七年级数学试卷有理数解答题试题(附答案)

合集下载

七年级数学试卷有理数解答题精选附答案

七年级数学试卷有理数解答题精选附答案

七年级数学试卷有理数解答题精选附答案一、解答题1.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.2.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是部分①面积的一半,部分③是部分②面积的一半,以此类推(1)阴影部分的面积是多少?(2)受此启发,你能求出1+ 的值吗?3.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.4.在学习绝对值后,我们知道,表示数在数轴上的对应点与原点的距离. 如:表示5在数轴上的对应点到原点的距离.而,即表示5、0在数轴上对应的两点之间的距离.类似的,有:表示5、3在数轴上对应的两点之间的距离;,所以表示5、在数轴上对应的两点之间的距离. 一般地,点A、B在数轴上分别表示有理数、,那么A、B之间的距离可表示为.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和5的两点之间的距离是________;数轴上表示1和-3的两点之间的距离是________;(2)数轴上P、Q两点的距离为3,且点P表示的数是2,则点Q表示的数是________. (3)点A、B、C在数轴上分别表示有理数、、1,那么A到B的距离与A到C的距离之和可表示为________;(4)满足的整数的值为________.(5)的最小值为________.5.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.6.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.7.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.(1)请直接写出、b、c的值: =________,b=________,c=________.(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.8.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.9.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值10.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)11.阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= ×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+ n×( n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.12.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。

