2011长宁区初三数学一模(免费)

合集下载

2023-2024学年上海市长宁区九年级上学期期末考数学试卷(中考一模)含详解

2023-2024学年上海市长宁区九年级上学期期末考数学试卷(中考一模)含详解

2023学年第一学期初三数学教学质量调研试卷(考试时间:100分钟满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.512AC BC -= B.12AC AB -= C.512BC AB -= D.352BC AC =4.已知a为非零向量,且3a b =-,那么下列说法错误的是()A.13a b=-B.3b a = C.30b a += D.b a∥5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①②B.②③C.①③D.①②③二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.8.式子2cos30tan45︒-︒的值是______.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯13.已知向量a 与单位向量e 方向相反,且3a = ,那么a =____________________(用向量e 的式子表示)14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF ;(2)先化简,再求作:()()3222a b a b +-+(直接作在图中).21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.2023学年第一学期初三数学教学质量调研试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α【答案】B【分析】本题考查了锐角三角函数的定义的应用,主要考查学生的理解能力和计算能力.画出图形,根据锐角三角函数的定义求出即可.【详解】解:cot ACBCα=,∴cot cot AC BC a αα=⋅=⋅,故选:B .2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的【答案】D【分析】本题考查二次函数的性质、二次函数图象上点的坐标特征,根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确.【详解】解:∵抛物线223y x x =+-,∴20a =>,在对称轴左侧,该抛物线下降,在对称轴右侧上升,故选项A 、B 、C 均错误,不符合题意,选项D 正确,符合题意;故选:D .3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.12AC BC -= B.12AC AB -= C.12BC AB -= D.32BC AC =【答案】B【分析】本题考查黄金分割、解一元二次方程,把AB 当作已知数求出AC ,求出BC ,再分别求出各个比值,根据结果判断即可.【详解】解:令AC x =,()0AB a a =>,则BC a x =-,2AC BC AB =⋅可变形为()2x a x a =-⋅,整理,得220x ax a +-=,()2224150a a a ∆=-⨯⨯-=>,解得22a a x -±-±==,边长为正数,∴)122a a x --+==,)(1322a a a x a -=-=,即512AC AB -=⋅,352BC AB =⋅,∴23525112A ABC BC -⋅=+==,故A选项错误;122ABACABAB -==,故B选项正确;3322BC B B ABA A -==⋅,故C选项错误;251B ABC AC =-==,故D 选项错误;故选B .4.已知a 为非零向量,且3a b =- ,那么下列说法错误的是()A.13a b=-B.3b a= C.30b a += D.b a∥【答案】C【分析】本题考查了实数与向量相乘,向量的相关定义,根据其运算法则进行计算即可求解.【详解】解:A .∵a 为非零向量,且3a b =- ,∴13a b =- ,正确,故本选项不符合题意;B .∵a 为非零向量,且3a b =-,∴3b a = ,正确,故本选项不符合题意;C .∵a 为非零向量,且3a b =- ,∴30b a += ,原说法错误,故本选项符合题意;D .∵a 为非零向量,且3a b =-,∴b a ∥,故本选项不符合题意;故选:C .5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =【答案】C【分析】根据各个选项的条件只要能推出AD AE AB AC =或AB ACAD AE=,即可得出△ADE ∽△ABC ,推出∠ADE=∠B ,根据平行线的判定推出即可.【详解】解:A 、根据23AD BD =和23CE AE =,不能推出DE ∥BC ,故本选项错误;B 、根据23AD AB =和23DE BC =,不能推出DE ∥BC ,故本选项错误;C 、∵12EC AE =,∴32AC AE =,∵32AB AD =,∴AB AD =ACAE∵∠A=∠A ,∴△ABC ∽△ADE ,∴∠ADE=∠B ,∴DE ∥BC ,故本选项正确;D 、根据AB AD =43和AE EC =43,不能推出DE ∥BC ,故本选项错误;故选C .【点睛】本题考查了相似三角形的性质和判定,平行线的判定的应用,解题的关键是推出△ABC ∽△ADE .6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①② B.②③C.①③D.①②③【答案】A【分析】本题考查添加条件证明三角形相似,根据ADC △与'''A D C △相似,可得C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',再根据相似三角形的判定方法逐项判断即可.【详解】解: ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,∴C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',①AD A D ''、分别是ABC 与A B C ''' 的角平分线时:2BAC DAC ∠=∠,2B A C D A C ''''''∠=∠,∴BAC B A C '''∠=∠,又∴C C '∠=∠,∴ABC A B C '''∽ ;故①正确;②AD A D ''、分别是ABC 与A B C ''' 的中线时,2BC DC =,2B C D C ''''=,∴BC DCB C D C='''',∴AC BCA CBC ='''',又∴C C '∠=∠,∴ABC A B C '''∽ ;故②正确;③AD A D ''、分别是ABC 与A B C ''' 的高时,现有条件不足以证明ABC A B C '''∽ ,故③错误;综上可知,添加①或②时,可以证明ABC 与A B C ''' 相似故选A .二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.【答案】38【分析】本题考查的是比例的基本性质,令3x a =,则5y a =,然后化简整理即可求得.令3x a =,则5y a =,,()():33538x x y +=+=::,即可作答.【详解】解:根据题意,可令3x a =,则5y a =,因此,()():3353838x x y a a a a a +=+==:::.故答案为:38.8.式子2cos30tan45︒-︒的值是______.【答案】1-##1-【分析】直接将特殊角的三角函数值代入计算即可解答.【详解】解:32cos30tan452112︒-︒=⨯-=.1.【点睛】本题主要考查了三角函数的混合运算,牢记特殊角的三角函数值成为解答本题的关键.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .【答案】【详解】试卷分析:根据线段的比例中项的定义列式计算即可得解.∵线段a=3cm ,b=4cm ,∴线段a 、b 的比例中项=cm .故答案为考点:比例线段.10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.【答案】4∶9【详解】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.考点:相似三角形的性质.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.【答案】6【分析】根据平行线分线段成比例定理结合比例解答即可.【详解】解:∵////AB CD EF ,:2:3,AC CE =∴23BD AC DF CE ==∵10BF =∴31065DF =⨯=.故答案为6.【点睛】本题考查平行线分线段成比例定理,灵活应用平行线分线段成比例定理列出比例式是解答本题的关键.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x ⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯【答案】11-【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.利用表中数据确定抛物线的对称轴,然后根据抛物线的对称性求解.【详解】解:利用表中数据得抛物线的对称轴为直线2x =-,所以5x =-和1x =时的函数值相等,即当5x =-时,y 的值为11-.故答案为:11-.13.已知向量a 与单位向量e 方向相反,且3a = ,那么a = ____________________(用向量e 的式子表示)【答案】3e- 【分析】此题考查了平面向量的知识,由向量a 与单位向量e 方向相反,且3a = ,根据单位向量与相反向量的知识,即可求得答案.【详解】解:∵向量a 与单位向量e 方向相反,且3a = ,∴3a e =- .故答案为:3e - .14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.【答案】1:2.4【分析】本题考查坡度,先利用勾勾股定理求出水平距离,然后利用公式计算是解题的关键.【详解】解:如图,13AB =,5AE =,∴12BE ===,∴斜坡的坡度为i :5:121:2.4AE BE ===,故答案为:1:2.4.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.【答案】3011【分析】本题考查了相似三角形的判定和性质及矩形的性质,通过四边形EFGH 为矩形推出EH BC ,因此AEH 与ABC 两个三角形相似,将AM 视为AEH 的高,可得出::AM AD EH BC =,再将数据代入计算是本题的关键.【详解】解:设AD 与EH 交于点M .∵四边形EFGH 是矩形,∴EH BC ,∴AEH ABC ∽,∵AM 和AD 分别是AEH 和ABC 的高,∴::AM AD EH BC =,DM EF =,∴3AM AD DM AD EF EF =-=-=-,∵2EH EF =,代入可得:3235EF EF -=,解得1511EF =,∴153021111EH =⨯=,故答案为:3011.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.【答案】23【分析】延长CG 交AB 于F ,过G 作GD AC ⊥于G ,直线DG 交BC 于E ,证明DCE ACB ∽V V ,得CD DE AC AB =,同理可得DG CD CG GE AF AC CF BF ===,即有DE CG AB CF=,根据G 为ABC 的重心,3AC =,得2DE =,设tan ACG x ∠=,根据勾股定理列式计算53AG ===可得答案.【详解】解:过G 作GD AC ⊥于G ,延长CF 交AB 于点F ,如图:∵90GD AC BAC ⊥∠=︒,,∴DE AB ∥,90CDE BAC ==︒∠∠,∵DCE ACB ∠=∠,∴DCG ACF ∽,∴CD DG CG AC AF CF==,∵G 为ABC 的重心,∴23CD DG CG AC AF CF ===,∵3AC =,∴21CD AD ==,,∴2243DG AG AD =-=,则在直角三角形CDG 中,423tan 23DG ACG CD ∠===,故答案为:23【点睛】本题考查三角形的重心,涉及相似三角形的判定与性质,勾股定理,解直角三角形,难度较大,综合性较强,解题的关键是作辅助线,构造相似三角形.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.【答案】5【分析】本题考查相似三角形的判定和性质,等腰三角形的性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程.如图,过过点A 作AF BC ⊥于点F .证明FAD FBA ∽,推出51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,构建方程求解.【详解】解:如图,过点A 作AF BC ⊥于点F .∵AB AC AD AE AF BC ==⊥,,,∴DF EF BF FC BAF CAF DAF EAF ==∠=∠∠=∠,,,,∵180BAC DAE ∠+∠=︒,∴22180BAF DAF ∠+∠=︒,∴90BAF DAF ∠+∠=︒,∵90BAF B ∠+∠=︒,∴∠=∠DAF B ,∵90AFD AFB ∠=∠=︒,∴FAD FBA ∽,∴51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,∵222AB AF BF =+,∴()()2221024x x =+,∴5x =,∴285BC BF x ===故答案为:85.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.【答案】46BP <<【分析】本题考查矩形的折叠问题,相似三角形的判定和性质等,计算出点Q 恰好落在AD 边上,以及点Q 恰好落在AC 边上时BP 的值,即可得出线段BP 的取值范围.【详解】解:当点C 的对应点Q 恰好落在AD 边上时,如图:由折叠的性质知CD QD =,CP QP =,90PQD PCD ∠=∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴四边形QDCP 是正方形,∴4CP CD AB ===,∴844BP BC CP AD CP =-=-=-=;当点C 的对应点Q 恰好落在AC 边上时,如图,由折叠的性质知PD CQ ⊥,∴90PDC ACD ∠+∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴90CAD ACD ∠+∠=︒,∴PDC CAD ∠=∠,又 90PCD CDA ∠=∠=︒,∴PDC CAD ∽,∴PC CD CD AD =,即448PC =,∴2PC =,∴826BP BC PC =-=-=,∴线段BP 的取值范围是46BP <<.