(t ωω=复合而成的函数)](),(),([t t t f z ωψϕ=在点t 可导,且dtd z dt dv v z dt du u z dt dz ωω⋅∂∂+⋅∂∂+⋅∂∂=. 二、多元函数与多元函数复合的情形定理2. 若函数),(y x u ϕ=及),(y x v ψ=在点),(y x 具有对x 及y 的偏导数,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 的两个偏导数都存在,且xvv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂;y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 注:可推广:由),,(ωv u f z =,),(y x u ϕ=,),(y x v ψ=,),(y x ωω=复合而成的函数)],(),,(),,([y x y x y x f z ωψϕ=在点),(y x 两个偏导数都存在,且xz x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω;y z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω. 三、其它情形1. 函数),(y x u ϕ=在点),(y x 对x 及y 的偏导数都存在,函数及)(y v ψ=在点t 可导,),(v u f z =在点),(v u 具有连续偏导数,则复合函数]),,([y y x f z ϕ=在点),(y x 的两个偏导数都存在,且xuu z v z x u u z dx dv v z x u u z x z ∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=∂∂0; dydv v z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂. 2. 函数),(y x u ϕ=在点),(y x 具有对x 及y 的偏导数,),,(y x u f z =在点),,(y x u 具有连续偏导数,则复合函数],),,([y x y x f z ϕ=在点),(y x 的两个偏导数都存在,且1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂xf x u u f dx dy y f dx dx x f x u u f x z ; 1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂yf y u u f dy dy y f dy dx x f y u u f y z . 例1. 设v e z u sin =,而xy u =,y x v +=,求xz∂∂及y z ∂∂. 解:)]cos()sin([1cos sin y x y x y e v e y v e xvv z x u u z x z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂; )]cos()sin([1cos sin y x y x x e v e x v e yv v z y u u z y z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 例2.设222),,(z y xe z y xf u ++==,而y x z sin 2=,求xu ∂∂及y u ∂∂. 解:xzz f dx dy y f dx dx x f x u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y x x y x ze xe 2422222222sin 22)sin 21(2sin 222+++++++=⋅+=;yz z f dy dx x f dx dy y f y u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y y x y y x ze ye 2422222222sin 42)cos sin (2cos 22+++++++=⋅+=.例3. 设t uv z sin +=,而t e u =,t v cos =,求求导数dtdz . 解:t t u ve dtdt t z dt dv v z dt du u z dt dz t cos sin +-=⋅∂∂+⋅∂∂+⋅∂∂= t t t e t t e t e t t t cos )sin (cos cos sin cos +-=+-=.四、全微分形式不变性:若函数),(v u f z =具有连续偏导数,则有全微分dv vz du u z dt dz ∂∂+∂∂=.若函数),(y x u ϕ=及),(y x v ψ=也具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=的全微分为dy y z dx x z dt dz ∂∂+∂∂=,有dy yzdx x z dv v z du u z dt dz ∂∂+∂∂=∂∂+∂∂=,称此性质为全微分形式不变性. 事实上:dy y z dx x z dt dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x u v z dy y u dx x u u z dv v z du uz∂∂+∂∂=. 例4. 利用全微分形式不变性求xu∂∂与y u ∂∂,其中v e z u sin =,xy u =,y x v +=. 