人教版七年级数学上册《第一章有理数》测试题-附带答案

人教版七年级数学上册《第一章有理数》测试题-附带答案

人教版七年级数学上册《第一章有理数》测试题-附带答案(考试时间:90分钟 试卷满分:120分)一 选择题:本题共10个小题 每小题3分 共30分。

在每小题给出的四个选项中 只有一项是符合题目要求的。

1.(2021·山西临汾市·九年级二模)在人类生活中 早就存在着收入与支出 盈利与亏本等具有相反意义的现象 可以用正负数表示这些相反意义的量.我国古代数学名著《九章算术》一书中也明确提出“正负术”.最早使用负数的国家是( ) A .印度 B .法国C .阿拉伯D .中国【答案】D【分析】根据负数的使用历史进行解答即可. 【详解】最早使用负数的国家是中国.故选:D .【点睛】本题考查的是正数和负数 关键是了解掌握负数的使用历史.2.(2021·江苏南通市·九年级二模)新冠肺炎疫情阻击战中 南通是全省唯一主城区没有发本土确诊病例的安全岛.接种新冠疫苗 是巩固抗疫成果最经济 最有效的手段.截止4月24日24时 南通全市已累计接种新冠疫苗102.37万针.其中 102.37万用科学记数法表示为( ) A .81.023710⨯ B .70.1023710⨯ C .61.023710⨯ D .4102.3710⨯ 【答案】C【分析】用科学记数法表示较大的数时 一般形式为a ×10n 其中1≤|a |<10 n 为整数 且n 比原来的整数位数少1 据此判断即可.【详解】解:102.37万=61.023710⨯ 故选C .【点睛】此题主要考查了用科学记数法表示较大的数 一般形式为a ×10n 其中1≤|a |<10 确定a 与n 的值是解题的关键.3.(2021·河南初一期中)如图 关于A B C 这三部分数集的个数 下列说法正确的是( ) A .A C 两部分有无数个 B 部分只有一个0 B .A B C 三部分有无数个 C .A B C 三部分都只有一个 D .A 部分只有一个 B C 两部分有无数个【答案】A【分析】根据有理数的分类可以看出A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数最后根据各数性质进一步判断即可.【解析】由图可得:A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数∵整数中除了正整数与负整数外的部分整数只有0负整数与正整数都有无数个∴A C两部分有无数个B只有一个.故选:A.【点睛】本题主要考查了有理数的分类熟练掌握相关概念是解题关键.4.(2020·北京四中初三月考)如图数轴上A B两点所表示的数互为倒数则关于原点的说法正确的是()A.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合【答案】C【分析】根据倒数的定义可知A B两点所表示的数符号相同依此求解即可.【解析】∵数轴上A B两点所表示的数互为倒数∴A B两点所表示的数符号相同如果A B两点所表示的数都是正数那么原点在点A的左侧如果A B两点所表示的数都是负数那么原点在点B的右侧∴原点可能在点A的左侧或点B的右侧.故选C.【点睛】本题考查了数轴倒数的定义由题意得到A B两点所表示的数符号相同是解题的关键.5.(2021·湖南株洲市·七年级期中)计算20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭的结果是()A.23B.32C.23-D.32-【答案】D【分析】根据乘方的意义进行简便运算再根据有理数乘法计算即可.【详解】解:20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭=2019202021.513⎛⎫-⨯⨯⎪⎝⎭=20202019221.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个=2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个=32- 故选:D . 【点睛】本题考查了有理数的混合运算 解题关键是熟练依据乘方的意义进行简便运算 准确进行计算.6.(2021·四川达州市·中考真题)生活中常用的十进制是用0~9这十个数字来表示数 满十进一 例:121102=⨯+ 212210101102=⨯⨯+⨯+ 计算机也常用十六进制来表示字符代码 它是用0~F 来表示0~15 满十六进一 它与十进制对应的数如下表:例:十六进制2B 对应十进制的数为2161143⨯+= 10C 对应十进制的数为1161601612268⨯⨯+⨯+= 那么十六进制中14E 对应十进制的数为( )A .28B .62C .238D .334【答案】D【分析】在表格中找到字母E 对应的十进制数 根据满十六进一计算可得.【详解】由题意得 十六进制中14E 对应十进制的数为:1×16×16+4×16+14=334 故选D . 【点睛】本题主要考查有理数的混合运算 解题的关键是掌握十进制与十六进制间的转换及有理数的混合运算顺序和运算法则.7.(2021.湖南永州市.七年级期末)若“!”是一种数学运算符号 并且1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 (2021)2020!的值等于( ) A .2021 B .2020 C .2021! D .2020!【答案】A【分析】根据题意列出有理数混合运算的式子 进而可得出结论. 【详解】解:1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 …∴2021!202120202019 (1)==20212020!20202019 (1)⨯⨯⨯⨯⨯⨯⨯故选A . 【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2021·成都天府七中初一月考)若a b 为有理数 下列判断正确的个数是( )(1)12a ++总是正数 (2)()224a ab +-总是正数 (3)()255ab +-的最大值为5 (4)()223ab -+的最大值是3.A .1B .2C .3D .4【答案】B【分析】根据绝对值 偶次方的非负性进行判断即可.【解析】∵10a +≥ ∴12a ++>0 即12a ++总是正数 (1)正确 ∵20a ≥ ()240ab -≥∴当20a =即a=0时 ()240ab -> 故()224a ab +-是正数当()240ab -=时 则0a ≠ 即20a > 故()224a ab +-是正数 故(2)正确()255ab +-的最小值为5 故(3)错误 ()223ab -+的最大值是2 故(4)错误.故选:B.【点睛】此题考查绝对值的性质 偶次方的性质 最大值及最小值的确定是难点. 9.(2021·重庆潼南区·七年级期末)如果四个不同的正整数m n pq 满足(4)(4)(4)(4)9m n p q ----= 则m n p q +++等于( )A .12B .14C .16D .18【答案】C【分析】由题意确定出m n p q 的值 代入原式计算即可求出值.【详解】解:∵四个互不相同的正整数m n p q 满足(4-m )(4-n )(4-p )(4-q )=9 ∴满足题意可能为:4-m =1 4-n =-1 4-p =3 4-q =-3 解得:m =3 n =5 p =1 q =7 则m +n +p +q =16.故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.10.(2021·广东省初一月考)如图 在纸面所在的平面内 一只电子蚂蚁从数轴上表示原点的位置O 点出发 按向上 向右 向下 向右的方向依次不断移动 每次移动1个单位 其移动路线如图所示 第1次移动到1A 20第2次移动到2A 第3次移动到3A …… 第n 次移动到n A 则△O 22019A A 的面积是( )A.504 B.10092C.20112D.505【答案】B【分析】根据图可得移动4次完成一个循环观察图形得出OA4n=2n处在数轴上的点为A4n和A4n-1.由OA2016=1008推出OA2019=1009由此即可解决问题.【解析】解:观察图形可知:OA4n=2n且点A4n和点A4n-1在数轴上又2016=504×4∴A2016在数轴上且OA2016=1008∵2019=505×4-1∴点A2019在数轴上OA2019=1009∴△OA2A2019的面积=12×1009×1=10092故选:B.【点睛】本题考查三角形的面积数轴等知识解题的关键是学会探究规律利用规律解决问题属于常考题型.二填空题:本题共8个小题每题3分共24分。

(必考题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(有答案解析)(2)

(必考题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(有答案解析)(2)