故答案为:46BP <<.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.【答案】(1)该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--(2)(1,4)--【分析】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.(1)利用配方法把一般式化为顶点式,根据二次函数的性质写出抛物线的开口方向、对称轴和顶点坐标.(2)设平移后的抛物线解析式为22(1)y x =+1k -+,代入点(1,4),求得k 的值即可求解.【小问1详解】解:2241y x x =++()222121x x =++-+22(1)1x =+-,∴该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--;【小问2详解】设平移后的抛物线解析式为22(1)y x =+1k -+,∵新的抛物线经过点(1,4),∴24221k =⨯-+,解得3k =-,∴平移后的抛物线解析式为22(1)4y x =+-,∴平移后的抛物线的顶点坐标是(1,4)--.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF;(2)先化简,再求作:()()3222a b a b +-+ (直接作在图中).【答案】(1)1136a b - (2)12a b -- ,见详解【分析】本题主要考查平行四边形的性质、平行线分线段成比例定理和平面向量,()1根据题意得AD BC ∥和BC AD =,进一步得到AE EF BC FB =,则1132EF DA AB ⎛⎫=+ ⎪⎝⎭,代入向量即可.()2化解得12a b -- ,将对应线段代入得到()AB AE -+ ,过点E 作EG AB ∥,则AE BG = ,1=2a b GA -- ,连接GA 即可.【小问1详解】解:∵四边形ABCD 为平行四边形,∴AD BC ∥,BC AD =,∴AFE CFB ∽,则AE EF BC FB=,∵点E 是AD 的中点,∴12AE AD =,则12EF FB =,∴()1111123332EF FB EB EA AB DA AB ⎛⎫===+=+ ⎪⎝⎭ ,∵,AB a AD b == ,∴1111=3236EF b a a b ⎛⎫=-+- ⎪⎝⎭ .【小问2详解】()()3312223222a b a b a b a b a b +-+=+--=-- ,∵,AB a AD b == ,∴()1122a b AB AD AB AE AB AE --=--=--=-+ ,过点E 作EG AB ∥,则AE BG = ,∴()()1===2a b AB AE AB BG AG GA --=-+-+- ,如图,GA即为所求.21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.【答案】(1)3:4(2)1CF =【分析】本题考查了相似三角形的性质与判定、解直角三角形:(1)根据90BAD AC BC DE AC ∠=⊥︒⊥,,,得90AED ACB ∠=∠=︒,EAD ABC ∠=∠,证明AED BCA △∽△,结合相似三角形的性质,得:AD AB 的值;(2)根据相似三角形的性质且1tan 2BAC ∠=,得2BC =, 1.5AE =,再证明BCF DEF ∽,列式代数计算,即可作答.【小问1详解】解:∵90BAD AC BC DE AC∠=⊥︒⊥,,∴90AED ACB ∠=∠=︒,90BAC DAE BAC ABC∠+∠=︒=∠+∠∴EAD ABC ∠=∠,∴AED BCA△∽△则::3:4AD AB DE AC ==【小问2详解】解:如图:∵AED BCA △∽△,1tan 2BAC ∠=,∴11242BC BC BAC ADE AC ==∠=∠,,,∴2BC =,∴1tan 32AE AE ADE ED ∠===,得 1.5AE =,∴4 1.5 2.5EC AC AE =-=-=,∵AC BC DE AC ⊥⊥,,∴90BCF DEF ∠=∠=︒,∵BFC DFE ∠=∠,∴BCF DEF ∽,即BC CF DE EF=,∴23 2.5CF CF =-,解得1CF =.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)【答案】(1)90βα=︒-(2)()6.6米【分析】本题考查了解直角三角形−仰角俯角问题,列代数式,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)延长OD 交PK 于L ,根据题意可得:OL PK ⊥,从而可得:90OLP ∠=︒,然后利用直角三角形的两个锐角互余进行计算,即可解答;(2)延长GQ 交EF 于点M ,根据题意可得: 1.6GM EF GH QR MF ⊥===,米,10GQ HR ==米,然后设EM x =米,分别在Rt EGM 和Rt EQM 中,利用锐角三角函数的定义求出GM 和QM 的长,从而列出关于x 的方程,进行计算即可解答.【小问1详解】解:如图:延长OD 交PK 于L ,由题意得:OL PK ⊥,∴90OLP ∠=︒,∵POD α∠=,∴9090OPL POD α∠=︒-∠=︒-,∴90βα=︒-;【小问2详解】解:延长GQ 交EF 于点M ,由题意得: 1.610GM EF GH QR MF GQ HR ⊥=====,m,m ,设EM x =米,在Rt EGM 中,60GEM ∠=︒,∴tan60GM EM =⋅︒=(米),在Rt EQM 中,45QEM ∠=︒,∴45QM EM tan x =⋅︒=(米),∵GM QM GQ -=,10x -=解得:5x =∴()5EM =米,∴()5 1.6 6.6EF EM FM =+=+=米,∴大楼EF 的高度为()6.6+米.23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.【答案】(1)见解析(2)见解析【分析】本题主要考查相似三角形的判定和性质,等腰三角形的判定和性质:(1)根据等边对等角可得EDC ACB ∠=∠,再证这组夹角的两边成比例即可;(2)作DH CF ∥交AB 于点H ,可证BHD BFC ∽,AFE AHD ∽,推出12HD BD FC BC ==,12FE AE HD AD ==,进而可得4FC EF =,再根据ABC DCE ∽得出FBC FCB ∠=∠,推出CF BF =,等量代换可证4BF EF =.【小问1详解】证明: AD AC =,∴ADC ACD ∠=∠,即EDC ACB ∠=∠,又 点,D E 分别是,BC AD 的中点,∴12DC CB =,1122ED AD AC ==,∴12DC ED CB AC ==,∴AC ED CB DC=,∴ABC ECD ∽;【小问2详解】证明:如图,作DH CF ∥交AB 于点H ,DH CF ∥,∴BHD BFC ∠=∠,BDH BCF ∠=∠;AFE AHD ∠=∠,AEF ADH ∠=∠,∴BHD BFC ∽,AFE AHD ∽,又 点,D E 分别是,BC AD 的中点,∴12HD BD FC BC ==,12FE AE HD AD ==,∴2FC HD =,2HD FE =,∴4FC EF =,由(1)得ABC ECD ∽,∴ABC ECD ∠=∠,即FBC FCB ∠=∠,∴CF BF =,∴4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.【答案】(1)21262y x x =+-(2)①13②1532⎛⎫- ⎪⎝⎭,【分析】(1)先由一次函数求出()()6060A C --,,,,再运用待定系数法求二次函数解析式,即可作答.(2)①依题意,得DF CF ⊥,PE BC PDF ACB ∠=∠ ,,根据角的等量代换,即PDF OCB ∠=∠,先求出点B 的坐标.PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②先表达出21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,,23438EN p p -=,3EM p =-再根据相似三角形的性质与判定,列式化简计算,即可作答.【小问1详解】解:∵直线6y x =--经过点A 与点C则当06x y ==-,;06y x ==-,∴()()6060A C --,,,∴60186c b c =-⎧⎨=-+⎩,,解得62c b =-⎧⎨=⎩21262y x x =+-;【小问2详解】解:①如图:∵()()6060A C --,,,,且C F 、两点关于抛物线21262y x x =+-的对称轴对称,∴6F c y y ==-,221222b x a =-=-=-⨯则4F x =-∵DF CF⊥∴DF y ∥轴则FDC OCA∠=∠∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB∠=∠ ,则PDF OCB∠=∠∵21262y x x =+-x 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x =+-∴6x =-,2x =∴()20B ,∵PDF OCB∠=∠则PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②设21262P p p p ⎛⎫+- ⎪⎝⎭,,BC 的解析式为y mx n =+∴把()()0620C B -,,,代入y mx n =+得602n m n=-⎧⎨=+⎩解得63n m =-⎧⎨=⎩∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E∴设PE 的解析式为3y x b=+把21262P p p p ⎛⎫+- ⎪⎝⎭,代入3y x b =+得2162p p b =--∴21623y x p p =--+令0x =,2162p p y =--即21062E p p ⎛⎫-- ⎪⎝⎭,当261362y x y x p p =--⎧⎪⎨=+--⎪⎩解得21184x p p +=-则把21184x p p +=-代入21623y x p p =--+得211684y p p =--∴22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,∵过点P 作PM y ⊥轴,过点D 作DN y ⊥轴,∴EDN EPM∽∴EN DE EM EP=∵:3:5PD DE =∴58EN EM =∶∶∵21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,∴222111336628484EN p p p p p p ⎛⎫=-----=- ⎪⎝⎭,2211626322EM p p p p p ⎛⎫=---+-=- ⎪⎝⎭∴23358348p p p --=∶∶解得1103p p ==-,∵点P 在线段AC 下方的抛物线上,∴10p =(舍去)∴3p =-.把3p =-代入21262y p p =+-∴19241592362222y =⨯-⨯-=-=∴点P 的坐标1532⎛⎫- ⎪⎝⎭,【点睛】本题考查了二次函数的几何综合,相似三角形的判定与性质,解直角三角形,勾股定理等,综合性强,难度较大,正确掌握相关性质内容是解题的关键.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.【答案】(1)10(2)278(3)325【分析】(1)证明ABG CAB ∽ ,再根据相似三角形的性质,等腰三角形的判定与性质,即可得到答案;(2)过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,先证明ABF DCE ∽ ,进一步求得6BD =,接着利用面积法证明4=3AF DF ,设4AF x =,证明FAG EAD ∽ ,求得3221FG =,即可进一步求得答案;(3)先证明CDE CBG ∽ ,可得32CD CE =,再利用等腰三角形的判定与性质以及平行线的性质逐步求得43FG =,最后证明AFG ADE ∽ ,进一步求出125CE =,即可得到答案.【小问1详解】BG 平分ABC ∠,22ABC ABG GBC ∴∠=∠=∠,2ABC C ∠=∠ ,ABG C GBC ∴∠=∠=∠,BAG CAB ∠=∠ ,ABG ACB ∴∽ ,AB AG BG AC AB CB ∴==,16838BG AC CB ∴==,12AC ∴=,32BC BG =,16201233CG AC AG ∴=-=-=,C GBC ∠=∠ ,203BG CG ∴==,3102BC BG ∴==;【小问2详解】过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,ADE ABC ∠=∠ ,ADE CDE ABC FAB ∠+∠=∠+∠,FAB EDC ∴∠=∠,又ABG C ∠=∠ ,ABF DCE ∴∽ ,AB AF BF CD DE CE∴==,2BF CE = ,142CD AB ∴==,2AF DE =,1046BD BC CD ∴=-=-=,BG 平分ABC ∠,FM FN ∴=,142132ABF DBF AB FM S AF S DF BD FN ⋅∴===⋅ ,设4AF x =,则3DF x =,7AD x =,2DE x =,2AGF GBC C C ABC ∠=∠+∠=∠=∠ ,ADE ABC =∠∠,AGF ADE ∴∠=∠,又FAG EAD ∠=∠ ,FAG EAD ∴∽ ,AG FG AD ED ∴=,16372FG x x ∴=,3221FG ∴=,367BF BG FG ∴=-=,3627732821BF GF ∴==;【小问3详解】ADE 是以AD 为腰的等腰三角形,AD AE ∴=,ADE AED ∴∠=∠,AGF ADE ∠=∠ ,AGF AED ∴∠=∠,BG DE ∴∥,CDE CBG ∴∽ ,CE CD CG CB ∴=,20103CE CD ∴=,32CD CE ∴=,BG DE ∥ ,AFG ADE ∴∠=∠,GBC EDC ∠=∠,AFG AGF ∴∠=∠,163AF AG ∴==,FAB EDC ∠=∠ ,ABG GBC C ∠=∠=∠,FAB ABG ∴∠=∠,EDC C ∠=∠,163BF AF ∴==,CE DE =,43FG BG BF ∴=-=,BG DE ∥ ,AFG ADE ∴∽ ,AG FG AE DE ∴=,1643312CE CE ∴=-,解得125CE =,3321225BD BC CD CE ∴=-=-=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,平行线的判定与性质,利用面积比求线段比等知识与方法,灵活运用相关知识与方法是解答本题的关键.。

