有理数知识点归纳及典型例题

合集下载

有理数复习知识点+例题

有理数复习知识点+例题

板块一、正数、负数、有理数 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 注:⑴正数和零统称为非负数; ⑵负数和零统称为非正数;例题精讲知识网络图⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.0.31 【例1】 ①当一个数由小变大时,它的绝对值也由小变大; ②没有最大的非负数,也没有最小的非负数; ③不相等的两个数,它们的绝对值一定也不相等; ④只有负数的绝对值等于它的相反数.A .0B .1C .2D .3在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数的个数为 个.①10a -;②21a --;③a -;④2(1)a -+一定是负数的是 (填序号). 下列说法正确的个数是( )①互为相反数的两个数一定是一正一负 ②0没有倒数③如果a 是有理数,那么a +一定是正数,a -一定是负数 ④一个数的相反数一定比原数小 ⑤a 一定不是负数⑥有最小的正数,没有最小的负数A .0个B .1个C .2个D .4个下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数C .两个数的和一定大于每个加数D .绝对值相等的两个有理数相等两数相加,其和小于其中一个加数而大于另一个加数,那么( )A .这两个加数的符号都是正的B .这两个加数的符号都是负的C .这两个加数的符号不能相同D .这两个加数的符号不能确定板块二、倒数【例2】 有理数a 等于它的倒数,有理数b 等于它的相反数,则20022003a b +=【例3】 若0a b +=,c 和d 互为倒数,m 的绝对值为2,求代数式2a bm cd a b c++-+-的值【例4】 在一列数123...a a a ,,中,已知112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”⑴ 求234a a a ,,的值 ⑵ 根据以上计算结果,求202007a a ,的值板块三 数轴数轴:规定了原点、正方向和单位长度的直线.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大. 正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π. 利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.【例5】 ⑴在数轴上表示下列各数,再按大小顺序用“<”号连接起来.4-,0, 4.5-,112-,2,3.5,1,122⑵如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.【例6】 数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .【巩固】 如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( )A .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <【例7】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( )A.a c b d +<+B.a c b d +=+C.a c b d +>+D.不确定的【巩固】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A B C D ,,,对应的数分别为整数a b c d ,,,,并且29b a -=,那么数轴的原点对应点为( )A.A点B.B点C.C点D.D点【巩固】数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?【巩固】已知数轴上有A B,两点,A B,之间的距离为1,点A与原点O的距离为3,那么点B所对应的数为【例8】一辆货车从超市出发,向东走了3km到达小彬家,继续向前走了1.5km到达小颖家,然后向西走了9.5km到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km,在数轴上表示出小明,小彬,小颖家的位置⑵小明家距离小彬家多远?⑶货车一共行驶了多少千米?【巩固】在数轴上,点A和点B都在与154-对应的点上,若点A以每秒3个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,则7秒之后,点A和点B所处的位置对应的数是什么?这时线段AB的长度是多少?【例9】在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为【巩固】数轴上表示整数的点称为整点。

有理数知识点及经典题型

有理数知识点及经典题型

有理数知识点及经典题型规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

七年级数学-有理数-知识点总结+自编章测卷

七年级数学-有理数-知识点总结+自编章测卷

一、 知识点归纳1. 有理数:是整数和分数的统称。

判断方法:能用分数表示的数都是有理数(包括有限小数和循环小数)。

正整数 整 数 0 负整数 有理数正分数分 数负分数 例:下列哪些是有理数:-1,+3.60,65,0,π,311-,5.13…,5632.1 ,-17%,0.2222 ;并分别按要求填入下列空格内:整数集合:{ …} 分数集合:{ …} 负整数集合:{ …} 正分数集合:{ …} 负有理数集合:{ …} 正有理数集合:{ …} 练习:把下列各数分别填入相应的括号内: +3,-5.0,21+,-0.09,0,-70,3.36,78- 正分数( )负分数( )负整数( )整数( )正有理数( )2. 倒数:乘积为1的两个数互为倒数。