一、选择题1.若a >0,b <0,且a >|b|,那么a ,b ,-b 的大小关系是( ) A .-b <b <aB .b <a <-bC .b <-b <aD .-b <a <b2.5的相反数的倒数是( ) A .5-B .5C .15-D .153.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 十进制123456789101112131415例如,十进制中261610=+,用十六进制表示为1A :用十六进制表示:1D F C +=,19F A -=,则A E ⨯,用A E ⨯十六进制可表示为( )A .8CB .140C .32D .EO 4.若数轴上点A 表示的数是5-,则与它相距2个单位的点B 表示的数是( ) A .5±B .7-或3-C .7D .8-或35.截止2020年12月30日,全球新冠肺炎确诊病例累计超8000万例,其中“8000万”用科学记数法表示为( ) A .3810⨯B .7810⨯C .40.810⨯D .80.810⨯6.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是( )A .0b a ->B .0b ->C .a b >-D .0ab >7.已知a ,b ,c 为非零的实数,且不全为正数,则a b ca b c++的所有可能结果的绝对值之和等于( ) A .5B .6C .7D .88.按如图所示的运算程序,能输出结果为20的是( )A .5x =-,15y =-B .3x =,2y =-C .6x =,3y =D .1x =-,21y =-9.5-的相反数是( ) A .15-B .5-C .5D .1510.已知有理数a 在数轴上的位置如图,则|1|a a +-的值为( )A .1B .21a -C .1-D .2a11.据统计,2014年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学计数法表示为( )元 A .4.057×109B .0.4057×1010C .40.57×1011D .4.057×101212.辽宁男篮夺冠后,从4月21日至24日各类媒体关于“辽篮CBA 夺冠”的相关文章达到810000篇,将数据810000用科学记数法表示为( ) A .40.8110⨯B .50.8110⨯C .48.110⨯D .58.110⨯二、填空题13.面对2020年突如其来的新冠疫情,党和国家及时采取“严防严控”措施,并对新冠患者全部免费治疗,据统计共投入约21亿元资金,21亿用科学记数法表示为______. 14.一个数用科学记数法表示为35.2810⨯,则这个数是______.15.数轴上的两点A 与B 表示的是互为相反数的两个数,且点A 在点B 的右边,A 、B 的两点间的距离为12个单位长度,则点A 表示的数是___. 16.化简:-(-2)=________,(-2)3=_________,|-212|=_________. 17.截至2020年1月26日0时,全国各级财政已下达疫情防控补助资金112.1亿元,112.1亿这个数用科学记数法可表示为__________.18.人的血管首尾相连的长度大约可达96000千米,96000千米用科学记数法表示为 _________米.19.||8a =,4b =-,则-a b 的值为__________. 20.若|a|=3,|b|=4且a b >,则a b +=_______.三、解答题21.下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题. 姓名 王芳 刘兵 张昕 李聪 江文 成绩8984与全班平均分之差2+6- 2-22.计算:|﹣2|﹣32+(﹣4)×(12-)3 23.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个). 星期一二三四五六日增减 +100250- +400 150- 100- +350 +150(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元? 24.计算:(1)1(4)6(0.125)8-+---.(2)27(6)( 1.75)12-⨯-÷-. (3)()2151223643⎛⎫-÷⨯-- ⎪⎝⎭(用简便方法计算).25.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6 (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.26.计算: (1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据>0,b <0,得到b <a ,b <0<-b ,再根据a >|b|得到-b <a ,即可求解.解:∵a >0,b <0, ∴b <a ,b <0<-b , ∵a >|b| ∴-b <a , ∴b <-b <a . 故选:C 【点睛】本题考查了有理数的大小比较,理解绝对值,相反数的意义,有理数的大小比较方法是解题关键.2.C解析:C 【分析】只有符号不同的两个数互为相反数,两数相乘为1的数互为倒数. 【详解】解:5的相反数为5-,5-的倒数为15-,故5的相反数的倒数是15-. 故答案为:C . 【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.3.A解析:A 【分析】根据表格对应数据,先把16进制转换成十进制求结果,再把结果转换成十六进制,即可求出答案. 【详解】 解:∵A=10,E=14 ∴A×E=10×14=140 ∴140÷16=8⋯⋯12 ∵C=12 ∴A×E=8C 故答案选A . 【点睛】本题主要考察了不同进制之间的转化,把我们陌生十六进制转换成我们熟悉的十进制去计算是解题关键.4.B解析:B 【分析】根据B 点在A 点左侧和右侧分类讨论,加2或减2即可.解:当B 点在A 点左侧时,点B 表示的数是:-5-2=-7; 当B 点在A 点右侧时,点B 表示的数是:-5+2=-3; 故选:B . 【点睛】本题考查了数轴上表示的数,根据表示两个数的两点的位置进行分类讨论,根据距离进行加减是解题关键.5.B解析:B 【分析】先将8000万化成80000000,再用科学记数法表示即可. 