2009-2010初三年级长宁区中考一模数学试题

2009-2010初三年级长宁区中考一模数学试题

长宁区2009学年度第一学期期末初三数学抽测试卷(测试时间:100分钟,满分:150分)考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列等式中,正确的是(A )c b A =sin ; (B )a c B =cos ; (C )b a A =tan ; (D )abB =cot . 2.如图,已知AB ∥CD ,AD 与BC 相交于点O ,AO ∶DO =1∶2,那么下列式子错误的是 (A )BO ∶CO =1∶2; (B )AB ∶CD =1∶2; (C )AD ∶DO =3∶2; (D )CO ∶BC =1∶2.3.对于抛物线y =(x+2)2,下列说法正确的是(A )最低点坐标是(2-,0); (B )最高点坐标是(2-,0); (C )最低点坐标是(0,2-); (D )最高点坐标是(0,2-). 4.已知二次函数bx ax y +=2的图像如图所示,那么a 、b 的符号为 (A )a >0,b >0; (B )a <0,b >0; (C )a >0,b <0; (D )a <0,b <0.5.已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b的是 (A )a ∥c ,b ∥c ; (B )a =c 2,b =c ;(C )a=b 5-; (D )b a 3=.6.已知D 是△ABC 的边BC 上的一点,∠BAD =∠C ,那么下列结论中正确的是 (A )CB CD AC ⋅=2; (B )BC BD AB ⋅=2; (C )CD BD AD ⋅=2; (D )CD AD BD ⋅=2.Oxy(第4题图)ABCD O(第2题图)二、填空题:(本大题共12题,每题4分,满分48分)7.已知线段b 是线段a 、c 的比例中项,且a =9,c =4,那么b = . 8.已知甲、乙两地之间的距离为10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得距离为2厘米的A 、B 两地的实际距离为 千米. 9.已知2(1)y a x ax =++是二次函数,那么a 的取值范围是 .10.在平面直角坐标系中,如果把抛物线y =x 2向左平移5个单位,那么所得抛物线的表达式为 .11.已知抛物线322--=x x y ,如果点P (2-,5)与点Q 关于该抛物线的对称轴对称,那么点Q 的坐标是 .12.请写出一个以直线2-=x 为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是 .13.如果E 、F 是△ABC 的边AB 和AC 的中点,AB =a ,AC =b ,那么FE = .14.在Rt △ABC 中,∠A =90°,BC =a ,∠B =β,那么AB = (用含a 和β的式子表示).15.如果两个相似三角形的面积比为1∶2,那么它们的对应角平分线的比为 . 16.已知点G 是△ABC 的重心,AD 是中线,AG =6,那么DG = .17.小李在楼上点A 处看到楼下点B 处的小明的俯角是35度,那么点B 处的小明看点A 处的小李的仰角是 度.18.如果在△ABC 中,AB =AC = 3,BC =2,那么顶角的正弦值为 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)如图,已知两个不平行的向量a 、b.先化简,再求作:)2(21)213(b a b a +--. (不要求写作法,但要指出图中表示结论的向量) 20.(本题满分10分)已知二次函数2y x m x n =++的图像经过点(2,-1)和(1,0),求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.ba(第19题图)21.(本题满分10分)如图,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交BD 于点G ,交DC 的延长线于点F ,AB =6,BE =3EC ,求DF 的长.22.(本题满分10分)如图是一座大楼前的六级台阶的截面图,每级台阶的高为0.15米,宽为0.30米,现要将它改为无障碍通道(图中EF 所示的斜坡),如果斜坡EF 的坡角为8º,求斜坡底部点F 与台阶底部点A 的距离AF .(精确到0.01米) (备用数据:tan8º=0.140,sin8º=0.139,cos8º=0.990)23.(本题满分12分,其中每小题各6分)已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°. 求证:(1)△ABE ∽△ACD ;(2)CD BE BC ⋅=22.ABCDFE (第21题图)GBADEF(第22题图)ABD EC(第23题图)24.(本题满分12分,其中第(1)小题3分,第(2)小题3分,第(3)小题6分)如图,一次函数m x y +-=43的图像与x 轴、y 轴分别相交于点A 和点B ,二次函数6412++-=bx x y 的图像经过A 、B 两点.(1)求这个一次函数的解析式; (2)求二次函数的解析式;(3)如果点C 在这个二次函数的图像上,且点C 的横坐标为5,求tan ∠CAB 的值.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,在△ABC 中,AB =AC =4,BC =21AB ,P 是边AC 上的一个点,AP=21PD ,∠APD =∠ABC ,联结DC 并延长交边AB 的延长线于点E .(1)求证:AD ∥BC ;(2)设AP =x ,BE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结BP ,当△CDP 与△CBE 相似时,试判断BP 与DE 的位置关系,并说明理由.(第24题图)yxOABCABC EDP(第25题图)长宁区2009学年度第一学期期末质量抽测试卷初三数学参考答案及评分说明一、选择题:1.C ; 2.D ; 3.A ; 4.B ; 5.D ; 6.B . 二、填空题:7.6; 8.4; 9.1-≠a ; 10.2)5(+=x y ; 11.(4,5); 12.2)2(+-=x y 等; 13.b a 2121-;14.βcos a ; 15.1∶2; 16.3; 17.35; 18.924(或0.6285). 三、解答题: 19.解:原式=b a b a 21213---…………………………………………………………(2分)=b a -2.……………………………………………………………………(2分) 图(略).…………………………………………………………………………(5分)结论.………………………………………………………………………………(1分)20.解:由题意,得⎩⎨⎧++=++=-.10,241n m n m ……………………………………………………(2分)解得⎩⎨⎧=-=.3,4n m ……………………………………………………………(2分)∴这个二次函数的解析式是342+-=x x y .…………………………(2分)顶点坐标是(2,-1),……………………………………………………(2分)对称轴是直线x =2.………………………………………………………(2分)21.解:在平行四边形ABCD 中,∵AB ∥CD ,∴BECEAB CF =.……………………………………………………(4分) 又∵BE =3EC ,AB =6,∴CF =2.………………………………………………(3分) ∵CD =AB =6,∴DF =8.…………………………………………………………(3分)22.解:作EH ⊥AB ,垂足为点H .………………………………………………………(1分)由题意,得EH =0.9,AH =1.5.…………………………………………………(2分)在Rt △EFH 中,FH EH =︒8tan ,∴FH9.014.0=.………………………………(3分) ∴FH ≈6.429.……………………………………………………………………(2分)∴AF =FH -AH =6.429-1.5=4.929≈4.93(米).…………………………………(2分) 注:如果使用计算器产生的误差,也可被认可,如FH ≈6.404,AF ≈4.90等. 23.证明:(1)在Rt △ABC 中,∵AB =AC ,∴∠B =∠C =45°.………………………(1分)又∵∠BAE =∠BAD +∠DAE ,∠DAE =45°,∴∠BAE =∠BAD +45°.…(1分) 而∠ADC =∠BAD +∠B =∠BAD +45°,………………………………………(1分) ∴∠BAE =∠ADC .……………………………………………………………(1分) ∴△ABE ∽△ACD .……………………………………………………………(2分)(2)由△ABE ∽△ACD ,得CDACAB BE =.……………………………………(2分) ∴AC AB CD BE ⋅=⋅.………………………………………………………(1分) 而AB =AC ,222AC AB BC +=,∴222AB BC =.………………………(2分) ∴CD BE BC ⋅=22.…………………………………………………………(1分)24.解:(1)由题意,得点B 的坐标为(0,6).………………………………………(1分) ∴m =6.………………………………………………………………………(1分)∴一次函数的解析式为643+-=x y .……………………………………(1分)(2)由题意,得点A 的坐标为(8,0).………………………………………(1分)∴6884102++⨯-=b .∴45=b .……………………………………………………………………(1分) ∴二次函数的解析式为645412++-=x x y .……………………………(1分)(3)∵点C 在这个二次函数的图像上,且点C 的横坐标为5,∴665455412=+⨯+⨯-=y . ∴点C 的坐标为(5,6).…………………………………………………(1分) 作CH ⊥AB ,垂足为点H .…………………………………………………(1分) ∵点B 与点C 的纵坐标相等,∴BC ∥x 轴.∴∠CBH =∠BAO .…………………………………………………………(1分) 又∵∠CHB =∠BOA =90°,∴△CHB ∽△BOA . ∴ABBOBC CH =. ∵OB =6,OA =8,∴AB =10. ∴1065=CH .………………………………………………………………(1分)∴CH =3,BH =4,AH =6.…………………………………………………(1分)∴2163tan ==∠CAB .………………………………………………………(1分) 25.(1)证明:∵AB BC 21=,PD AP 21=,∴PDAPAB BC =.…………………………(1分) 又∵∠APD =∠ABC ,∴△APD ∽△ABC .………………………………(1分)∴∠DAP =∠ACB .…………………………………………………………(1分) ∴AD ∥BC .…………………………………………………………………(1分)(2)解:∵AB =AC ,∴∠ABC =∠ACB .∴∠DAP =∠DP A .∴AD =PD .…………………………………………………………………(1分) ∵AP =x ,∴AD =2x .…………………………………………………………(1分)∵AB BC 21=,AB =4,∴BC =2. ∵AD ∥BC ,∴ADBCAE BE =,即x y y 224=+.……………………………(1分) 整理,得y 关于x 的函数解析式为14-=x y .……………………………(1分) 定义域为41≤<x .…………………………………………………………(1分)(3)解:平行.…………………………………………………………………………(1分) 证明:∵∠CPD =∠CBE ,∠PCD >∠E ,∴当△CDP 与△CBE 相似时,∠PCD =∠BCE .…………………………(1分)∴PC DP BC BE =,即xxy -=422.………………………………………………(1分)把14-=x y 代入,整理得42=x . ∴x =2,x =-2(舍去).………………………………………………………(1分) ∴y =4. ∴AP =CP ,AB =BE .…………………………………………………………(1分) ∴BP ∥CE ,即BP ∥DE .。

09圆(11年)参考答案

09圆(11年)参考答案

第九章 圆一、选择题【第1题】 (2011年1月长宁区第一学期初三数学质量监控试卷第4题)已知点P 是O 所在平面内一点,P 与圆上所有点的距离中,最长距离是9cm ,最短距离是4cm ,则O 的直径是( )A 、2.5cmB 、6.5cmC 、2.5cm 或6.5cmD 、5cm 或13cm 【答案】D【第2题】 (2011年1月长宁区第一学期初三数学质量监控试卷第6题)已知下列命题:①圆是轴对称图形,直径就是它的对称轴;②平分弦的直径垂直弦;③长度相等的弧是等弧;④两圆相切,圆心距等于两圆半径之和。