例:1的倒数是_______,-1的倒数是_______,32的倒数是________,-32的倒数是________。

3.数轴:规定了原点、正方向和单位长度的直线,叫做数轴。

意义:任意有理数都可以用数轴上的点来表示;用数轴比较有理数的大小(数轴上的两个点表示的数,右边的总比左边的大)。

例:如图所示的图形为四位同学画的数轴,其中正确的是( )练习:(1)用“>”、、“<”或“=”填空: ①-21( )-31②-(-3)( )︱-3︱ ③ 0( )-(+5) (2)数轴上距原点距离是4个单位的点表示的数是( )(3)在数轴上表示下列各数,并用“<”号把它们连接起来:-3,32-,0,1,+4.5,-1.5,311,4. 相反数:数值相反的两个数,我们就说其中一个数是另一个数的相反数。

(0的相反数是0;互为相反数的两数之和为0)相反数的实际意义:表示具有相反意义的数量。

如:向左走5米记为-5,向右走5米记为+5。

练习:(1)已知一个数的相反数是-2.5的倒数的绝对值,则这个数是( )(2)小蚂蚁从原点O 出发在一直线上爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,各段路程依次为(单位cm ) -40,+50,-43,+65,-29,+ 17①小蚂蚁最后是否回到出发点O ? ②小蚂蚁离开出发点O 最远是多少?③在爬行过程中,如果每爬行10mm 奖励一粒芝麻,则小蚂蚁一共得到多少粒芝麻?5. 绝对值:在数轴上,一个数所对应的点与原点之间的距离叫做该数的绝对值。

初中数学知识点总结加例题

初中数学知识点总结加例题

初中数学知识点总结加例题一、数与代数。

(一)有理数。

1. 概念。

- 有理数包括整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 数轴:规定了原点、正方向和单位长度的直线。

- 相反数:绝对值相等,符号相反的两个数。

例如,3和 - 3互为相反数。

- 绝对值:一个数在数轴上所对应的点与原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

- 减法:减去一个数等于加上这个数的相反数。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。

- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。

- 计算1 + 5=6。

(二)实数。

1. 无理数:无限不循环小数,如√(2)、π等。

2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。

例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。

- 然后计算2 + 3-π=5-π。

- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。

(三)代数式。

1. 整式。

- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

- 多项式:几个单项式的和叫做多项式。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

2. 整式的乘除。

- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。

七年级有理数知识点小结与练习

七年级有理数知识点小结与练习

第一章《有理数》知识点有理数的分类分数:有限小数,无限循环小数,百分数。

特别的,π不是分数也不是有理数。

一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量:上升5米记为5; -8则表示下降8米。

③带“-”号的数并不都是负数,如-a可以是正数、负数或0.④0既不是正数也不是负数。

0是整数,也是自然数。

例.某圆形零件的直径要求是(30±0.1mm),下表中6个已生产出来的零件圆孔直径的检测结(2)哪些零件的误差最小?2、数轴(1)三要素:原点、正方向、单位长度;(2)数轴上的点与有理数:①数轴上的点与有理数一一对应②右边的数>左边的数;例1:数轴上的两点A、B分别表示-6和-3,那么A、B两点间的距离是()A、-6+(-3)B、-6-(-3)C、|-6+(-3)|D、|-3-(-6)|例2数轴上表示整数的点称为整点某数轴的单位长度为1cm,若在数轴上随意画出一条长2005cm长的线段AB,则线段AB盖住的的整点有()个A、2003或2004B、2004或2005;C、2005或2006;D、2006或20073、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a的相反数-a③a与b互为相反数:a+b=0 ④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b ⑥求一个数的相反数方法:在这个数的前面加“-”号.⎧⎨⎩⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

例:(- 2)2004+(- 2)2005=4、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。

几何意义:从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

a (a ≥0) 绝对值是它本身的数是非负数(正数和0)②|a |= -a (a ≤0) 绝对值是它相反的数是非正数(负数和0) 其它简单变形:|a+b |=a+b,则a+b 为正数 例 若|-2a |=-2a,则a 为:③|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|;例1:若ab ≠0,则ba ab +的取值不可能是( )A 0B 1C 2D -2例2:如果有理数a,b 满足∣ab -2∣+(1-b)2=0,试求1111(1)(1)(2)(2)(2007)(2007)ab a b a b a b ++++++++++的值。