【详解】解:8000万=80000000=7810⨯, 故选:B . 【点睛】本题主要考察了用科学记数法表示一个大于10的数,解题的关键是熟练掌握科学记数法的表示方法.6.A解析:A 【分析】根据数轴上数的位置判断式子的符号. 【详解】由数轴可知:a<0<b ,a b >, ∴b-a>0,-b<0,a<-b ,ab<0, ∴A 正确,B 、C 、D 错误; 故选:A . 【点睛】此题考查利用数轴比较数的大小,判断式子的符号,正确理解利用数轴比较有理数的大小是解题的关键.7.A解析:A 【分析】分,,a b c 中有一个正数两个负数、有两个正数一个负数、都是负数三种情况,从而可求出a b ca b c++的所有可能结果,再求出它们的绝对值之和即可得. 【详解】由题意,分以下三种情况:(1)当,,a b c 中有一个正数两个负数时,不妨设0,0,0a b c ><<,则1111a a b a b c a b c b c c--++=++=--=-; (2)当,,a b c 中有两个正数一个负数,不妨设0,0,0a b c >><,则1111a a b a b c a b c b cc -++=++=+-=; (3)当,,a b c 都是负数时,则1113a a b a b c a b c b c c ---++=++=---=-; 综上,a b ca b c++的所有可能结果为1,1,3--, 因此,它们的绝对值之和为1131135-++-=++=, 故选:A . 【点睛】本题考查了化简绝对值、有理数的加减运算,依据题意,正确分情况讨论是解题关键.8.D解析:D 【分析】根据x 与0的关系,判断出用哪种运算方法,求出每个输出结果各是多少,判断出能输出结果为20的是哪个即可. 【详解】A 、50x =-<,15y =-时,输出结果是:()515x y -=---=10,不符合题意;B 、30x =>,2y =-时,输出结果是:()2232x y +=⨯+-=4,不符合题意;C 、60x =>,3y =时,输出结果是:2263x y +=⨯+=15,不符合题意;D 、10x =-<,21y =-时,输出结果是:()121x y -=---=20,符合题意; 故选:D . 【点睛】本题考查了代数式的求值与有理数的加减乘除混合运算,熟练掌握运算法则是解本题的关键.9.C解析:C 【分析】直接利用只有符号不同的两个数叫做互为相反数,进而得出答案. 【详解】由相反数的定义可知,−5的相反数为5. 故选:C . 【点睛】此题主要考查了相反数,正确掌握定义是解题关键.10.A解析:A 【分析】根据数轴可知a-1是负数,去绝对值号为1-a ,按照有理数加减计算即可. 【详解】解:根据数轴知原式可化为:|1|11a a a a +-=+-=, 故选:A . 【点睛】此题考查数轴的的相关知识,根据数轴去绝对值号,涉及到有理数加减运算.11.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:40570亿=4.057×1012. 故选:D . 【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】 810000=58.110⨯, 故选:D . 【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.二、填空题13.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10继而用此形式来表示此数即可;【详解】∵21亿=2100000000∴故答案为:【点睛】本题考查了科学记数法的表示形式正确掌握科学记数 解析:92.110⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,继而用此形式来表示此数即可; 【详解】∵21亿=2100000000 ∴92100000000=2.110⨯ , 故答案为:92.110⨯ . 【点睛】本题考查了科学记数法的表示形式,正确掌握科学记数法的表示形式是解题的关键.14.5280【分析】科学记数法的标准形式为a×10n (1≤|a|<10n 为整数)本题数据中的a=528指数n 等于3所以需要把528的小数点向右移动3位就得到原数了【详解】=故答案为:5280【点睛】本题解析:5280 【分析】科学记数法的标准形式为a×10n (1≤|a|<10,n 为整数),本题数据“35.2810⨯”中的a=5.28,指数n 等于3,所以,需要把5.28的小数点向右移动3位,就得到原数了. 【详解】35.2810⨯=5.2810005280⨯=,故答案为:5280. 【点睛】本题考查写出用科学记数法表示的原数.将科学记数法a×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.15.6【分析】先由条件判定这两个数是6和-6然后根据点A 在点B 的右边即可确定点A 表示的数【详解】解:∵AB 之间的距离是12且A 与B 表示的是互为相反数的两个数∴这两个数是6和-6∵点A 在点B 的右边∴点A 表解析:6 【分析】先由条件判定这两个数是6和-6,然后根据点A 在点B 的右边即可确定点A 表示的数. 【详解】解:∵A ,B 之间的距离是12,且A 与B 表示的是互为相反数的两个数, ∴这两个数是6和-6, ∵点A 在点B 的右边, ∴点A 表示的数是6. 故答案是:6.【点睛】本题考查了相反数及数轴上两点间的距离,只有符号不同的两个数叫做互为相反数.16.-82【分析】根据有理数的相反数的定义有理数的乘方法则去绝对值符号法则计算即可求解【详解】解:-(-2)=2(-2)3=-8|-2|=2故答案为:2-82【点睛】考查了有理数的相反数乘方的求法绝对值解析:-8 21 2【分析】根据有理数的相反数的定义、有理数的乘方法则、去绝对值符号法则计算即可求解.【详解】解:-(-2)=2,(-2)3=-8,|-212|=212.故答案为:2,-8,212.【点睛】考查了有理数的相反数,乘方的求法,绝对值的性质,关键是熟练掌握相关定义、法则.17.