其中假命题的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 【答案】D【第3题】 (2011年1月闸北区九年级数学学科期末测试卷第3题)如图1,圆与圆之间不同的位置关系有( )(A ) 内切、相交; (B ) 外切、相交; (C ) 内含、相交;(D ) 外离、相交.【答案】D【第4题】 (2011年4月闵行区九年级质量调研数学卷第6题)已知⊙O 1和⊙O 2的半径分别为3、5,⊙O 1上一点A 与⊙O 2的圆心O 2的距离等于6,那么下列关于 ⊙O 1和⊙O 2的位置关系的结论一定错误的是( ) (A )两圆外切; (B )两圆内切; (C )两圆相交; (D )两圆外离.【答案】B【第5题】 (2011年4月普陀区初三质量调研数学卷第4题)如果两圆的半径分别是2 cm 和3cm ,圆心距为5cm ,那么这两圆的位置关系是( ) (A ) 内切; (B ) 相交; (C ) 外切; (D ) 外离. 【答案】C【第6题】 (2011年4月青浦区初中学业模拟考试数学卷第6题)在ABC ∆中,︒=∠90C ,且两边长分别为4cm 和5cm ,若以点A 为圆心,3cm 为半径作⊙A ,以点B 为圆心,2cm 为半径作⊙B ,则⊙A 和⊙B 位置关系是( ) (A )只有外切一种情况; (B )只有外离一种情况; (C )有相交或外切两种情况; (D )有外离或外切两种情况. 【答案】D【第7题】(2011年4月松江区初中毕业生学业模拟考试数学卷第6题)已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在()(A)小圆内;(B)大圆内;(C))小圆外大圆内;(D)大圆外.【答案】C【第8题】(2011年4月杨浦区基础考、崇明二模数学卷第6题)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,DE∥BC,且AD=2CD,则以D为圆心DC为半径的⊙D和以E为圆心EB为半径的⊙E的位置关系是()(A)外离;(B)外切;(C)相交;(D)不能确定.【答案】CA BC D(第6题图)二、填空题【第9题】 (2011年1月长宁区第一学期初三数学质量监控试卷第15题)已知O 的直径是4,O 上两点B 、C 分O 所得劣弧与优弧之比为1:3,则弦BC 的长为_______。

上海市长宁区中考数学一模试卷及答案(word解析版)

上海市长宁区中考数学一模试卷及答案(word解析版)

上海市长宁区中考数学一模试卷一.选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】1.(4分)(•长宁区一模)已知△ABC中,∠C=90°,则cosA等于()A.B.C.D.考点:锐角三角函数的定义.分析:根据余弦等于邻边比斜边列式即可得解.解答:解:如图,cosA=.故选D.点评:本题考查了锐角三角函数的定义,是基础题,作出图形更形象直观.2.(4分)(•长宁区一模)如图,在平行四边形ABCD中,如果,,那么等于()A.B.C.D.考点:*平面向量.专题:压轴题.分析:由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,则可得,然后由三角形法则,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵,∴,∵,∴=+=.故选B.点此题考查了平面向量的知识与平行四边形的性质.此题难度不大,注意掌握三角形评:法则的应用,注意数形结合思想的应用.3.(4分)(•长宁区一模)如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形考点:垂径定理;菱形的判定.专题:探究型.分析:先根据垂径定理得出AD=BD,AC=BC,再根据全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出结论.解答:解:∵弦AB垂直平分半径OC,∴AD=BD,AC=BC,OD=CD,∵在△AOD与△BCD中,,∴△AOD≌△BCD,∴OA=BC,∴OA=OB=BC=AC,∴四边形OACB是菱形.故选C.点评:本题考查的是垂径定理及菱形的判定定理,全等三角形的判定与性质等知识,熟知“平分弦的直径平分这条弦,并且平分弦所对的两条弧”是解答此题的关键.4.(4分)(•长宁区一模)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)考点:二次函数的性质.分析:二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a >0时开口向上,当a<0时开口向下.解答:解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.点评:本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.5.(4分)(•茂名)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.考点:相似三角形的判定与性质;等边三角形的性质.专题:压轴题.分析:根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG面积比,再求出S△ABC.解答:解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC 故选C.点评:本题的关键是利用三等分点求得各相似三角形的相似比.从而求出面积比计算阴影部分的面积.6.(4分)(•长宁区一模)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:压轴题.分本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的析:确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).解答:解:当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选D.点评:主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)(•长宁区一模)已知实数x、y满足,则=2.考点:比例的性质.分析:先用y表示出x,然后代入比例式进行计算即可得解.解答:姐:∵ =,∴x=y,∴==2.故答案为:2.点评:本题考查了比例的性质,根据两內项之积等于两外项之积用y表示出x是解题的关键.8.(4分)(•长宁区一模)已知,两个相似的△ABC与△DEF的最短边的长度之比是3:1,若△ABC的周长是27,则△DEF的周长为9.考点:相似三角形的性质.分析:由两个相似的△ABC与△DEF的最短边的长度之比是3:1,得出相似比为3:1,即可得其周长为3:1,又由△ABC的周长为27,即可求得△DEF的周长.解答:解:∵两个相似的△ABC与△DEF的最短边的长度之比是3:1,∴周长比为3:1,∵△ABC的周长为27,∴=3,∴△DEF的周长为9.故答案为:9.点评:此题考查了相似三角形的性质.注意掌握相似三角形周长的比等于相似比.9.(4分)(•长宁区一模)已知△ABC中,G是△ABC的重心,则=.考点:三角形的重心.分析:设△ABC边AB上的高为h,根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得△ABG边AB上的高线为h,再根据三角形的面积公式计算即可得解.解答:解:设△ABC边AB上的高为h,∵G是△ABC的重心,∴△ABG边AB上的高为h,∴==.故答案为:.点评:本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键,本知识点在很多教材上已经不做要求.10.(4分)(•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后,得到新的抛物线解析式为y=﹣x2+2x﹣1.考点:二次函数图象与几何变换.分析:根据“上加下减”的原则进行解答即可.解答:解:根据“上加下减”的原则可知,把抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后所得到的抛物线解析式y=﹣x2+2x+2﹣3=﹣x2+2x﹣1.故答案为:y=﹣x2+2x﹣1.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.11.(4分)(•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+c在y轴左侧图象上升(填“左”或“右”).考点:二次函数的性质.分析:由于a=﹣1<0,且抛物线的对称轴为y轴,根据二次函数的性质得到抛物线y=﹣x2+c的开口向下,在对称轴左侧y随x的增大而增大.解答:解:∵a=﹣1<0,∴抛物线y=﹣x2+c的开口向下,且抛物线的对称轴为y轴,∴抛物线y=﹣x2+c在对称轴轴左侧图象上升,y随x的增大而增大.故答案为左.点评:本题考查了二次函数的图象的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上,在对称轴左侧,y随x的增大而减小,在对称轴有侧,y 随x的增大而增大;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.12.(4分)(•长宁区一模)正八边形绕其中心至少要旋转45度能与原图形重合.考点:旋转对称图形.专题:常规题型.分析:根据正八边形的性质,求出每一条边所对的中心角,就是所要旋转的度数.解答:解:360°÷8=45°.故答案为:45.点评:本题考查了旋转变换图形,求出每一条边所对的中心角即可,比较简单.13.(4分)(•长宁区一模)已知圆⊙O的直径为10,弦AB的长度为8,M是弦AB上一动点,设线段OM=d,则d的取值范围是3≤d≤5.考点:垂径定理;勾股定理.专题:探究型.分析:首先过点O作OC⊥AB于C,连接OA,根据垂径定理的即可求得AC的长,又由⊙O的直径为10,求得⊙O的半径OA的长,然后在Rt△OAC中,利用勾股定理即可求得OC的长,继而求得线段OM长度的取值范围.解答:解:过点O作OC⊥AB于C,连接OA,∴AC=AB=×8=4,∵⊙O的直径为10,∴OA=5,在Rt△OAC中,OC===3,∴当M与A或B重合时,OM最长为5,当M与C重合时,OM最短为3,∴线段OP长度的取值范围是:3≤d≤5.故答案为:3≤d≤5.点评:本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.14.(4分)(•长宁区一模)如图,某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是5:12.考点:解直角三角形的应用-坡度坡角问题.分析:首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.解答:解:滑行的水平距离是:=120(米),故坡道的坡比是:50:120=5:12.故答案是:5:12.点评:本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.15.(4分)(•长宁区一模)两圆相切,圆心距为2cm,一圆半径为6cm,则另一圆的半径为4或8cm.考点:圆与圆的位置关系.分析:分两圆外切和两圆内切情况讨论,很明显根据圆心距为2cm与一圆的半径为6cm不可能外切;而内切时,要分6cm为较长半径和较短半径两种情况考虑.解答:解:设另一圆的半径为r,∵两圆相切,∴两圆可能外切,也有可能内切,∴当两圆外切时,2=6+r,则r=﹣4(舍去);当两圆内切时,2=6﹣r或2=r﹣6,则r=4cm或8cm,∴两圆内切,另一圆的半径为4cm或8cm.点评:本题用到的知识点为:两圆外切,圆心距=两圆半径之和.两圆内切,圆心距=两圆半径之差.16.(4分)(•长宁区一模)已知△ABC中,AB=6,AC=9,D、E分别是直线AC和AB 上的点,若且AD=3,则BE=4或8.考点:相似三角形的判定与性质.分析:先将AB=6,AC=9,AD=3代入,求出AE=2.由于D、E分别是直线AC和AB上的点,则∠DAE=∠BAC,所以若,根据两边对应成比例且夹角相等的两三角形相似得到△ADE∽△ABC,所以分两种情况进行讨论:①D、E分别在线段AC和AB上;②D、E分别在线段AC和AB的反向延长线上.解答:解:将AB=6,AC=9,AD=3代入,得=,解得AE=2.①D、E分别在线段AC和AB上时,∵AE=2,AB=6,∴BE=AB﹣AE=6﹣2=4;②D、E分别在线段AC和AB的反向延长线上时,∵AE=2,AB=6,∴BE=AB+AE=6+2=8.综上可知BE的长为4或8.故答案为4或8.点评:本题考查了相似三角形的判定与性质,直线的性质,进行分类讨论是解题的关键.17.(4分)(•长宁区一模)如图,已知Rt△ABC,∠ACB=90°,∠B=30°,D是AB边上一点,△ACD沿CD翻折,A点恰好落在BC边上的E点处,则cot∠EDB=.考点:翻折变换(折叠问题);特殊角的三角函数值.分析:先根据三角形内角和定理得出∠A=60°,再由轴对称的性质证明出△CED≌△CAD,则∠CED=60°,根据三角形外角的性质求出∠EDB=30°,然后根据特殊角的三角函数值求解.解答:解:在Rt△ABC中,∵∠ACB=90°,∠B=30°,∴∠A=180°﹣∠ACB﹣∠B=60°.∵△ACD沿CD翻折,A点恰好落在BC边上的E点处,∴△CED≌△CAD,∴∠CED=∠A=60°,∴∠EDB=∠CED﹣∠B=30°,∴cot∠EDB=cot30°=.故答案为.点评:本题考查了翻折变换(折叠问题),三角形外角的性质,特殊角的三角函数值,根据轴对称的性质证明出△CED≌△CAD是解题的关键.18.(4分)(•长宁区一模)已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f (﹣3)=12.x ﹣2 ﹣1 0 1 2 3 4 5y 5 0 ﹣3 ﹣4 ﹣3 0 5 12考点:二次函数的性质.专题:压轴题.分析:根据二次函数的对称性结合图表数据可知,x=﹣3时的函数值与x=5时的函数值相同.解答:解:由图可知,f(﹣3)=f(5)=12.故答案为:12.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,理解图表并准确获取信息是解题的关键.三、解答题:(本大题共7题,第19--22题,每题10分;第23、24题,每题12分;25题14分;满分78分)19.(10分)(•长宁区一模)计算:.考点:特殊角的三角函数值.分析:将tan45°=1,sin45°=,tan30°=分别代入即可得出答案.解答:解:原式=+﹣×==.点评:本题考查了特殊角的三角函数值的知识,属于基础题,记忆一些特殊角的三角函数值是关键.20.(10分)(•长宁区一模)如图,在正方形网格中,每一个小正方形的边长都是1,已知向量和的起点、终点都是小正方形的顶点.请完成下列问题:(1)设;.判断向量是否平行,说明理由;(2)在正方形网格中画出向量:4﹣,并写出4﹣的模.(不需写出做法,只要写出哪个向量是所求向量).考点:*平面向量.分析:(1)先将向量化简,然后根据向量平行的定义即可作出判断;(2)分别画出4及﹣,然后可得出4﹣,继而在格点三角形中可求出4﹣的模.解答:解:(1),,则,故可得向量平行.(2)所画图形如下:则.点评:本题考查了向量的知识,注意掌握向量平行的判断方法及向量摸的定义.21.(10分)(•长宁区一模)如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=3,BC=7,∠B=45°,P在BC边上,E在CD边上,∠B=∠APE.(1)求等腰梯形的高;(2)求证:△ABP∽△PCE.考点:等腰梯形的性质;全等三角形的判定与性质;相似三角形的判定.分析:(1)作AF⊥BC于F,作DG⊥BC于G,首先证明△ABF≌△DCG,得到BF=CG,再证明AFGD是平行四边形,根据平行四边形的性质求出等腰梯形的高即可;(2)利用等腰梯形的性质和相似三角形的判定方法证明:△ABP∽△PCE即可.解答:解:(1)作AF⊥BC于F,作DG⊥BC于G,∴∠AFB=∠DGC=90°且 AF∥DG,在△ABF和△DCG中,∴△ABF≌△DCG,∴BF=CG,∵AD∥BC且 AF∥DG,∴AFGD是平行四边形,∴AD=FG,∵AD=3,BC=7,∴BF=2在Rt△ABF中,∠B=45°,∴∠BAF=45°,∴AF=BF=2,∴等腰梯形的高为2;(2)∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠APC=∠APE+∠EPC=∠B+∠BAP,又∵∠B=∠APE∴∠BAP=∠EPC,在△ABP和△PCE中,∴△ABP∽△PCE.点评:本题题主要考查了等腰梯形的性质、全等三角形的判定和性质、平行四边形的判定和性质以及相似三角形的性质与判定,相似三角形的判定是初中阶段考查的重点同学们应重点掌握.22.(10分)(•长宁区一模)由于连日暴雨导致某路段积水,有一辆卡车驶入该积水路段.如图所示,已知这辆卡车的车轮外直径(包含轮胎厚度)为120cm,车轮入水部分的弧长约为其周长的,试计算该路段积水深度(假设路面水平).考点:垂径定理的应用;勾股定理.专题:探究型.分析:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,根据弧CD等于⊙O周长的,故可得出n 的值,再根据OE⊥CD 且OE=OC=OD=AB可得出OE的长,故OF是∠COD的平分线,所以∠FOD=∠COD=n,再根据∠FOD+∠ODF=90°,可得出∠ODF的度数,在Rt△OFD中由直角三角形的性质可得出OF的长,再根据FE=OE﹣OF即可得出结论.解答:解:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,∵弧CD等于⊙O周长的,即=πd,∴n=120°,∵OE⊥CD 且OE=OC=OD=AB=60cm,∴OF是∠COD的平分线,∴∠FOD=∠COD=n=60°,∵∠FOD+∠ODF=90°,∴∠ODF=30°∴在Rt△OFD中,OF=OD=30cm,∴FE=OE﹣OF=30cm,∴积水深度30cm.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.23.(12分)(•长宁区一模)如图,已知Rt△ABC中,∠ACB=90°,⊙O 是Rt△ABC的内切圆,其半径为1,E、D是切点,∠BOC=105°.求AE的长.考点:三角形的内切圆与内心.分析:首先根据切线长的性质以及切线的性质得出BD的长,进而得出BC的长以及AB的长,即可得出AE的长.解答:解:连接OD、OE.则OD=OE=1,∵O是△ABC的内切圆圆心∴OB、OC分别是∠ABC、∠ACB的角平分线,即且又∵∠ACB=90°,∴,∵OD、OE是过切点的半径,∴OD⊥BC 且OE⊥AB,∴∠OCD+∠COD=90°,∴∠COD=∠OCD=45°,∴OD=CD=1,∵∠COB=105°,∴∠DOB=∠COB﹣∠COD=60°,在Rt△OBD中,,∴,∠OBD+∠BOD=90°,∴∠OBD=30°,∵,∴∠ABC=60°,∴BC=BD+CD=1+在Rt△ABC中,AB=2+2,在Rt△OBE中,∵OE=1,∠OBE=30°,∴BE==,∴AE=2+.点评:此题主要考查了切线的性质以及锐角三角函数的应用,正确得出∠ABC的度数以及BC的长是解题关键.24.(12分)(•长宁区一模)在直角坐标平面中,已知点A(10,0)和点D(8,0).点C、B在以OA为直径的⊙M上,且四边形OCBD为平行四边形.(1)求C点坐标;(2)求过O、C、B三点的抛物线解析式,并用配方法求出该抛物线的顶点坐标和对称轴;(3)判断:(2)中抛物线的顶点与⊙M的位置关系,说明理由.考点:二次函数综合题.分析:(1)作MN⊥BC于点N,连接MC,利用垂径定理求得线段MN后即可确定点C 的坐标;(2)用同样的方法确定点D的坐标后利用待定系数法确定二次函数的解析式,然后配方后即可确定抛物线的顶点坐标及对称轴;(3)根据抛物线的顶点坐标和点M的坐标确定两点之间的距离,然后根据半径与两点之间的线段的大小关系即可确定顶点与圆的位置关系.解答:解:(1)如图,作MN⊥BC于点N,连接MC,∵A(10,0)和点D(8,0).∴点M(5,0),∵点C、B在以OA为直径的⊙M上,且四边形OCBD为平行四边形,∴⊙M的半径为5,BC=OD=8,∴在Rt△MNC中,MC=5,NC=BC=4,∴MN=3,∴点C的坐标为(1,3);(2)∵点C的坐标为(1,3),∴点B的坐标为(9,3),设过O、C、B三点的抛物线解析式为y=ax2+bx,∴解得:∴解析式为:y=﹣x2+x,∴y=﹣x2+x=﹣(x﹣5)2+,∴对称轴为x=5,顶点坐标为(5,);(3)∵顶点坐标为(5,),点M的坐标为(5,0),∴顶点到点M的距离为,∵>5∴抛物线的顶点在⊙M外.点评:本题考查了二次函数的综合知识,还考查了点与圆的位置关系,本题难度不大,但综合性比较强.25.(14分)(•长宁区一模)如图,已知Rt△ABC,⊥,AB=8cm,BC=6cm,点P从A 点出发,以1cm/秒的速度沿AB向B点匀速运动,点Q从A点出发,以x cm/秒的速度沿AC向C点匀速运动,且P、Q两点同时从A点出发,设运动时间为t 秒(),连接PQ.解答下列问题:(1)当P点运动到AB的中点时,若恰好PQ∥BC,求此时x的值;(2)求当x为何值时,△ABC∽△APQ;(3)当△ABC∽△APQ时,将△APQ沿PQ翻折,A点落在A′,设△A′PQ与△ABC重叠部分的面积为S,写出S关于t的函数解析式及定义域.考点:相似形综合题.分析:(1)PQ∥BC,P是AB的中点,则Q一定是AC的中点,求得AQ的长,则速度x 即可求得;(2)△ABC∽△APQ,则一定有PQ∥BC,即与(1)相同,即可求得x的值;(3)分0<t≤4和4<t<8两种情况进行讨论,当0<t≤4时重合部分就是△A′PQ;当4<t<8时,重合部分是直角梯形,根据梯形的面积公式即可求解.解答:解:(1)设AP=t AQ=xt (0≤t≤8)∵AB=8 AP=AB=4 即t=4∵Rt△ABC,∠B=90°,AB=8 cm,BC=6 cm∴AC=10 cm∵PQ∥BC∴即解得:(2)①若∠APQ=∠ABC,则BC∥PQ,此时与(1)相同,x=;若∠APQ=∠C,则=,即=,解得;x=.综上可得当x=或时,△ABC∽△APQ.(3)∵BC∥PQ,∴=,∴PQ===t,则当0<t≤4时,重叠部分的面积为S=S△A′PQ=S△APQ=AP•PQ=t•t=t2;当4<t≤8时,如图1所示,则A′P=AP=t,PQ=t,∴BP=AB﹣AP=8﹣t,则A′P=t﹣(8﹣t)=2t﹣8,∵BD∥PQ,∴=∴BD==(t﹣4),∴S=S四边形BDQP=(BD+PQ)•BP= [(t﹣4)+t]•(8﹣t)=(t﹣4)2.则函数解析式是:.点本题考查了相似三角形的判定与性质,正确分情况讨论,因求得x的值是关键.评:。