解:由于vdv e vdu e v e d dz u u u cos sin )sin (+==, 而 xdy ydx xy d du +==)(,dy dx y x d dv +=+=)(, 于是dy v e x v e dx v e y v e dz u u u u )cos sin ()cos sin (+⋅++⋅=,即dy y x y x x e dx y x y x y e dy yzdx x z xy xy )]cos()sin([)]cos()sin([+++++++=∂∂+∂∂, 比较两端dx 、dy 的系数得:)]cos()sin([y x y x y e xzxy +++=∂∂, )]cos()sin([y x y x x e xzxy +++=∂∂.第五节 隐函数的求导公式一、隐函数:称对应关系不明显,而是隐含在方程(方程组)中的函数(函数组)为由方程(方程组)确定的隐函数(隐函数组).注:并不是每一个方程都能确定一个隐函数,例如:01242=+++z y x . 二、隐函数存在定理 1.由一个方程确定的隐函数定理 1.若函数),(y x F 在点),(00y x P 的某一邻域内具有连续偏导数,且0),(00=y x F ,0),(00≠y x F y ,则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续可导的函数)(x f y =,满足)(00x f y =,且yx F Fdx dy -=. 注:若),(y x F 的二阶偏导数也连续,则有 dxdy F F y dx dx F F x dx y d y x y x ⎪⎪⎭⎫ ⎝⎛-∂∂+⎪⎪⎭⎫ ⎝⎛-∂∂=22 ⎪⎪⎭⎫⎝⎛-----=y x y x yy y xy y xyx y xx F F F F F F F F F F F F 223222y x yy y x xy y xx F F F F F F F F +--=.定理2. 若函数),,(z y x F 在点),,(000z y x P 的某一邻域内具有连续偏导数,且0),,(000=z y x F ,0),,(000≠z y x F z ,则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =,满足),(000y x f z =,且zx F Fx z -=∂∂,z y F F y z -=∂∂. 例1. 设0122=-+y x ,求dxdy及22dx y d .解:令1),(22-+=y x y x F ,则x F x 2=,y F y 2=,从而yxF F dx dy y x -=-=. 33222221'yy x y y xy y y x dx d dx y d -=+-=--=⎪⎪⎭⎫ ⎝⎛-=. 例2.设04222=-++z z y x ,求22xz∂∂.解:设z z y x z y x F 4),,(222-++=,则x F x 2=,42-=z F z ,于是zxF F x z z x -=-=∂∂2,从而 3222222)2()2()2(2)2()2()2(z x z z z x x z z x z x z x z -+-=--⋅+-=-⎪⎭⎫ ⎝⎛∂∂---=∂∂. 2.由方程组确定的隐函数组定理3. 若函数),,,(v u y x F 与),,,(v u y x G 在点),,,(0000v u y x P 的某一邻域内具有对各个变量的连续偏导数,又0),,,(0000=v u y x F ,0),,,(0000=v u y x G ,且函数行列式vu v uG G F F v u G F J =∂∂=),(),(在点),,,(0000v u y x P 不等于零,则方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 在点),,,(0000v u y x P 的某一邻域内恒能确定唯一一组连续且具有连续偏导数的函数组⎩⎨⎧==),(),(y x v v y x u u ,且v uv u v xvxG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1,vuv u xu x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1;vuv u v y v yG G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1,vuv u y u y u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1.例3. 设0=-yv xu ,1=+xv yu ,求xu ∂∂、y u ∂∂、x v ∂∂、和y v ∂∂. 解:设方程组⎩⎨⎧=+=-1xv yu yv xu ,两端对x 求导得:⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=∂∂-∂∂+00v x v x x u y x v y x u x u 或⎪⎪⎩⎪⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂v x v x x u y u xv y x u x , 在022≠+=-=y x xyy x J 的条件下,有22y x yv xu x y y x x v yu x u ++-=-----=∂∂,22y x xvyu xy y x v y ux x v +--=----=∂∂;同理可得22y x yu xv y u +-=∂∂,22y x yv xu y v ++-=∂∂.第六节 多元函数微分学的几何应用一、一元向量值函数及其导数1. 一元向量值函数的定义: )(t f r =,D t ∈(数集),n R ∈. 注:1°. 在3R 中,))(),(),(()()()()(321321t f t f t f t f t f t f t f =++==.2°. 