【分析】科学记数法的表示形式为的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同【详解】1121亿=11210000000=1121×解析:101.12110⨯【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】112.1亿=1121000 0000=1.121×1010,故答案为:1.121×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.6×107【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值≥10时n是正整数;当解析:6×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是非负整数.【详解】96000千米=96000000米=9.6×107米. 故答案为:9.6×107. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.12或-4【分析】根据绝对值的定义即可求出答案【详解】解:由题意可知:a =±8当a =8b =﹣4时a ﹣b =8+4=12当a =﹣8b =﹣4时a ﹣b =﹣8+4=﹣4故答案:12或-4【点睛】本题考查绝对值解析:12或-4 【分析】根据绝对值的定义即可求出答案. 【详解】解:由题意可知:a =±8,4b =-, 当a =8,b =﹣4时, a ﹣b =8+4=12, 当a =﹣8,b =﹣4时, a ﹣b =﹣8+4=﹣4, 故答案:12或-4. 【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.20.-1或-7【分析】根据a >b 得出ab 的值再代入计算即可【详解】解:∵∴a=±3b=±4又∵a >b ∴a=3b=-4或a=-3b=-4当a=3b=-4时a+b=3+(-4)=-1当a=-3b=-4时a+解析:-1或-7 【分析】根据3a =,b 4=,a >b ,得出a 、b 的值,再代入计算即可. 【详解】解:∵3a =,b 4=, ∴a=±3,b=±4, 又∵a >b ,∴a=3,b=-4或a=-3,b=-4, 当a=3,b=-4时,a+b=3+(-4)=-1, 当a=-3,b=-4时,a+b=(-3)+(-4)=-7, 因此a+b 的值为:-1或-7. 故答案为:-1或-7. 【点睛】本题考查了有理数的加法,绝对值的意义,掌握有理数加法的计算方法是正确计算的前提,根据绝对值的意义求出a、b的值是得出答案的关键.三、解答题21.分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.【分析】由表格中数据可得出,平均分为90分,把表格完成,可以得出分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.【详解】解:全班平均分为:84-(-6)=90(分)王芳的测试成绩与全班平均分之差为:89-90=-1(分);刘兵的数学测试成绩为:90+(+2)=92(分);张昕的数学成绩为:90+0=90(分);江文的数学成绩为:90+(-2)=88分;完成表格得【点睛】本题考查了有理数的加减法,熟练掌握运算法则是解答此题的关键.22.1 62 -【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12 -)3=2﹣9+(﹣4)×(﹣18)=2+(﹣9)+1 2=162 -.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)20100个;(2)650个;(3)7100元【分析】(1)把前三四天的记录相加,再加上每天计划生产量,计算即可得解;(2)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.【详解】解:(1)(+100-250+400-150)+4×5000=20100(个).故前四天共生产20100个口罩;(2)+400-(-250)=650(个).故产量最多的一天比产量最少的一天多生产650个;(3)5000×7+(100-250+400-150-100+350+150)=35500(个),35500×0.2=7100(元),答:本周口罩加工厂应支付工人的工资总额是7100元.【点睛】此题主要考查了正负数的意义及有理数的混合运算的应用,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(1)10-;(2)-12;(3)1-.【分析】(1)先去括号、再化小数为分数,最后运算即可;(2)先算乘方,然后按有理数乘除混合运算法则计算即可;(3)先算乘方,再算除法,然后运用乘法分配律计算即可.【详解】解:(1)1(4)6(0.125)8-+--- =114688--+ =114688-+- =-4-6=-10;(2)27(6)( 1.75)12-⨯-÷- =()7736()124-⨯-÷- =4217⎛⎫⨯-⎪⎝⎭=-12; (3)()2151223643⎛⎫-÷⨯-- ⎪⎝⎭=512 43643⎛⎫⨯⨯--⎪⎝⎭=512 12643⎛⎫⨯--⎪⎝⎭=512 121212643⨯-⨯-⨯=10-3-8=-1.【点睛】本题主要考查了含乘方的有理数混合运算,掌握有理数混合运算法则是解答本题的关键.25.(1)8;(2)见解析;MN的长度不会发生改变,线段MN=4.【分析】(1)数轴上两点之间的距离等于较大数与较小数的差;(2)根据中点的意义,利用线段的和差可得出答案.【详解】解:(1)AB=|﹣2﹣6|=8,答:AB的长为8;(2)MN的长度不会发生改变,线段MN=4,理由如下:如图,因为M为PA的中点,N为PB的中点,所以MA=MP=12PA,NP=NB=12PB,所以MN=NP﹣MP=12PB﹣12PA=12(PB﹣PA)=12 AB=12×8=4.【点睛】本题考查了数轴上两点之间的距离,数轴上线段中点的意义,熟练掌握两点间距离计算方法,灵活运用中点的意义是解题的关键.26.(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷ =893--⨯=827--=35- (3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。