上海市长宁区中考数学模拟试题含参考答案及评分标准

上海市长宁区中考数学模拟试题含参考答案及评分标准

上海市长宁区初三中考数学模拟卷.4一、选择题(4’×6=24’)1.方程231222--=++-x x x x x 的解是 ( ) (A )1 (B )-1 (C )±1 (D )方程无解2.等腰直角三角形的腰长为2,该三角形的重心到斜边的距离为 ( )(A )322 (B )32(C )32 (D )313.⊙A 半径为3,⊙B 半径为5,若两圆相交,那么AB 长度范围为 ( )(A )3<AB<5 (B )2<AB<8 (C )3<AB<8 (C )2<AB<54.游泳池原有一定量的水。

打开进水阀进水,过了一段时间关闭进水阀。

再过一段时间打开排水阀排水,直到水排完。

已知进水时的流量、排水时的流量各保持不变。

用h 表示游泳池的水深,t 表示时间。

下列各函数图像中能反映所述情况的是( )5.将三张相同卡片的正面分别写“2”、“4”、“6”。

将背面朝上洗匀后随机抽出一张卡片,将该卡片上的数作为十位数,再从余下的两张卡片中随机抽出一张卡片,将该卡片上的数作为个位数,所得的两位数能被4整除的概率是 ( ) (B )41 (C )31(D )21(A )61 6.将图形绕中心旋转1800后的图形是 ( )(A ) (B )(C )(D )二、填空题(4’×12=48’)7.写出1到9这九个整数中所有的素数:____________________.8.据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录。

该观众人数可用科学记数法表示为____________人. 9.不等式337132-<+x x 的解集是______________________ 10.上海将在举办世博会。

黄浦江边大幅宣传画上的“”如右图所示。

从对岸看,它在水中倒影所显示的数是____________.(A th o t ho t h o (D (C t h o (B11.如果32+=x ,32-=y ,那么22xy y x +的值是______________. 12.分解因式6x 2-3ax-2bx+ab=___________________________. 13.函数1-=x xy 的定义域是______________________. 14.方程212=-+x x 的根是_________________ .15.铲车轮胎在建筑工地的泥地上留下圆弧形凹坑如图所示,量得凹坑跨度AB 为80cm ,凹坑最大深度CD 为20cm ,由此可算得铲车轮胎半径为_________cm . 16.某公司06年底总资产为100万元,08年底总资产为200万元。

长宁区初三数学一模卷

长宁区初三数学一模卷
⊙E 相切时,求 R 的值。
22.(本题满分 10 分)
第 21 题图
为了开发利用海洋资源,需要测量某岛屿两端 A、B 的距离.如图,勘测飞机在距海平面
垂直高度为 100 米的点 C 处测得点 A 的俯角为 60°,然后沿着平行于 AB 的方向飞行了
500 米至 D 处,在 D 处测得点 B 的俯角为 45°.求岛屿两端 A、B 的距离.(结果精确到
CE=6,BD=3,则 BF 等于 ▲ .
9.将二次函数 y 2x2 4x 配方成 y ax m2 k 的形式,配方后的解析式为 ▲ .
10.如图,王大伯屋后有一块长 12 米,宽 8 米的矩形空地 ABCD,他在以较长边 BC 为直径 的半圆形内种菜,他家养的羊平时拴在 A 处的一棵树上,为了不让羊吃到菜,栓羊的绳 长应小于 ▲ .
C.先向右平移 2 个单位,再向下平移 3 个单位;
D.先向右平移 2 个单位,再向上平移 3 个单位.
5.在△ABC 中,∠ACB=90°,CD⊥AB 于 D,下列各组边的比
不.能.表示 sinB 的( )
A. AC ; B. DC ;
AB
AC
C. DC ; BC
D. AD . AC
6.如图,P 是平行四边形 ABCD 的对称中心,以 P 为圆心作圆,
1.下列说法中,结论错误的是( ) A.直径相等的两个圆是等圆; B.长度相等的两条弧是等弧; C.圆中最长的弦是直径; D.一条弦把圆分成两条弧,这两条弧可能是等弧.
2.已知非零向量 a,b,c ,下列条件中,不.能.判定 a // b 的是( )
A. a b ; B. a b ; C. a // c,b // c ; D. a 2c, b 4c .