向量值函数)())(),(),(()(321D t t f t f t f t f r ∈==称为曲线⎪⎩⎪⎨⎧===)()()(:321t f z t f y t f x Γ的向量方程.2. 一元向量值函数的极限:设向量值函数)(t f 在点0t 的某一去心邻域内有定义,若存在常向量0,0>∀ε,0>∃δ,t ∀:满足δ<-<||00t t ,总有ε<-|)(|0t f ,则称0为)(t f 当0t t → 时的极限,记作0)(lim 0t f t t =→.注:)(lim 0t f t t →存在⇔)(lim 10t f t t →、)(lim 20t f t t →、)(lim 30t f t t →都存在.⎪⎭⎫ ⎝⎛=→→→→)(lim ),(lim ),(lim )(lim 3210000t f t f t f t f t t t t t t t t . 3. 一元向量值函数的连续性:设向量值函数)(t f 在点0t 的某一邻域内有定义,若)()(lim 00t f t f t t =→,则称向量值函数)(t f 在点0t 连续.注:)(t f 在点0t 连续⇔)(1t f 、)(2t f 、)(3t f 点0t 连续.4.一元向量值函数的导数(导向量):设向量值函数)(t f r =在点0t 的某一邻域内有定义,若tt f t t f t t t ∆∆∆∆∆∆)()(lim lim0000-+=→→存在,则称此极限值为)(t f 在点0t 的导数或导向量,记作)('t f 或x t dtr d =.注:1°. )(t f 在点0t 可导⇔)(1t f 、)(2t f 、)(3t f 点0t 都可导.t f t f t f t f )()()()(''3'2'1++=.2°. 一元向量值函数的导向量的几何意义:tt f t ∆∆∆00lim)('→=是向量值函数)(t f =的终端曲线Γ在点)(0t M 处的一个切向量,其指向与t 的增长方向一致.例1.设t t t t f ++=)(sin )(cos )(,求)(lim 4/t f t π→.解:k t j t i t t f t t t t )lim ()sin lim ()cos lim ()(lim 4/4/4/4/ππππ→→→→++=k 422π++=. 例2.设空间曲线Γ的向量方程为R t t t t t t f ∈--+==),62,34,1()(22,求曲线Γ在点20=t 相应的点处的单位切向量.解:由于)64,4,2()('-=t t t f ,有)2,4,4()2('=f ,进而6244|)2('|222=++=f ,于是⎪⎭⎫⎝⎛==31,32,32)2,4,4(611n 为指向与t 的增长方向一致的单位切向量.⎪⎭⎫⎝⎛---=31,32,322n 为指向与t 的增长方向相反的单位切向量.二、空间曲线的切线与法平面1. 参数式情形:设空间曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,],[βα∈t ,假设)(t ϕ、)(t ψ以及)(t ω在],[βα上可导,且三个导数不同时为零.(1). 切线:曲线Γ上的一点),,(000z y x M 处的切线方程为:)(')(')('000t z z t y y t x x ωψϕ-=-=-,参数0t 对应点),,(000z y x M .推导:由于曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,记向量值函数))(),(),(()(t t t t f ωψϕ=,由向量值函数导数的几何意义知:向量)('),('),('()('0000t t t t f T ωψϕ==即为曲线Γ在其上的点),,(000z y x M 处的一个切向量,从而曲线Γ在其上的点),,(000z y x M 处的切线方程为:)(')(')('000000t z z t y y t x x ωψϕ-=-=-. (2). 法平面:通过曲线Γ上的点),,(000z y x M 而与曲线Γ在点M 处的切线垂直的平面方程称为曲线Γ在点M 处的法平面,方程为0))(('))(('))(('000000=-+-+-z z t y y t x x t ωψϕ.其中法向量为))('),('),('()(0000t t t t f ωψϕ==.2. 特殊式情形:设空间曲线Γ的方程为⎩⎨⎧==)()(x z x y ψϕ,且)(x ϕ、)(x ψ在点0x x =处可导,曲线Γ的方程可改写为⎪⎩⎪⎨⎧===)()(x z x y x x ψϕ,x 为参数,从而曲线Γ在点),,(000z y x M 处的切线与法平面方程分别为: (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.3. 一般式(隐函数)情形:设曲线Γ的方程为⎩⎨⎧==0),,(0),,(z y x G z y x F ,),,(000z y x M 为曲线Γ上的一点,又设F 、G 有对各个变量的连续偏导数,且0),(),(≠∂∂Mz y G F ,这时方程组在点),,(000z y x M 的某一邻域内确定了一组隐函数⎩⎨⎧==)()(x z x y ψϕ,从而曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()(x z x y xx ψϕ,x 为参数,于是切向量为))('),(',1(00x x T ψϕ=⎪⎪⎭⎫ ⎝⎛=M z yzy Myxy x Mzyz y Mx z x z G G F F G G F F G G F F G G F F ,,1⎪⎪⎭⎫ ⎝⎛=M yxy x M x zxzM z y z y Mzyz y G G F F G G F FG G F F G G F F ,,1. (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.