七年级数学试卷有理数解答题试题(附答案)

七年级数学试卷有理数解答题试题(附答案)

七年级数学试卷有理数解答题试题(附答案)一、解答题1.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?2.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.3.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.4.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.5.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.6.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.7.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.(1)数列的“关联数值”为________;(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________(3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.8.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

(数学试卷七年级)有理数测试题及答案.pdf

(数学试卷七年级)有理数测试题及答案.pdf

(数学试卷七年级)有理数测试题及答案.pdf 选择题.
1.下列说法正确的个数是()
①一个有理数不是整数就是分数②一个有理数不是正数就是负数
③一个整数不是正的,就是负的④一个分数不是正的,就是负的
A1
B2
C3
D4
2.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列()
A-b<-a<a<b
B-a<-b<a<b
C-b<a<-a<b
D-b<b<-a<a
3.下列说法正确的是()
①0是绝对值最小的有理数②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小
A①②
B①③
C①②③
D①②③④
5.若a+b<0,ab<0,则()
Aa>0,b>0
Ba<0,b<0
Ca,b两数一正一负,且正数的绝对值大于负数的绝对值
Da,b两数一正一负,且负数的绝对值大于正数的绝对值
6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()
A0.8kg
B0.6kg
C0.5kg
D0.4kg
7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()
A()5m
B[1-()5]m
C()5m
D[1-()5]m
8.若ab≠0,则的取值不可能是()
A0
B1
C2
D-2
答案:选择题:1-8:BCADDBCB。

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。

人教版初中七年级数学上册第一章《有理数》经典题(含答案解析)

人教版初中七年级数学上册第一章《有理数》经典题(含答案解析)

1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④D解析:D【分析】 数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D .【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.5.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.6.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.7.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.8.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.9.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.10.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米. 故选C .【点睛】 此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.下列分数不能化成有限小数的是( )A .625B .324C .412D .116C 解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A 、625的分母中只含有质因数5,所以625能化成有限小数; B 、31248=,18的分母中只含有质因数2,所以324能化成有限小数; C 、41123=,13的分母中含有质因数3,所以412不能化成有限小数; D 、116的分母中只含有质因数2,所以116能化成有限小数.故选:C .【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.14.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C .【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.4.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.5.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.6.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.7.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,8.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.9.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.1.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 2.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭=18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.3.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.4.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭.【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.。

(常考题)人教版初中数学七年级数学上册第一单元《有理数》测试题(含答案解析)

(常考题)人教版初中数学七年级数学上册第一单元《有理数》测试题(含答案解析)

一、选择题1.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=3.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3 B .3 C .﹣12 D .124.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6B .12C .8D .24 5.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论: ①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④ 6.2--的相反数是( )A .12-B .2-C .12D .27.绝对值大于1小于4的整数的和是( )A.0 B.5 C.﹣5 D.108.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.10069.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,310.计算2136⎛⎫---⎪⎝⎭的结果为()A.-12B.12C.56D.5611.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 312.计算-3-1的结果是()A.2 B.-2 C.4 D.-4二、填空题13.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.14.绝对值小于2018的所有整数之和为________.15.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)16.把35.89543精确到百分位所得到的近似数为________.17.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.18.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.19.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.20.在数轴上,距离原点有2个单位的点所对应的数是________.三、解答题21.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.22.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.23.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.24.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--25.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 26.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.2.C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化. 3.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.4.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.5.D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.6.D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】--的相反数是2,2故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.7.A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.8.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.9.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.10.A解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.11.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3故选C .12.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.二、填空题13.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a 、b 、c 、d 的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.14.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.15.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.17.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.18.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.19.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.20.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.三、解答题21.(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.22.(1)3;|x−3|;x,-2;(2)5;−3或4.(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x>3和x<−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x和3的两点之间的距离为:|x−3|;数轴上表示数x和−2的两点之间的距离表示为:|x+2|;故答案为:3,|x−3|,x,-2;(2)①当x在-2和3之间移动时,|x+2|+|x−3|=x+2+3−x=5;②当x>3时,x−3+x+2=7,解得:x=4,当x<−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.23.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=21 24633⎛⎫⎛⎫-⨯-+⨯-⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.24.(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 25.(1)6;(2)12-【分析】(1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.26.(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学试卷有理数解答题试题(附答案)一、解答题1.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?2.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.3.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.4.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.5.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.6.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.7.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.(1)数列的“关联数值”为________;(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________(3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.8.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