上海市长宁区2011年中考数学模拟试题参考答案

N2011年初三数学教学质量检测试卷参考答案一、 选择题1C 2B 3A 4C 5B 6C 二、 填空题7、)13(+b ab 8、22-+m m 9、减小 10、6100327.1⨯ 11、212、2 13、83(或0.375) 14、DC CD BA 、、 15、3 16、(6,0) 17、53- 18、n n m +三、解答题19(10分)解:原式=()232120113336+--+⨯ 6分= 232132+-- 2分 = 1 2分20(10分)解:令y x x=-21分 解:原方程化为:1)2()2)(42()2(2=-----x x x x x x x 2分 原方程化为12=-yy 当0)2(≠-x x 时,)2()2(222-=--x x x x 整理得 022=--y y 2分 整理得:0452=+-x x 3分 解得 1,221-==y y 2分 解得:41=x 、12=x 2分 当21=y 时22=-x x解得41=x (若前面无“当0)2(≠-x x 时”在此应当检验)2分当11-=y 时12-=-x x解得12=x 2分 ∴原方程的解是41=x 、12=x 1分 经检验:41=x ,12=x 是原方程的解 2分 ∴原方程的解是41=x 、12=x 1分21(10分)(1)70 3分 (2)10 4分 (3)1560 3分22(10分)解:据题意得 31B tan = ∵MN//AD ∴∠A=∠B ∴31A tan =∵DE ⊥AD ∴在Rt △ADE 中 ADDEA tan = ∵AD=9 ∴DE=3 2分又∵DC=0.5 ∴CE=2.5 ∵CF ⊥AB ∴∠1+∠2=90° ∵DE ⊥AD ∴∠A+∠2=90° ∴∠A =∠1 ∴311tan =∠ 2分 在Rt △CEF 中 222CF EF CE += 设EF=x CF=3x (x>0) CE=2.5代入得()()222253x x += 解得 410=x (如果前面没有 “设0>x ”,则此处应“410±=x ,舍负”)3分∴CF=3x=.324103≈ 2分∴该停车库限高2.3米. 1分23(12分)解:(1) ( 6分)∵C(2,4), BC=4 且 BC//OA ∴ B(6,4) 1分 设抛物线为c bx ax y ++=2()0≠a将O(0,0),C(2,4),B(6,4)代入得⎪⎩⎪⎨⎧=+=++=)3(4636)2(424)1(0b a c b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=03831c b a 3分∴x x y 38312+-= 1分∴顶点)316,4( 对称轴:直线4=x 2分(2) (6分)据题意,设),(a a P 或),(a a P -()0≠a 1分将),(a a P 代入抛物线得a a a =+-38312 解得0,521==a a (舍) 2分将),(a a P -代入抛物线得a a a -=+-38312 解得0,1121==a a (舍) 2分∴符合条件的点)5,5(p 和)11,11(-p 1分24(12分)(1)( 4分)证明:(方法一)∵AF ⊥DE∴∠1+∠3=90° 即:∠3=90°-∠154321OFEDCB A ∴∠2+∠4=90° 即:∠4=90°-∠2又∵∠1=∠2 ∴∠3=∠4 ∴AE = EF∵AD//BC ∴∠2=∠5 ∵∠1=∠2 ∴∠1=∠5 ∴AE = AD ∴EF = AD 2分 ∵AD//EF ∴四边形AEFD 是平行四边形 1分 又∵AE = AD∴四边形AEFD 是菱形 1分(方法二)∵AD//BC ∴∠2=∠5 ∵∠1=∠2 ∴∠1=∠5∵AF ⊥DE ∴∠AOE=∠AOD =90°在△AEO 和△ADO 中⎪⎩⎪⎨⎧=∠=∠∠=∠AO AO AOD AOE 51 ∴△AEO ≅△ADO ∴EO=OD在△AEO 和△FEO 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠FOE AOE EO EO 21∴△AEO ≅△FEO ∴AO=FO 2分 ∴AF 与ED 互相平分 1分 ∴四边形AEFD 是平行四边形 又∵AF ⊥DE ∴四边形AEFD 是菱形 1分 (2)( 5分)∵菱形AEFD ∴AD=EF ∵BE=EF ∴AD=BE又∵AD//BC ∴四边形ABED 是平行四边形 1分 ∴AB//DE ∴∠BAF=∠EOF同理可知 四边形AFCD 是平行四边形 ∴AF//DC ∴∠EDC=∠EOF又∵AF ⊥ED ∴∠EOF=∠AOD=90° ∴∠BAF=∠EDC=∠EOF=90° 2分 ∴∠5 +∠6=90° 1分∴∠BAD+∠ADC=∠BAF+∠6 +∠5+∠EDC =270° 1分(3)( 3分)由(2)知∠BAF =90°平行四边形AFCD ∴AF=CD=n又∵AB=m mn 21AF AB 21S ABF =⋅=∆ 1分 由(2)知 平行四边形ABED ∴DE=AB=m 由(1)知OD=m DE 21= mn 21OD AF S AFCD =⋅=四边形 1分 mn S A FCD A BCD =+=∆四边形四边形S S ABF 1分54321OFEDCB A625(14分)解:(1) ( 3分)()81264222+--=++-=x x x y ∴)8,1(),6,0(D C 1分设直线CD:()0≠+=k b kx y 将C 、D 代入得⎩⎨⎧+==686k b 解得⎩⎨⎧==62b k∴CD 直线解析式:62+=x y 1分 )0,3(-E 1分 (2) ( 4分)令y=0 得06422=++-x x 解得3,121=-=x x ∴)0,3()0,1(B A - 1分又∵)0,0(O 、)0,3(-E ∴以OE 为直径的圆心)0,(31-O 、半径31=r .设)62,(+t t P由31=PO 得232223)62()(=+++t t 解得3,2121-=-=t t (舍)∴),(56512-P 2分 ∴585=PA 211=AO又 5=DC 53=CB 172=DB ∴5211===PADB PO CB AO DC 1分 ∴BCD ∆~A PO 1∆ (3) ( 7分)① )0,(31-O 31=r ),0(2m O 据题意,显然点2O 在点C 下方 m C O r -==622当⊙O 2与⊙O 1外切时 2121r r O O +=代入得()()m m -+=+6232223 解得 2,51821==m m (舍)2分 当⊙O 2与⊙O 1内切时 2121r r O O -=代入得()()m m --=+6232223 解得 518,221==m m (舍) 2分 ∴2,51821==m m② ⎪⎭⎫ ⎝⎛518,03O ⎪⎭⎫ ⎝⎛-710,03O ⎪⎭⎫ ⎝⎛0,233O ⎪⎭⎫ ⎝⎛-0,14453O ⎪⎭⎫ ⎝⎛1514,03O ()2,03O ⎪⎭⎫⎝⎛0,2213O 3分。

数学长宁区一模试卷及答案.pdf

3 −1
(1 分) (2 分) (1 分)
∴ x = 8( 3 + 1)
(1 分)
∴ CD = 3x = 24 + 8 3 ≈ 37.9
(1 分)
答: 商务楼 CD 的高度为 37.9 米。
(1 分)
23.(本题满分 12 分,第(1)小题 6 分,第(2)小题 6 分)
咨询电话:4000-121-121
又∵∠ADC= 900
∴ AD = AC2 − CD2 = 20
(2 分)
∴AB=2AD=40
(1 分)
(2)设圆 O 的半径为 r,则 OD=40-r
(1 分)
∵BD=AD=20, ∠ODB= 900 ∴ BD2 + OD2 = OB2 ∴ 202 + (40 − r)2 = r 2
(1 分)
∴r=25,OD=15
C
第 21 题图
咨询电话:4000-121-121
3
22.(本题满分 10 分) 如图,一栋居民楼 AB 的高为 16 米,远处有一栋商务楼 CD,
小明在居民楼的楼底 A 处测得商务楼顶 D 处的仰角为 60°,又在商 务楼的楼顶 D 处测得居民楼的楼顶 B 处的俯角为 45°.其中 A、C
两点分别位于 B、D 两点的正下方,且 A、C 两点在同一水平线上, 求商务楼 CD 的高度.
D
C
第 6 题图
(C)CD=BC;
(D) BC ⋅ CD = AC ⋅ OA .
咨询电话:4000-121-121
1
二、填空题(本大题共 12 题, 每题 4 分, 满分 48 分)
7.若线段 a、b 满足 a = 1 ,则 a + b 的值为 ▲ .

长宁区上海市九年级数学一模卷

上海市长宁区第一学期初三数学一模试卷(测试时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分) 1.在等腰直角三角形中,一个锐角的正切值是( ▼ ) A .22B .1C .3D .332.下列计算中错误的是( ▼ ) A .︒=︒-︒30sin 30sin 60sin B .145cos 45sin 22=︒+︒ C .︒︒=︒30sin 60sin 60tanD .︒︒=︒60cos 30cos 30cot3.抛物线12231+-=x x y 的开口方向、对称轴、顶点坐标分别是(▼) A .向上 直线3=x (3,-8) B .向下 直线3-=x (-3,-8) C .向上 直线3=x (3,-2)D .向下 直线3-=x (-3,-2)4.已知点P 是⊙O 所在平面内一点,P 与圆上所有点的距离中,最长距离是9 cm ,最短距离是4 cm ,则⊙O 的直径是( ▼ )A .2.5 cmB .6.5 cmC .2.5 cm 或6.5 cmD .5 cm 或13 cm5.在同一直角坐标系中,函数m mx y +=和222++-=x mx y (m 是常数,且0≠m )的图像可能是( ▼ )6.已知下列命题: ①圆是轴对称图形,直径就是它的对称轴;②平分弦的直径垂直于弦;③长度相等的弧是等弧;④两圆相切,圆心距等于两圆半径之和。

其中假命题的个数是( ▼ ) A .1个B .2个C .3个D .4个二、填空题:(本大题共12题,每题4分,满分48分) 7.在等边三角形中,边长与高的比值是▼。

8.化简:()b a b a 42)2(3+-+= ▼ 。

Oy xOyxO yxOyxA B CD9.已知两个相似三角形的相似比为1:3,若较小的三角形面积为6,则较大的三角形面积是▼ 。

10.如图,在直角坐标系中,α∠的顶点与坐标原点O 重合,一边在x 轴正半轴上,另一边是射线OM ,已知cot α=3,若OM 上一点P 的横坐标是3,则点P 的纵坐标是 ▼ 。