例3. 求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-处的切线与法平面方程.解:在方程组⎩⎨⎧=++=++06222z y x z y x 两端对x 求导,得⎪⎪⎩⎪⎪⎨⎧=++=++010222dx dz dx dy dx dz z dx dy y x ,整理得⎪⎪⎩⎪⎪⎨⎧-=+-=+1dxdz dx dy x dxdz z dx dyy , 于是z y x z z y z x dx dy --=--=1111,0)1,2,1(=-dx dy ;z y y x z y xy dx dz --=--=1111,1)1,2,1(=-dx dz,故切向量为)1,0,1(=T ,从而所求切线方程为:110211--=+=-z y x ,或⎪⎩⎪⎨⎧-=--=-21111y z x .法平面方程为0)1()2(0)1(=--++-z y x 或0=-z x .三、曲面的切平面与法线 1.定义(1). 切平面:若曲面∑上通过点M 的一切曲线在点M 的切线都在同一个平面上,则称此平面为曲面∑在点M 的切平面.(2). 法线:通过点M 且与切平面垂直的直线称为曲面∑在点M 的法线. 2. 切平面与法线方程(1). 一般式情形:设曲面∑的方程为0),,(=z y x F ,点),,(000z y x M 为其上一点,且函数),,(z y x F 的偏导数在点M 连续.切平面方程:0))(())(())((000=-+-+-z z M F y y M F x x M F z y x ;法线方程:)()()(000M F z z M F y y M F x x z y x -=-=-. 推导:在曲面∑上过点M 任意引一条曲线Γ,设其参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,且函数)(t x ϕ=、)(t y ψ=以及)(t z ω=在0t t =都可导,0t t =对应点),,(000z y x M ,有方程0))(),(),((=t t t F ωψϕ, 两端对x 求导,在0t t =处,有0)('),,()('),,,()('),,(000000000000=++t z y x F t z y x F t z y x F z y x ωψϕ. 记()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =.又))('),('),('(000t t t T ωψϕ=为曲线Γ在点),,(000z y x M 处的切向量,由上式可知0=⋅,即曲面∑上通过点),,(000z y x M 的任意一条曲线的切向量都垂直于同一个向量,从而这些切线都在同一平面上,即曲面∑在点),,(000z y x M 的且平面存在,该切平面以向量()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =为一法线向量.(2). 特殊式 (显函数) 情形:曲面∑:),(y x f z =,且函数),(y x f 的偏导数在点),(00y x 连续.切平面方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x .法线方程:1),(),(0000000--=-=-z z y x f y y y x f x x •y x .推导:记0),(),,(=-=z y x f z y x F ,有),(),,(y x f z y x F x x =,),(),,(y x f z y x F y y =,1),,(-=z y x F z ,故有法向量()1),,(),,(0000-=y x f y x f N y x .例4. 求球面14222=++z y x 在点)3,2,1(处的且平面及法线方程.解:设14),,(222-++=z y x z y x F ,有x z y x F x 2),,(=,y z y x F y 2),,(=,z z y x F z 2),,(=,故所求切平面的法向量为())6,4,2(2,2,2)3,2,1(==z y x ,于是所求切平面方程为:0)3(6)2(4)1(2=-+-+-z y x ,即01432=-++z y x ,法线方程为:332211-=-=-z y x •,即321zy x •==.例5. 求旋转抛物面122-+=y x z 在点)4,1,2(处的切平面即法线方程.解:设1),(22-+=y x y x f ,有x y x f x 2),(=,y y x f y 2),(=,于是所求切平面的法向量为())1,2,4(1,2,2)4,1,2(-=-=y x N .从而所求切平面方程为0)4()1(2)2(4=---+-z y x ,即0624=--+z y x ,法线方程为142142--=-=-z y x •.第七节 方向导数与梯度引入:由函数),(y x f 在点),(000y x P 的偏导数的几何意义可知:偏导数),(00y x f x 、),(00y x f y 只是函数),(y x f 过点),(000y x P 沿平行坐标轴法线的变化率.但在实际应用中,往往要求我们知道函数),(y x f 在点),(000y x P 沿任意确定的方向的变化率,以及沿什么方向函数的变化率最大,这就涉及到函数的方向导数和梯度. 一、方向导数1. 定义:设函数),(y x f 在点),(000y x P 的某个邻域)(0P U 内有定义,)sin ,cos (000ααt y t x P ++为过点),(000y x P 的射线l ()sin ,(cos αα=l e )上另一点,且)(0P U P ∈.