9.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.(1)求时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?10.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?13.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.14.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值15.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,…请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);(3)求a1+a2+a3+…+a2019的值.16.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.17.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .18.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?19.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.20.观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB= .根据以上信息回答下列问题:已知多项式的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为 .(1)A,B两点之间的距离是________.(2)若满足AM = BM,则 ________.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是________.(4)若满足AM + BM =12,则 ________.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数 ________.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得: t=10 ;(i解析:(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.2.(1)解:根据数轴上点的位置得: a<c<|b| ;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,解析:(1)解:根据数轴上点的位置得:;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,∴原式 .【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.3.(1)-8;-6;12;16(2)解:AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,∴BD=|16解析:(1)-8;-6;12;16(2)解:AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,∴BD=|16−t−(−6+3t)|=|22−4t|AC=|12−t−(−8+3t)|=|20−4t|∵BD=2AC,∴22−4t=±2(20−4t)解得:t=或t=当t=时,此时点B对应的数为,点C对应的数为,此时不满足题意,故t=(3)解:当点B运动到点D的右侧时,此时−6+3t>16−t∴t>,BC=|12−t−(−6+3t)|=|18−4t|,AD=|16−t−(−8+3t)|=|24−4t|,∵BC=3AD,∴|18−4t|=3|24−4t|,解得:t=或t=经验证,t=或t=时,BC=3AD【解析】【解答】(1)∵|x+7|=1,∴x=−8或−6∴a=−8,b=−6,∵(c−12)2+|d−16|=0,∴c=12,d=16,故答案为:−8;−6;12;16.【分析】(1)根据方程与非负数的性质即可求出答案.(2)AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,根据题意列出等式即可求出t的值.(3)根据题意求出t的范围,然后根据BC=3AD 求出t的值即可.4.(1)解:以 B 为原点,点 A,C 所对应的数分别是, 1 ,以 C 为原点,;(2)解:【解析】【分析】(1)根据题意,若以 B 为原点时,分别写出点解析:(1)解:以为原点,点所对应的数分别是,,以为原点,;(2)解:【解析】【分析】(1)根据题意,若以为原点时,分别写出点A、C所表示的数,从而求出m;若以为原点,分别写出A、B所表示的数,从而求出m;(2)根据题意,分别求出A、B、C所表示的数,即可求出n的值.5.(1)20;﹣10(2)解:当运动时间为t秒时,在数轴上点Q表示的数为3t﹣10,∴BQ=|﹣10﹣(3t﹣10)|=3t,AQ=|20﹣(3t﹣10)|=|30﹣3t|.∵BQ=2A解析:(1)20;﹣10(2)解:当运动时间为t秒时,在数轴上点Q表示的数为3t﹣10,∴BQ=|﹣10﹣(3t﹣10)|=3t,AQ=|20﹣(3t﹣10)|=|30﹣3t|.∵BQ=2AQ,即3t=2|30﹣3t|,∴3t=2(30﹣3t)或3t=2(3t﹣30),解得:t=或t=20.答:当t的值为或20时,BQ=2AQ.(3)解:AB=|20﹣(﹣10)|=30,30÷3=10(秒),10×2=20(秒).当0<t≤10时,在数轴上点Q表示的数为3t﹣10,点P表示的数为2t,∴PQ=|2t﹣(3t﹣10)|=10﹣t=6,∴t=4;当10<t≤20时,在数轴上点Q表示的数为20﹣3(t﹣10)=﹣3t+50,点P表示的数为2t,∴PQ=|2t﹣(﹣3t+50)|=5t﹣50=6,解得:t=.答:在点Q的整个运动过程中,存在合适的t值,使得PQ=6,t的值为4或.【解析】【解答】解:(1)∵|a﹣20|+(b+10)2=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.故答案为:20;﹣10.【分析】(1)利用绝对值及偶次方的非负性,可求出a,b的值,进而可得出结论;(2)当运动时间为t秒时,在数轴上点Q表示的数为3t-10,结合点A,B表示的数可得出BQ,AQ的值,结合BQ=2AQ,即可得出关于t的一元一次方程,解之即可得出结论;(3)由点A,B表示的数可求出线段AB的长,结合点Q的运动速度可得出点Q运动到点A的时间及点Q回到点B时的时间,分0<t≤10及10<t≤20两种情况,找出点P,Q表示的数,结合PQ=6,即可得出关于t的一元一次方程,解之即可得出结论.6.(1)解: |x|=3 ,在数轴上与原点距离为3的点的对应数为-3和3,即 x 的值为-3和3(2)解:|x+2|=4 ,在数轴上与-2距离为4的点的对应数为-6和2,即x 的值为-6和2;解析:(1)解:,在数轴上与原点距离为3的点的对应数为-3和3,即的值为-3和3(2)解:,在数轴上与-2距离为4的点的对应数为-6和2,即的值为-6和2;(3)解:有最小值,最小值为3,理由是:∵理解为:在数轴上表示到3和6的距离之和,∴当在3与6之间的线段上(即)时:即的值有最小值,最小值为.