2011年上海市长宁区中考数学一模试卷

2011年上海市长宁区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.(4分)(2011•长宁区一模)在等腰直角三角形中,一个锐角的正切值是()A.B.1 C.D.【考点】M339 等腰三角形的性质和判定M33D 直角三角形的性质和判定M362 特殊角的锐角三角函数值【难度】容易题【分析】根据等腰直角三角形的性质,可得出两直角边相等,每一个锐角为45度,再根据特殊角的三角函数值即可得出tan45°=1.故选B.【解答】B.【点评】本题考查了等腰直角三角形的性质以及特殊角的三角函数值,是基础知识要熟练掌握.2.(4分)下列计算错误的是()A.sin60°﹣sin30°=sin30°B.sin245°+cos245°=1C.tan60°=D.cot60°=【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M362 特殊角的锐角三角函数值【难度】容易题【分析】根据特殊角的三角函数值及同角三角函数的关系解答,即:A、sin60°﹣sin30°=﹣=,sin30°=,错误;B、sin245°+cos245°=1,正确,符合同角三角函数的关系;C、tan60°=,正确;D、cot60°=,正确.故选A.【解答】A.【点评】本题考查特殊角三角函数值及同角三角函数的关系,考生要熟练掌握!3.(4分)(2011•长宁区一模)抛物线y=﹣2x+1的开口方向、对称轴、顶点坐标分别是()A.向上、直线x=3、(3,﹣8)B.向下、直线x=﹣3、(﹣3,﹣8)C.向上、直线x=3、(3,﹣2)D.向下、直线x=﹣3、(﹣3,﹣2)【考点】M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】抛物线y=﹣2x+1可化为:y=(x2﹣6x)+1=(x﹣3)2﹣2,∵>0,故开口方向向上,其对称轴为x=3,顶点坐标为(3,﹣2).故选C.【解答】C.【点评】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x﹣h)2+k(a ≠0)的顶点坐标为(h,k).4.(4分)(2011•长宁区一模)已知点P是⊙O所在平面内的一点,P与圆上所有点的距离中,最长距离是9cm,最短距离是4cm,则⊙O的直径是()A.2.5cm B.6.5cm C.2.5cm或6.5cm D.5cm或13cm【考点】M353 圆的定义及点与圆的位置关系【难度】容易题【分析】本题没有明确告知点的位置,应分点在圆内与圆外两种情况,当点P在⊙O外时,此时PA=4cm,PB=9cm,AB=5cm,因此直径为5cm;当点P在⊙O内时,此时PA=4cm,PB=9cm,直线PB过圆心O,直径AB=PA=4+9=13cm,因此直径为13cm.故选D.【解答】D.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.(4分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【考点】M422 一次函数的的图象、性质M423 一次函数的关系式M442 二次函数的图象、性质M443 二次函数的关系式【难度】较难题【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).则:A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;【解答】D.【点评】主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.6.(4分)(2011•长宁区一模)已知下列命题:①圆是轴对称图形,直径是它的对称轴;②平分弦的直径垂直于弦;③长度相等的弧是等弧;④两圆相切,圆心距等于两圆半径之和.其中假命题的个数是()A.1个B.2个C.3个D.4个【考点】M353 圆的定义及点与圆的位置关系M354 圆的有关性质M356 两圆的位置关系M611 命题、定理和证明【难度】中等题【分析】根据圆的轴对称性以及垂径定理及其推论的内容即可作出判断.具体为:①、圆是轴对称图形,对称轴是经过圆心的直线,故命题错误;②、平分弦的直径垂直于弦,被平分的弦不能是直径,故命题错误;③、能重合的弧是等弧,而长度相等的弧不一定能够重合,故命题错误;④、两圆相切可能是外切也可能是内切,故命题错误.故错误的有4个.故选D.【解答】D.【点评】本题主要考查了圆的轴对称性,注意圆的对称轴是经过圆心的直线,而直径是线段;垂径定理中:平分弦的直径垂直于弦,被平分的弦不能是直径.涉及命题,两圆相切等知识点,均属于中考高频考点,考生要注意掌握!二、填空题(共12小题,每小题4分,满分48分)7.(4分)(2011•长宁区一模)在等边三角形中,边长与高的比值是.【考点】M33B 等边三角形的性质和判定M339 等腰三角形的性质和判定M33E 勾股定理【难度】容易题【分析】先根据△ABC是等边三角形,易知AB=BC=AC,∠BAC=∠B=∠C=60°,而AD是BC上的高,利用等腰三角形三线合一定理可得BD=CD=BC,并且设△ABC的边长等于a,则BD=a,在Rt△ABD中利用勾股定理可求AD===,进而可求AB:AD=a:=.故答案为:.【解答】.【点评】本题考查了等边三角形的性质、等腰三角形三线合一定理、勾股定理.解题的关键是在Rt△ABD中利用勾股定理求出AD.8.(4分)(2011•长宁区一模)化简:3(+2)﹣2(+4)=.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】根据平面向量的数乘法和加法运算法则直接计算即:原式=3+=(3﹣2)=.【解答】.【点评】本题考查平面向量的运算,难度适中,解题关键是对平面向量这一概念的数量掌握和理解.9.(4分)(2011•长宁区一模)已知两个相似三角形的相似比为1:3,若较小的三角形面积为6,则较大的三角形面积是.【考点】M33O 三角形面积M33M 相似三角形性质、判定【难度】容易题【分析】根据相似三角形的性质:相似三角形的面积的比等于相似比的平方,即可得两个相似三角形的面积的比是:1:9.则较大的三角形面积是:6×9=54.故答案是:54.【解答】54.【点评】本题考查了相似三角形的性质:相似三角形的面积的比等于相似比的平方,理解性质是关键.10.(4分)(2011•长宁区一模)如图,在直角坐标系中,∠α的顶点与坐标原点O重合,一边在x轴正半轴上,另一边是射线OM.已知cotα=,OP=2,则点P的纵坐标是.【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M362 特殊角的锐角三角函数值M374 坐标与图形【难度】容易题【分析】过P点作PA⊥Ox,先根据特殊角的三角函数值求出∠α=30°,又OP=2,再根据三角函数的知识求解即PA=OP•sin∠α=1.故答案为:1.【解答】1.【点评】本题考查了坐标与图形性质和锐角三角函数的定义,注意求得∠α=30°是解题的关键.11.(4分)(2011•长宁区一模)已知二次函数y=﹣3x2+4的图象沿y轴向下平移4个单位后,得到的函数图象的解析式为.【考点】M41A 函数图像的几何变换M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】易得原抛物线的顶点坐标(0,4),根据平移的规律可得平移后新抛物线的顶点(0,0),根据平移不改变抛物线的二次项系数,利用顶点式可得新抛物线解析式为y=﹣3x2.故答案为:y=﹣3x2.【解答】y=﹣3x2.【点评】本题考查了抛物线的平移问题,用到的知识点为:抛物线的平移不改变抛物线的二次项系数,解题关键是找到新抛物线的顶点坐标.12.(4分)(2011•长宁区一模)如图,四边形ADEF是菱形,如果AC=30,AB=20,则EF=.【考点】M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M33I 平行线分线段成比例定理【难度】容易题【分析】设菱形的边长是x,∵四边形ADEF是菱形,∴DE∥AC,∴FE:AB=CF:AC,∵AC=30,AB=20,∴x:20=(30﹣x):30,∴30x=600﹣20x,解得x=12,故答案为12.【解答】12.【点评】本题主要考查了菱形的性质及平行线分线段成比例定理的运用.关键是根据菱形的对边平行及平行线分线段成比例定理进行求解13.(4分)(2011•长宁区一模)如图,某建筑物门口有一无障碍通道,通道的斜坡长为a 米,通道的最高点距水平地面b米,若a:b=:1,该通道的坡比是.【考点】M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】根据斜坡长与高度的长求出水平距离为6a米,再根据坡度的计算公式解答得该通道的坡比是=.故答案为.【解答】.【点评】此题主要考查学生对坡角、坡度的理解及运用,熟练掌握坡度的计算公式是解答本题的关键.14.(4分)(2011•长宁区一模)在直角坐标系中,一条抛物线的开口向下,且对称轴在y 的左侧,如果点A(1,y1)和B(2,y2)在该抛物线上,则y1y2(填>、=、<).【考点】M417 不同位置的点的坐标的特征M442 二次函数的图象、性质【难度】容易题【分析】抛物线的开口向下,且对称轴在y的左侧,则当x>0时,随着x值的增大,y值减小,继而即可得出y1>y2.故答案为:>.【解答】>.【点评】本题考查二次函数图象上点的坐标特征,难度适中,可画出图形来辅助解题.15.(4分)(2011•长宁区一模)已知⊙O的直径是4,⊙O上两点B、C分⊙O所得的劣弧与优弧之比为1:3,则弦BC的长为.【考点】M33E 勾股定理M353 圆的定义及点与圆的位置关系M354 圆的有关性质【难度】容易题【分析】∵圆的一条弦把圆分成度数的比为1:3的两条弧,∴劣弧的度数为90°,∴劣弧所对的圆心角的度数90°,∵r=2,∴BC==2.故答案为:2.【解答】2.【点评】此题考查了圆心角、弧、弦的关系,以及勾股定理,根据已知得出圆心角的度数90°,再利用勾股定理求出是解题的关键.16.(4分)(2011•长宁区一模)如果一个正六边形的边心距等于6cm,则它的周长是cm.【考点】M357 正多边形与圆M361 锐角的三角比的概念(正切、余切、正弦、余弦)M362 特殊角的锐角三角函数值M364 解直角三角形【难度】容易题【分析】作OB⊥AB于B点,连接AO,则OB=6,∠AOB=30°,∴AB=OB×tan∠AOB=6×tan30°=2,∴周长=2×12=24,故答案为24.【解答】24.【点评】本题考查了正多边形的有关的计算,解题的关键是正确地构造直角三角形.17.(4分)(2011•长宁区一模)已知半径均为1厘米的两圆外切,半径为2厘米且和这两圆都相切的圆共有个.【考点】M354 圆的有关性质M356 两圆的位置关系【难度】中等题【分析】结合图象可以看出:一共存在两两外切的有两种⊙3,⊙4,与其中一个外切,另一个内切的有两种⊙5,⊙6,与两小圆都内切只有一种.所以一共有5种.故答案为:5.【解答】5.【点评】此题主要考查了两圆相切时的几种位置关系,通常考生对于两圆两两内切这种情况不容易想到,要注意;此题比较典型.18.(4分)(2011•长宁区一模)如图,点G是等边△ABC的重心,过点G作BC的平行线,分别交AB、AC与点D、E,在BC边上确定一点M,使△BDM∽△CEM(但不全等),则S△BDM:S△CEM=.【考点】M253 分式方程M33O 三角形面积M33I 平行线分线段成比例定理M33L 三角形重心、内心、外心M33M 相似三角形性质、判定M33B 等边三角形的性质和判定【难度】较难题【分析】点G是等边△ABC的重心,DE∥BC,∴AB=BC=AC,∠B=∠C=60°,,∴BD=BC,EC=BC,当△BDM∽△CME时,则,设BD=a,CM=x,则CE=a,BC=3a,BM=3a﹣x,∴,解得:x=a,∴当BM=a时,CM=a,则S△BDM:S△CEM=BM:CM=;当BM=a时,CM=a,则S△BDM:S△CEM=.