有理数知识点及典型例题

有理数知识点及典型例题

第1章:有理数知识点及典型例题(一)数的分类(强化记忆)⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数负整数负有理数负实数负分数负无理数 ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (按符号分) (按定义分、按性质分)注意点:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数 (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.(3)0即不是正数,也不是负数。

0是正数与负数的分界;0不仅表示没有,还表示某种量的基准。

如0不能理解为没有温度。

(4)初中范围内 数是指实数 正数是指正实数 负数是指负实数(5)对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数误认为凡带正号的数就是正数,误认为凡带负号的数就是负数例-a 不一定是负数,+a 也不一定是正数;(6)π不是有理数,而是无理数;(7)非负整数应理解成“非负的整数”,不能理解成“‘非'负整数”,即正整数与零。

{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数例1、把下列各数填在相应的集合里5,-2,4.6,,0,-2.25,1,+0.34,+13,-3.1416,整数集合{ 5,-2,0,+13,…}非负整数集合{5,0,+13,… }负分数集合{,-2.25, -3.1416,…}正有理数集合{5, 4.6,1,+0.34,+13,}例2:一种商品的标准价格是200元,但是随着季节的变化商品的价格可浮动±10%,(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格。

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。

(一)有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

2. 数轴上的点与有理数的关系。

- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。

(三)相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

特别地,0的相反数是0。

例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

(四)绝对值。

1. 绝对值的定义。

- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

2. 绝对值的性质。

- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如,|3| = 3,| - 3|=3,|0| = 0。

- 非负性:| a|≥s lant0。

(五)有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数,绝对值大的反而小。

例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。

有理数 知识点+经典例题

有理数 知识点+经典例题

有理数考点1、正数和负数 正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数) 注意:(1)0既不是正数也不是负数,它是正负数的分界点(2)对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米记作 ,原地不动课记作例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。

这五名同学的实际成绩分别是多少分?例3、 观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、—1、—2、+3、—4、—5、+6、—7、—8、 、 、 …… 2)、—1、21、—3、41、—5、61、—7、81、 、 、 ……易错点:1)误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a 一定是正数吗?2)对于“0”的含义理解不准确 例:下列说法错误的是( )A 、0是自然数B 、0是整数C 、0是偶数D 、海拔0米表示没有海拔 考点2、有理数 1、有理数的分类按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 按性质符号分:有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0 注意:1、有理数只包括整数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。

2、0是整数不是分数例1、把下列各数填在相应的集合内: π,41-错误!未找到引用源。

,-3,2,-1,-0.58,0,-3.14,错误!未找到引用源。

,0.618,10 整数集合:{ …} 分数集合:{ …} 非负数集合:{ …} 例2、下列说法正确的是( )A 有理数分为正数和负数B 有理数-a 一定表示负数C 正整数、正分数、负整数、负分数统称为有理数D 有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线 数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、【正负数】 有理数的分类:★☆▲
_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

[基础练习] 1☆把下列各数填在相应额大括号内: 1,-,-789,25,0,-20,,-590,6/7 ·正整数集{ …};·正有理数集{ …};·负有理数集{ …} ·负整数集{ …};·自然数集{ …};·正分数集{ …} ·负分数集{ …}
2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则元的意义 是 ;如果这种油的原价是76元,那么现在的卖价是 。

二、【数轴】 规定了 、 、 的直线,叫数轴
[基础练习]
1☆如图所示的图形为四位同学画的数轴,其中正确的是( )
2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。

4,-|-2|, , 1, 0
3下列语句中正确的是( )
A数轴上的点只能表示整数 B数轴上的点只能表示分数
C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来
4、★ ①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。

③有理数中,最大的负整数是 ,最小的正整数是 。

最大的非正数是 。

④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。

5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) ,
三、【相反数】的概念
像2和-2、-5和5、和这样,只有 不同的两个数叫做互为相反数。