若极限ty x f t y t x f t ),()sin ,cos (lim 00000-+++→αα存在,则称此极限为函数),(y x f z =在点),(000y x P 沿方向l 的方向导数,记作),(00y x lf ∂∂.注:若函数),(y x f 在点),(000y x P 的偏导数存在,且i e l ==)0,1(,则),(),(),(lim 0000000),(00y x f ty x f y t x f lf x t y x =-+=∂∂+→.若函数),(y x f 在点),(000y x P 的偏导数存在,且j e l ==)1,0(,则),(),(),(lim 0000000),(00y x f ty x f t y x f lf y t y x =-+=∂∂+→.2. 方向导数的存在性定理:若函数),(y x f 在点),(000y x P 可微分,则函数),(y x f 在点),(000y x P 沿任意方向l 的方向导数都存在,且有βαcos ),(cos ),(0000),(00y x f y x f lf y x y x +=∂∂,其中αcos 、βcos 的方向余弦.注:1°. 可推广:若函数),,(z y x f 在点),,(0000z y x P 可微分,则),,(z y x f 在点0P 沿方向)cos ,cos ,(cos γβα=l e 的方向导数为γβαcos ),,(cos ),,(cos ),,(000000000),,(000z y x f z y x f z y x f lf z y x z y x ++=∂∂.2°. 方向导数存在,函数未必可微分.例如:22),(y x y x f +=在点)0,0(沿方向)cos ,(cos βα=l e 的方向导数都存在,但),(y x f 在点)0,0(不可微分.事实上:由于1lim )0,0()cos 0,cos 0(lim 00==-++++→→t ttf t t f t t βα,从而22),(y x y x f +=在点)0,0(沿方向l 的方向导数都存在.但22),(y x y x f +=在点)0,0(的两个偏导数都不存在,从而不可微分. 例1. 求函数y xe z 2=在点)0,1(P 处从点)0,1(P 到)1,2(-Q 方向的方向导数.解:由题可知方向l 就是向量)1,1(-=的方向,有⎪⎭⎫ ⎝⎛-=21,21l e .又1)0,1(2)0,1(==∂∂ye xz,22)0,1(2)0,1(==∂∂yxe yz ,故所求方向导数为22212211)0,1(-=⎪⎭⎫⎝⎛-⋅+⋅=∂∂lz . 例 2.求zx yz xy z y x f ++=),,(在点)2,1,1(沿方向l 的方向导数,其中l 的方向角分别为o o o 60,45,60.解:由题可知与方向l 同向的单位向量为⎪⎪⎭⎫⎝⎛==21,22,21)60cos ,45cos ,60(cos o o o l ,又3)()2,1,1()2,1,1(=+=z y f x ,3)()2,1,1()2,1,1(=+=z x f y ,2)()2,1,1()2,1,1(=+=x y f z , 故所求方向导数为)235(21212223213)2,1,1(+=⋅+⋅+⋅=∂∂lf.二、梯度1.梯度的定义:设函数),(y x f 在平面区域D 内具有一阶连续偏导数,对每一个点D y x P ∈),(000,称向量y x f y x f y x ),(),(0000+为函数),(y x f 在点),(000y x P 的梯度,记作),(00y x f grad ,或),(00y x f ∇,即j y x f i y x f y x f y x f grad y x ),(),(),(),(00000000+=∇=. 注:可推广:k z y x f j z y x f i z y x f z y x f z y x f grad z y x ),,(),,(),,(),,(),,(000000000000000++=∇=. 2.梯度与方向导数的关系(1).沿梯度方向,方向导数达到最大值; (2).梯度的模为方向导数的最大值.推导:设)cos ,(cos βα=l ,若函数),(y x f 在点),(000y x P 可微分,则),(y x f 在点0P 沿方向l 的方向导数为βαcos ),(cos ),(0000),(00y x f y x f lfy x y x +=∂∂)),,((cos |||),(|),(000000∧⋅⋅=⋅=l l l e y x f grad e y x f grad e y x f gradθ∆cos |||),(|00⋅⋅=l e y x f grad .1. 当0=θ时,|),(|00),(00y x f grad lf y x =∂∂.这说明函数),(y x f 在一点),(y x 的梯度),(y x f grad 是这样一个向量,它的方向是),(y x f 在这点的方向导数取得最大值的方向,它的模等于方向导数的最大值.2. 当πθ=时,有l e 与),(00y x f grad 的方向相反,函数),(y x f 减小最快,),(y x f 在这个方向上的方向导数达到最小值,|),(|00),(00y x f grad lfy x -=∂∂.3. 当2πθ=时,有l e 与),(00y x f 的方向正交,函数),(y x f 的变化率为零,即0cos |),(|00),(00==∂∂θy x f grad lf y x .例3. 求221y x +.解:令221),(y x y x f +=,有222)(2),(y x x y x f x +-=,222)(2),(y x yy x f x +-=,于是j y x yi y x x y x grad22222222)(2)(21+-++-=+. 