【解析】【分析】(1)由阅读材料中的方法求出的值即可;(2)由阅读材料中的方法求出的值即可;(3)根据题意得出原式最小时的范围,并求出最小值即可.7.(1)-4(2)7;-3、4、2(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,∴-9-a<-9<-3,∴数列3、-6、a的“关联数值”为-3,∵解析:(1)-4(2)7;-3、4、2(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,∴-9-a<-9<-3,∴数列3、-6、a的“关联数值”为-3,∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,∴-3<-3+a<a+3,∴数列3、a、-6的“关联数值”为a+3,∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,∴a+6>6,a+6>a+3,∴数列-6、a、3的“关联数值”为a+6,∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,∴9>9-a,9>6,∴数列-6、3、a的“关联数值”为9,∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,∴-a-9<-a-6<-a,∴数列a、-6、3的“关联数值”为-a,∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,∴-a<3-a<9-a,∴数列a、3、-6的“关联数值”为9-a,∵a>0,这些数列的“关联数值”的最大值为10,∴-3、9、-a、9-a不符合题意,∵a+6>a+3,∴a+6=10,解得:a=4.取得“关联数值”最大值的数列为-6,4、3.【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,∴数列的“关联数值”为-4.故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,由(1)得数列的“关联数值”为-4.∵-4=-4,-4+2=-2,-4+2-(-3)=1,∴数列4,2,-3的“关联数值”为1,∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,∴数列-3、4、2的“关联数值”为7,∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,∴数列-3、2、4的“关联数值”为5,∵-2=-2,-2+4=2,-2+4-(-3)=5,∴数列2、4、-3的“关联数值”为5,∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,∴数列2、-3、4的“关联数值”为-2,∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2故答案为7;-3、4、2【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.8.(1)3(2)9;②若数轴上A、B两点之间的距离为20(A在B的左侧),则点A表示的数是2-10=-8,点B表示的数是2+10=12.③当点M在点A左侧时,则12-m+(-8-m)=3解析:(1)3(2)9;②若数轴上A、B两点之间的距离为20(A在B的左侧),则点A表示的数是2-10=-8,点B表示的数是2+10=12.③当点M在点A左侧时,则12-m+(-8-m)=30,解得:m=-13;当点M在点B右侧时,则m-(-8)+m-12=30,综上,m=-13或17;【解析】【解答】(1)解:折叠纸面,使1表示的点与-1表示的点重合,则对称中心是0,∴-3表示的点与3表示的点重合,故答案为:3;(2)①∵-2表示的点与6表示的点重合,∴对称中心是数2表示的点,①-5表示的点与数9表示的点重合;故答案为:9.【分析】(1)直接利用已知得出中点进而得出答案;(2)①利用-2表示的点与6表示的点重合得出中点,进而得出答案;②利用数轴再结合A、B两点之间距离为20,即可得出两点表示出的数据;③利用②中A,B的位置,利用分类讨论进而得出m的值.9.(1)解:当 t=2 时,点P表示的数为:,点Q表示的数为:(2)解:=4答:点P与点Q第一次重合时的t值为4(3)解:点P和点Q第一相遇前解析:(1)解:当时,点P表示的数为:,点Q表示的数为:(2)解:答:点P与点Q第一次重合时的t值为4(3)解:点P和点Q第一相遇前,,解得,;当点P和点Q相遇后,点P到达点B前,,当点P从点B向点A运动时,,解得,;由上可得,当t的值为3,5,9时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.【解析】【分析】(1)根据题意可以得到当时,点P和点Q表示的有理数;(2)根据题意可以列出相遇关于t的方程,从而可以求得t的值;(3)根据题意可以列出相应的方程,从而可以解答本题.10.(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6解析:(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10(3)【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10,∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14,∴BC=14-(-10)=24,故答案为:-10;14;24( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧,∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN= - = .故答案为:【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式可求出线段MN的长.11.(1)7(2)|m+2|(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情解析:(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.12.(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;解析:(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;13.(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12解析:(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。

相关文档
最新文档