0的相反数是 。

一般地:若a 为任一有理数,则a 的相反数为-a 相反数的相关性质: 1、相反数的几何意义:
表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。

2、互为相反数的两个数,和为0。

[基础练习]
1☆-5的相反数是 ;-(-8)的相反数是 ;- [+(-6)]=
0的相反数是 ; a 的相反数是 ;2
1
的相反数的倒数是__
2☆若a 和b 是互为相反数,则a+b =( ) A. –2a B .2b C. 0 D. 任意有理数 3★(1)如果a =-13,那么-a =______;(2)如果-a =-,那么a =______; (3)如果-x =-6,那么x =______;(4)-x =9,那么x =______. 4★★已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是( )
有理数
有理数
A .负数; B.正数; C.负数或零; D.非负数
四、【绝对值】一般地,数轴上表示数a 点与原点的 叫做数a ∣.
一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 .
[基础练习]
1☆—2的绝对值表示它离开原点的距离是 个单位,记作 .
2☆ |-8|= 。

-|-5|= 。

绝对值等于3☆绝对值等于其相反数的数一定是( A .负数B .正数 C .负数或零D 4★7=x ,则______=x ; 7=-x ,则5★如果a a 22-=-,则a 的取值范围是(A .a >O B .a ≥O C .a ≤O D .a 6★★如果3>a ,则______3=-a ,3-7★★绝对值不大于11的整数有( ) A .11个 B .12个 C .22个 D .23五、【有理数的运算】
·有理数加减法法则课本P-18--22页·
·有理数乘除法法则课本P-29--34页· 即:a a a a n •••= (有n 个 [基础练习] 1☆从运算上看式子a n,可以读作 ;从结果上看式子a n可以读作 .
2★ 33= ;(21
-)2= ;-52= ;22的平方是 ;
3★下列各式正确的是( )
A.225(5)-=-
B.1996(1)1996-=-
C.2003(1)(1)0---=
D.99(1)10--= 4★★下列说法正确的是( )
A.如果a b >,那么22a b >
B.如果22a b >,那么a b >
C.如果a b >,那么22a b >
D.如果a b >,那么a b >
5★在2+32×(-6)这个算式中,存在着 种运算.请你们讨论、交流,上面这个式子应该先算 、再算 、最后算 . 6▲有理数的运算
①()2
253[]39⎛⎫-⨯-+- ⎪⎝⎭
②(-1)10×2+(-2)3÷4 ③(-5)3-3×41()2-
④111135()532114⨯-⨯÷ ⑤(-10)4
+[(-4)2-(3+32)×2] ⑥3
342293⎛⎫-÷⨯- ⎪⎝⎭
⑦25171()24(5)138612⎡⎤
--+⨯÷-⎢⎥⎣⎦
⑧2(10)8(2)(4)(3)-+⨯---⨯-
⑨2310110.25(0.5)()(1)82-÷-+-⨯- ⑩222223()4(1)8()333-⨯--⨯--÷
7★★已知a =3,2b =4,且a b >,求a b +的值。

8★★某大楼地上共有12层,地下共有4层,每层高米,请用正负数表示这栋楼每层的楼层号,某人乘电梯从地下3层升至地上7层,电梯一共上了多少米?
9★★★已知a +4与()2
2b a +互为相反数,求b a 2-的值。

10★★★如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.
五、【科学记数法】【近似数】
把一个大于10的数记成a ×10n的形式(其中a是整数数位只有一位的数),叫做科学记数法.其中:a : n的两种求法:1、
2、
[基础练习]
1☆用科学记数数表示:00= ;-1020= .
2☆水星和太阳的平均距离约为 km用科学记数法表示为 .
3★ 120万用科学记数法应写成;万的原数是 .
4★. 近似数万精确到位. 5★近似数精确到 .
6★×105精确到位 7★.×105精确到千位是 .
8★★某数有四舍五入得到,那么原来的数一定介于和之间.
9★★用四舍五入法求30951的近似值(精确到百位),结果是 .。

相关文档
最新文档