例4.设)(21),(22y x y x f +=,)1,1(0P ,求(1). ),(y x f 在0P 处增加最快的方向以及),(y x f 沿这个方向的方向导数; (2). ),(y x f 在0P 处减少最快的方向以及),(y x f 沿这个方向的方向导数; (3). ),(y x f 在0P 处变化率为零的方向.解:(1). ),(y x f 在点)1,1(0P 处沿)1,1(f ∇的方向增加最快,由于j i j y i x f +=+=∇)1,1()()1,1(,故所求方向可取为f 2121)1,1(+=∇=2|)1,1(|)1,1==f . (2). ),(y x f 在点)1,1(0P 处沿)1,1(f -的方向减少最快,故所求方向可取为j i n n 21211--=-=2|)1,1(|)1,1-=∇-=f .(3). ),(y x f 在点)1,1(0P 处沿垂直于)1,1(f 的方向变化率为零,故所求方向为21212+-=或21213-=.第八节 多元函数的极值及其求法引入:在一元函数微分学中,我们讨论了一元函数的极值和最值问题,但在许多实际问题中,往往会遇到多元函数的极值和最值问题,我们以二元函数为例来讨论多元函数的极值与最值问题.一、二元函数的极值与最值1. 极值:二元函数),(y x f 的定义域为D ,),(000y x P 为D 的内点,若存在0P 的某个邻域D P U ⊂)(0,)(),(0P U y x P ∈∀,且),(),(000y x P y x P ≠,都有),(),(00y x f y x f <(),(),(00y x f y x f >),则称),(y x f 在点0P 有极大值(极小值).点),(000y x P 称为函数),(y x f 的极大值点(极小值点). 统称极大值、极小值为极值;使函数取得极值的点称为函数的极值点.2. 最值:设函数),(y x f 的定义域为D ,若存在D y x P ∈),(000,D y x P ∈∀),(,都有),(),(00y x f y x f ≤(),(),(00y x f y x f ≥),则称),(00y x f 为),(y x f 在D 上的最大值(最小值). 注:1°. 极值是一个局部概念,最值是一个整体概念.2°. 极值与最值的关系:极值可以是最值,但最值未必是极值. 例1. 函数2243y x z +=在点)0,0(取得极小值,也是最小值. 例2. 函数22y x z +-=在点)0,0(取得极大值,也是最大值. 例3.函数xy z =在点)0,0(既不取得极大值,也不取得极小值.由此可见,并不是每一个函数在其定义域上都有极值点,那么什么样的点可能是函数的极值点呢又如何判断函数在该极值点处取得极大值还是极小值呢下面我们来学习极值点的必要条件和充分条件,从中得到这些问题的答案. 二、极值点的条件。
高数下(同济六)知识点汇总
高等数学下册习题常见类型
题型1求向量的坐标、模、方向角、方向余弦、数量积、向量积
题型2由已知条件求平面与直线方程
题型3计算一阶偏导数及高阶偏导数
题型4求多元复合函数的偏导数
题型5求方程所确定的隐函数的偏导数
题型6求方向导数、梯度、曲线的切线、曲面的切平面
题型7求极值、利用拉格郎日乘数法求最值
题型8利用直角坐标计算二重积分
题型9利用极坐标计算二重积分
题型10计算带绝对值的二重积分
题型11利用二重积分证明恒等式
题型12利用对称性质计算二重积分
题型13 只有一种积分次序可计算的积分
题型14利用投影法计算三重积分
题型15 利用柱坐标计算三重积分
题型16利用球坐标计算三重积分
题型17利用切片法计算三重积分
题型18利用三重积分计算立体的体积
题型19计算对弧长的曲线积分
题型20计算对面积的曲面积分
题型21计算对坐标的曲线积分
题型22利用格林公式计算对坐标的曲线积分
题型23曲线积分与路径无关及全微分求积
解:(将二次积分交换顺序)
题型24计算对坐标的曲面积分
题型25利用高斯公式计算对坐标的曲面积分
题型26可分离变量的微分方程、齐次方程题型27—阶线性微分方程题型29可降阶方程
题型30二阶常系数非齐次线性方程
第八章向量与解析几何
所有类型的积分:
①定义:四步法一一分割、代替、求和、取极限;
②性质:对积分的围具有可加性,具有线性性;
③对坐标的积分,积分区域对称与被积函数的奇偶性。
第十章级数。
高数下(同济六)知识点
高数下(同济六)知识点高等数学下册习题常见类型题型 1 求向量的坐标、模、方向角、方向余弦、数量积、向量积题型2 由已知条件求平面与直线方程题型3 计算一阶偏导数及高阶偏导数题型4 求多元复合函数的偏导数题型5 求方程所确定的隐函数的偏导数题型 6 求方向导数、梯度、曲线的切线、曲面的切平面题型7 求极值、利用拉格郎日乘数法求最值题型8 利用直角坐标计算二重积分题型9 利用极坐标计算二重积分题型10 计算带绝对值的二重积分题型11 利用二重积分证明恒等式题型12 利用对称性质计算二重积分题型13 只有一种积分次序可计算的积分例1、求24212xdx dx +⎰⎰解:(将二次积分交换顺序)12212242122211sin sin sin sin (1)sin cos1sin1xD D y y D D y ydx dx dxdy dxdyy y yy dxdy dy dx y ydy y y πππππ+=+===-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰U题型14 利用投影法计算三重积分 题型15 利用柱坐标计算三重积分 题型16 利用球坐标计算三重积分 题型17 利用切片法计算三重积分 题型18 利用三重积分计算立体的体积 题型19 计算对弧长的曲线积分 题型20 计算对面积的曲面积分 题型21 计算对坐标的曲线积分题型22 利用格林公式计算对坐标的曲线积分 题型23 曲线积分与路径无关及全微分求积 题型24 计算对坐标的曲面积分题型25 利用高斯公式计算对坐标的曲面积分 题型26 可分离变量的微分方程、齐次方程 题型27一阶线性微分方程题型29 可降阶方程题型30二阶常系数非齐次线性方程第八章 向量与解析几何向量代数定义定义与运算的几何表达 在直角坐标系下的表示向量 有大小、有方向. 