故答案为:(7+3):2或(7﹣3):2.【解答】(7+3):2或(7﹣3):2.【点评】此题考查了等边三角形的性质,三角形重心的性质,平行线分线段成比例定理以及相似三角形的性质等知识.此题综合性很强,难度适中,解题的关键是注意数形结合思想与方程思想的应用.三、解答题(共7小题,满分78分)19.(10分)(2011•长宁区一模)已知平行四边形ABCD,设=,=,点P、Q分别是对角线AC、BD的点,且=,=,试用、分别表示、、.【考点】M334 三角形中位线定理M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M381 平面向量的概念M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】中等题【分析】连接PQ,利用三角形AOD的中位线定理和平行四边形ABCD的对边平行且相等的性质推知PQ∥AD∥BC且2PQ=AD=BC;然后根据平面向量的几何意义以及向量的三角形法则解答即可.【解答】解:连接PQ. (1)∵点P、Q分别是对角线AC、BD的点,且=,=,∴点P、Q分别是AO、DO的中点, (2)∴PQ∥AD∥BC且2PQ=AD=BC, (4)∴=; (6)∵=﹣=﹣;∵四边形ABCD是平行四边形,∴===(﹣); (8)∵=+=+,∴==×=(+). (10)【点评】本题考查了平面向量的线性运算.把向量同解三角形结合的问题,属于中等题或难题,应加强平面向量的基本运算的训练,尤其是与三角形综合的问题.20.(10分)(2011•长宁区一模)已知:如图,AD是△ABC的边BC上的高,且AD是BD 与DC的比例中项.求证:△ABC是直角三角形.【考点】M33D 直角三角形的性质和判定M33H 比例的性质M33M 相似三角形性质、判定【难度】容易题【分析】由AD是BD与DC的比例中项,根据比例中项的性质,即可得AD2=BD•BC,∠B=∠B,可知△ABD∽△CAD,由AD是△ABC的边BC上的高,则可求得∠BAC=90°,故△ABC是直角三角形.【解答】证明:∵AD是BD与DC的比例中项,∴AD2=BD•DC,∴, (2)∵AD是△ABC的边BC上的高,∴∠ADB=∠CDA=90°, (4)∴△ABD∽△CAD, (6)∴∠B=∠CAD, (7)∴∠BAC=∠BAD+∠CAD=∠BAD+∠B=90°, (9)∴△ABC是直角三角形. (10)【点评】此题考查了相似三角形的判定与性质以及比例中项的性质.此题难度不大,解题的关键是注意数形结合思想的应用.21.(10分)(2011•长宁区一模)已知⊙O的半径是5cm.弦AB=8cm.(1)求圆心到AB的距离;(2)弦AB两端在圆上滑动,且保持AB=8cm,AB的中点在运动过程中构成什么图形,请说明理由.【考点】M33E 勾股定理M354 圆的有关性质【难度】容易题【分析】(1)利用垂径定理,然后根据勾股定理即可求得弦心距OD的长;(2)根据圆的定义即可确定.【解答】解:连接OB,作OD⊥AB于D.OD就是圆心O到弦AB的距离. (1)在⊙O中,∵OD⊥AB∴D是弦AB的中点 (2)在Rt△OBD中,OB=5,DB=AB=4 (3)OD==3 (5)圆心O到弦AB的距离为3. (6)(2)由(1)知:D是弦AB的中点AB中点D在运动过程中始终保持OD=3 (8)∴据圆的定义,在AB运动过程中,点D运动的轨迹是以O为圆心,3为半径的圆. (10)【点评】本题考查了垂径定理和圆的定义,根据垂径定理把求弦心距的计算转化成解直角三角形是关键.22.(10分)(2011•长宁区一模)如图,在直角坐标系中,OB⊥OA,且OB=2OA,A(﹣1,2).(1)分别过点A、B作x轴的垂线,垂足是C、D.求证:△ACO∽△ODB;(2)求B点的坐标;(3)设过A、B、C三点的抛物线的对称轴为直线l,在直线l上求点P,使得S△ABP=S△ABO.【考点】M33O 三角形面积M33M 相似三角形性质、判定M413 结合图像对函数关系进行分析M417 不同位置的点的坐标的特征M41B 平面直角坐标系M442 二次函数的图象、性质M444 二次函数的应用【难度】中等题【分析】(1)根据OB⊥OA和OB=2OA得出∠A=∠2,求出∠ACO=∠ODB=90°,即可求出△ACO∽△ODB;此问简单(2)此题可通过构建相似三角形来求解,分别过A、B作x轴的垂线,由于∠AOB=90°,则可证得△AOC∽△OBD,然后利用两个三角形的相似比(即OB=2OA),求出点B的坐标;此问中等(3)根据A和B点的坐标得出它们的纵坐标相同,即可求出抛物线的对称轴L为直线x=,再分两种情况进行分析点P在直线l上距AB距离为2时△ABO与△ABP面积相等,即可求出P点的坐标.此问中等【解答】(1)证明:OB⊥OA,且OB=2OA,∴∠1+∠2=90°, (1)∠1+∠A=90°,∴∠A=∠2,∴∠ACO=∠ODB=90°,∴△ACO∽△ODB; (3)(2)解:分别作AC⊥x轴,BD⊥x轴,垂足分别是C、D;∵∠AOB=90°,∴∠AOC+∠BOD=90°,而∠AOC+∠CAO=90°,∴∠BOD=∠CAO; (5)又∵∠ACO=∠BDO=90°,∴△AOC∽△OBD; (6)∵OB=2OA,∴===则OD=2AC=4,DB=2OA=2,所以点B(4,2) (7)(3)解:∵A(﹣1,2),B(4,2)纵坐标相同,∴抛物线的对称轴L为直线x=, (9)当点P在直线l上且距AB距离为2时,△ABO与△ABP面积相等,P点的坐标为(,0)或(,4). (10)【点评】此题考查了二次函数的综合;解题的关键是根据抛物线的顶点公式和三角形的面积求法进行解答,在求有关动点问题时要注意分析题意分情况讨论结果.23.(12分)(2011•长宁区一模)如图,在边长为l的小正方体组成的网格中,小正方体的顶点称为格点,△ABC的三个顶点都在格点上.(1)在网格中确定一点D,使得=(只要画出向量,不必写作法);(2)若E为BC的中点,则tan∠CAE=;(3)在△ACD中,求∠CAD的正弦值.【考点】M329 基本作图M33O 三角形面积M33D 直角三角形的性质和判定M33E 勾股定理M361 锐角的三角比的概念(正切、余切、正弦、余弦)M381 平面向量的概念M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】较难题【分析】(1)首先根据平行四边形法则,即可画出图形;此问简单(2)延长AE到K,使得AK⊥CK,由tan∠CAE=,即可求得答案;此问中等(3)首先由AC==,DC=,AD=,可得△ACD不是直角三角形,然后作DM⊥AC于M,利用三角形的面积求得AC边上的高,继而可求得∠CAD的正弦值.此问较难【解答】解:(1)如图:点D即为所求; (4)(2)如图:根据题意可知:tan∠CAE==.故答案为:; (7)(3)根据题意得:AC==,DC=,AD=,∴△ACD不是直角三角形, (8)作DM⊥AC于M,S△ADC=S梯形AFNC﹣S△AFD﹣S△CND,=(AF+CN)•FN﹣AF•DF﹣DN•CN,=×(4+2)×5﹣×4×4﹣×2×1,=6, (10)S△ADC=•AC•DM=××DM=6,∴DM=,在Rt△ADM中,sin∠CAD==÷=. (12)【点评】此题考查了平面向量的知识,三角函数以及三角形面积的求解方法等知识.此题难度较大,解题的关键是注意数形结合思想的应用.24.(12分)(2011•长宁区一模)某海域一哨所A周围是半径为15海里的暗礁区,哨所值班人员发现一艘轮船在哨所正西方向45海里B处向哨所方向驶来,值班人员立即向轮船发出危险警告信号,但轮船没有收到信号,又继续向前行驶了15海里到达C处才收到哨所第二次发出的危险警告信号.(1)若轮船第一次能收到信号,为避免触礁,轮船航向应该改变角度至少为北偏东α度,求cosα的值;(2)当轮船只收到第二次危险警告信号时,为避免触礁,轮船航向改变角度至少为南偏东多少度?【考点】M354 圆的有关性质M361 锐角的三角比的概念(正切、余切、正弦、余弦)M362 特殊角的锐角三角函数值M364 解直角三角形M366 方向角【难度】容易题【分析】(1)已知⊙A的直径为30海里,B为⊙A外一点.AB=45海里,BD切⊙A于点D,求sinB的值,让∠B的对边比上斜边即可,于是求出cosα.(2)若C为AB上的一点,且BC=15海里,CE切⊙A于点E,求∠ACE的度数,先求得∠ACE的度数的正弦值,进而根据正弦值求得相应度数即可.【解答】解:(1)在Rt△ABD中,∵AB=45,AD=15.∴cosα=sinB===, (5)(2)在Rt△ACE中,AC=45﹣15=30,AE=15. (8)∴sin∠ACE==,则∠ACE=30°. (11)即轮船航向改变的角度至少为南偏东60°. (12)【点评】本题主要考查解直角三角形在生活中的应用,用到的知识点为:一个锐角的正弦值=这个角的对边与斜边之比,此题难度不大,考生要注意掌握相关知识点!25.(14分)(2011•长宁区一模)已知:矩形OABC在平面直角坐标系中的位置如图所示,A(6,0),C(0,3),直线y=x与BC边交于D点.(1)求D点的坐标;(2)若抛物线y=ax2+bx经过A、D两点,求此抛物线的表达式;(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P.【考点】M233 二元一次方程(组)的概念、解法M323 平行线的判定、性质M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M413 结合图像对函数关系进行分析M414 用待定系数法求函数关系式M415 动点问题的函数图像M417 不同位置的点的坐标的特征M41B 平面直角坐标系M422 一次函数的的图象、性质M423 一次函数的关系式M424 一次函数的应用M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用M711 数学综合与实践【难度】较难题【分析】(1)已知直线y=x与BC交于点D(x,3),把y=3代入等式可得点D的坐标;此问简单(2)如图抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把已知坐标代入解析式得出a,b的值即可;此问中等(3)证明Rt△P1OM∽Rt△CDO以及Rt△P2P1O≌Rt△DCO后推出CD=P1P2=4得出符合条件的坐标.此问较难【解答】解:(1)由题知,直线y=x与BC交于点D(x,3). (1)把y=3代入y=x中得,x=4,∴D(4,3); (3)(2)抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把x=4,y=3;x=6,y=0,分别代入y=ax2+bx中, (4)得解之得 (6)∴抛物线的解析式为y=﹣x2+x; (7)(3)抛物线的对称轴与x轴交于点P1,符合条件.∵CB∥OA,∴∠P1OM=∠CDO,∵∠DCO=∠OP1M=90°,∴Rt△P1OM∽Rt△CDO. (9)∵x=﹣=3,∴该点坐标为P1(3,0). (10)过点O作OD的垂线交抛物线的对称轴于点P2, (11)∵对称轴平行于y轴,∴∠P2MO=∠DOC,∴Rt△P2MO∽Rt△DCO. (12)在Rt△P2P1O和Rt△DCO中P1O=CO=3,∠P2=∠ODC,∴Rt△P2P1O≌Rt△DCO.∴CD=P1P2=4, (13)∵点P2位于第四象限,∴P2(3,﹣4).(12分)因此,符合条件的点有两个,分别是P1(3,0),P2(3,﹣4). (14)【点评】此题属于二次函数综合大题,主要考查函数性质与坐标关系,涉解二元一次方程(组),全等三角形判定、性质,相似三角形性质、判定,用待定系数法求函数关系式,一次函数的应用,二次函数的应用等知识点,综合性比较强,难度较大.尤其注意最后一问是探究点的存在性问题,关键是证明Rt△P1OM∽Rt△CDO以及Rt△P2P1O≌Rt△DCO后推出CD=P1P2=4得出符合条件的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档