记作a 或AB u u u ra (,,)xyzxyza i a j a k a a a =++=,,x x y y z za prj a a prj a a prj a ===r r r 模 向量a 的模记作aa 222x y za a a =++ 和差c a b =+ c a b =-=+c a b {},,=±±±x x y y z z a b a b a b单位向量a ≠,则a a e a=a e 222(,,)=++x y z x y za a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,cos cos y x za a aa a a αβγ===r r r ,cos ,coscos a e αβγ=(,cos ,cos )222cos 1αβγ+=+cos cos点乘(数量θcos b a b a =⋅, θ为向量a 与b 的夹角zz y y x x b a b a b a ++=⋅b a平面薄片的质量质量=面密度⨯面积21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤ 0θπ≤≤ 2πθπ≤≤(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论) 110(,)(,)(,)2(,)(,)(,)(,)D f x y x f x y f x y I f x y dxdyf x y x f x y f x y D D ⎧⎪⎪-=-⎪⎪=⎨⎪⎪-=⎪⎪⎩⎰⎰对于是奇函数,即对于是偶函数,即是的右半部分P141—例2应用该性质更方便计算步骤及注意事项1. 画出积分区域2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙4. 确定积分限 方法:图示法先积一条线,后扫积分域5. 计算要简便 注意:充分利用第十一章曲线积分与曲面积分所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学复习(2012.6.12)一、选择题1. 判断极限=+→→22200lim y x yx y x ( ) A.0 B .1 C.不存在 D.无法确定 2.设()||x x f =∑∞==cos n nx a,[]ππ,-∈x ,则=0a ( ).A.π2B.2πC.πD.0 3.若()x f 是周期为π2的奇函数,其傅立叶级数为nx b nx a a n n n sin cos 210∑∞=++,则=n b ( )A.0B.()⎰ππsin 2nxdx x f C. ()⎰-πππnxdx x f sin 2D. ()⎰ππ0cos 2nxdx x f4.设⎩⎨⎧=++=++Γ09222z y x z y x :,则()=++⎰Γds z y x 222( ) A.π108 B.π216 C.π54 D.π365.二次积分()⎰⎰θπθθθcos 020sin ,cos d rdr r r f 可化为( )A.()⎰⎰2-01,d y y dx y x f y B.()⎰⎰2-101,d y dx y x f y C.()⎰⎰1010,d dx y x f y D. ()⎰⎰2-01,d x x dy y x f x6.若()y x f ,在点()00,y x 处的偏导数存在,则()y x f ,在此点处( ) A.有极限 B.连续 C.可微 D.以上都不对7.曲面xy z =2在点()2,4,1处的切平面方程是( )A.04=+y xB.044=-+z y xC.04=++z y xD.04=++z y x 8.函数()y x f ,在点()00,y x 连续是()y x f ,在点()00,y x 偏导数存在的( )条件。
A .充分必要 B .充分不必要 C .必要不充分 D .无关 9.设()22,y x y x y x f -=-+,则=∂∂+∂∂yf x f ( ) A .()y x -2 B .()y x +2 C .y x - D .y x + 10.设区域0,1:22≥≤+x y x D ()y x f ,,在D 上连续,则()⎰⎰+Ddxdy y x f 22=( )A.()⎰102dr r rf πB.()⎰10dr r f π C. ()⎰12dr r f π D. ()⎰1dr r rf π11.设有界闭区域1D 与2D 关于y 轴对称,()v u f ,在区域21D D D +=上连续,则()=⎰⎰Ddxdy y x f ,2A .()⎰⎰1,22D dxdy y x f B .0 C .()⎰⎰1,42D dxdy y x f D .()⎰⎰1,212D dxdy y x f 12.设}2:),{(22≤+=y x y x D ,则()=+⎰⎰Ddxdy y x22( )A .⎰⎰πθ2023dr r d B .⎰⎰πθ2023dr r d C .⎰⎰πθ2022dr r d D .⎰⎰πθ2022dr r d13.设()12:22=+-y x L ,取正方向,则=+-⎰Ly x ydxxdy 22( ) A.π B.π2 C.0 D.1 14.设L 为连接点()0,1和()1,0的直线段,则()=+⎰Lds y x ( )A .1B .2C .2D .3 15.设L 为曲线x y =2上从点()1,1-A 到点()1,1B 的一段弧,则=⎰Lxydx ( )A .1B .0C .4.0D .8.0 16.级数∑+∞=1n nu收敛的充分条件是( )A. 1lim1<+∞→nn n u u B.前n 项和n S 有界 C. 0lim =∞→n n u D. ()n n u u u +++∞→...lim 21存在17.下列级数中条件收敛是( ) A .∑∞=12sinn nπB .∑∞=12cosn nπC .()∑∞=-1311n nnD .()()∑∞=+-1111n nn n18.下列级数中收敛的是( )A .∑∞=1ln 1n n n B .∑∞=+121n n n C .∑∞=+151n n n D .∑∞=1cos n n π 19.设k 为正数,则∑∞=+-123)1(n nnnk ( ) A. 发散 B. 绝对收敛 C. 条件收敛 D. 敛散性与k 有关 20.设nn nx a∑∞=0在2-=x 处为条件收敛,则级数11-∞=∑n n n nx a 在1=x 处( )A. 必发散B. 条件收敛C. 绝对收敛D. 敛散性无法确定 二、填空题21. 过原点且垂直于平面022=+-z y 的直线为 22. 设}2,0,1{-=a ,}1,1,3{-=b ,则b a ⨯=23.()()x xyy x +→9-3lim,10,=24.设),2ln(),(xyx y x f +=则=)0,1('y f25.设()x f y =是由122=+y x 所确定的函数,则=dxdy; 26.曲线32,,t z t y t x ===在点()1,1,1处的法平面方程是___________________; 27.曲线22y x z +=在点)2,1,1(处的切平面方程是_____________ 。
28.()y x f ,=1424222++++-y x y xy x 的极小值点为____________。
29.交换二重积分积分次序,()_______________________,110=⎰⎰xdy y x f dx 。
30.设0,:222≥≤+x a y x D ,则=⎰⎰Ddxdy y x a 222--____________。
31.设C 是以原点为圆形半径为a 的圆,则()=+⎰CdS y x22____________________。
32.设L 是椭圆116922=+y x ,逆时针方向,则()()=+-+-+⎰Ldx y x dy y x 123132___。
33. 设ydy x dx xy du k+=2,则()________,=y x u 。
34.当a 满足条件_____________时,级数()∑∞+=-+-1111n a n n 条件收敛;35.设级数∑∞=-+-111)1(n a n n 为条件收敛,则a 的取值范围为 . 36.设级数∑∞=13n n u 收敛,则=∞→n n u lim_______。
37.幂级数∑∞=+121n nn x 的收敛区间是______。
38.已知∑∞=-1)(n nn a x 在2=x 收敛,则a 的取值范围是_____________.39.设∑+∞==12cos n n nx a x ,[]ππ,-∈x ,则()∑+∞=11-n n na =_______.40.设()xe xf x-1=,则()='''0f _____________.三、计算题41.设()xy y x f z sin ,22+=可微,求dz 42.设xy y x z ++=22,其中te y t x ==,sin ,求0=t dt dz43.求二重积分⎰⎰Dxdxdy ,其中D 是由曲线x y =与x y=2所围城的区域;44.计算积分()⎰⎰+Ddxdy y x 232,其中4:22≤+y x D 。
45.计算三重积分()⎰⎰⎰Ω+dV y x22,其中Ω是由曲面z y x 222=+以及平面2=z 所围城的闭区域;46.计算dV z ⎰⎰⎰Ω,其中Ω由曲面z y x222=+及平面2=z 围成.47.求球面25222=++z y x 被平面4=z 截得的上半部分曲面的面积. 48.设L 为),sin (cos t t t a x +=)cos (sin t t t a y -=π20,≤≤t ,求ds y x L⎰+)(22.49.设L 圆周22x x y -=上从点()0,0到()1,1 一段弧,求()()⎰+--Ldy y x dx y x cos 3.50.计算⎰⎰∑zdxdy x 2,其中∑是上半球面2222R z y x =++()0≥z 的上侧. 51.计算⎰⎰∑++zdxdy ydxdz xdydz ,其中∑是圆锥面()a z z y x ≤≤=+0,222的下侧. 52.将函数()2312+-=x x x f 在3=x 处展开成幂级数。
53.将函数()xx f 3=展开成x 的幂级数,并求∑∞=0!3ln n n n .54.级数∑∞=⎪⎪⎭⎫⎝⎛+121sin n n n π的收敛性,若收敛,指出是条件收敛还是绝对收敛.55. 求幂级数∑+∞=13n n nn x 的和函数与收敛区间.四、证明题56.设⎪⎭⎫ ⎝⎛x z z y f ,=0确定z 是y x ,的函数,f 具有连续的偏导数且()0,/≠v u f v ,证明: z yz y x z x =∂∂+∂∂. 57.设()⎰=πx dx xx x f sin ,证明:()20=⎰πdx x f .58.已知)0(0≥∑∞=n n n a a 收敛,试证明:∑∞=1n n na 也收敛.59.证明积分()()⎰++lx xdy y e x dx xy y ecos -2sin 2与路径无关。
60.证明不等式:2210101D(sin y cos x )dxdy D :x ,y ≤+≤≤≤≤≤⎰⎰其中正方形域:。