《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案
第1章 线性空间与线性变换-1

矩阵分析简明教程
事实上, a, b R a b ab R; R, a R a a R . 所以对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律: (1) a b ab ba b a; (2)(a b) c (ab) c (ab)c a(bc) a (b c); (3) R中存在零元素 1, 对于a R , 有
2
矩阵分析简明教程
例1 数域 F上的n维向量全体,按n维向量加法与n维 向量的数量乘法构成数域 F上的线性空间 F n 。 例2 数域 F 上 m n 阶矩阵全体,按矩阵的加法 和数乘,构成 F 上的线性空间 F mn 。 例3 数域 F上一元多项式全体按照多项式的加法以 及数与多项式的乘法构成 F 上的一线性空间 F[ x] 。
矩阵分析简明教程
第一章 线性空间与线性变换
矩阵分析简明教程
§1.1、线性空间的基本概念
线性空间是线性代数最基本的概念之一, 是矩阵论中极其重要的概念之一。它是向 量空间在元素和线性运算上的推广和抽象。
线性空间中的元素可以是向量、矩阵、多 项式、函数等,线性运算可以是我们熟悉 的一般运算,也可以是各种特殊的运算。
数的加法和数与函数的乘法构成线性空间 C[a, b]
矩阵分析简明教程
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间, 或矩阵 A 的核空间或零空间,即
N ( A) { x Rn | Ax , A Rmn} Ker( A)
向量个数 n 称为线性空间V 的维数,记为 dimV n
1.1 线性空间

R 是否为 R 上的线性空间?
次数小于n的、变量x的实系数多项式: 例5:设R x n n 1 f ( x) a0 a1 x an 1 x R[ x]n 是否为R上的线性空间。
问题1: 检验全体n阶实对称方阵的集合RS,对矩 阵的加法和数乘是否构成实数域R上的线性空间? 问题2: 全体实连续函数C[a, b],按函数的加法及 数与函数的数乘,是否构成实数域R上的线性空间?
n n
数乘矩阵运算也具有四 条性质: (5) A A 1 (6)k (lA) (kl ) A, k , l为数) ( (7(k l)A kA lA ) (8)k ( A B ) kA kN
定义:线性空间 设V 是一个非空集合, F 是一个数域,在集 合V 的元素之间定义了加法运算。即对于V 中任 意两个元素 、 ,在V 中有唯一的元素 ν ,与它们 相对应,称之为 与 的和, , 记 且满足:
所以,称 β 是 ε1 , ε2 , ε3 , ε4 的线性组合, 或 β 可以由 ε1 , ε2 , ε3 , ε4 线性表示。
2. 向量组等价 定义 3:如果向量组 A : α1 , α2 ,, αm , 中的每一个 向 量 αi (i 1,2,, t ) 都 可 以 由 向 量 组 那么就称向量组 A 可以 B : β1 , β2 ,, βs 线性表示, 由向量组 B 线性表示。 若同时向量组 B 也可以由 向量组 A 线性表示, 就称向量组 A 与向量组 B 等 价。 即 αi ki 1 β1 ki 2 β2 kis βs i 1,2,, m 1
定义 2:给定向量组 A : α1 , α2 ,, αm , 和向量 β 如果 存 在 一 组 数
矩阵分析报告课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。
史荣昌魏丰版矩阵分析第一章(1)

矩阵分析主讲教师:张艳霞矩阵理论的应用微分方程、概率与统计、优化、信号处理、控制工程、经济理论等等。
工程经济理论等等如需更深入地学习和了解在自己专业的应用,可如需更深入地学习和了解在自己专业的应用可参考:《矩阵分析与应用》,张贤达著,清华大学出版社;《Matrix Analysis for Scientists & Engineers》:Alan J. Laub,SIAM.第章第一章线性空间和线性变换线性空间的基本概念及其性质线性空间的基底,维数, 坐标变换线性空间的基底维数线性空间的子空间,交与和线性映射及其值域、核线性变换及其矩阵表示矩阵(线性变换)的特征值与特征向量矩阵的可对角化条件第一节第节线性空间一:线性空间的定义与例子线性间的义定义设是一个非空的集合,是一个数域,V F 在集合中定义两种代数运算,一种是加法运算,来表示另种是运算用来表示V 用来表示; 另一种是数乘运算, 用来表示, +i并且这两种运算满足下列八条运算律:(1)加法交换律αββα+=+(2)加法结合律()()αβγαβγ++=++(3)零元素: 在中存在一个元素,使得对于V 0任意的都有V α∈0αα+=(4)负元素: 对于中的任意元素都存在一V α个元素使得β0αβ+=(5)i =1αα(6)()()k l kl αα=(7)()k l k l ααα+=+(8)()k k k αβαβ+=+为数域F 称这样的上的线性空间。
V例1全体实函数集合构成实数域上的线性空间。
R 例2复数域上的全体型矩阵构成的集C m n ×合为上的线性空间。
m n × C C 例3实数域上全体次数小于或等于的多项式R n 集合构成实数域上的线性空间;1[]n R x +R 实数域上全体次数等于的多项式集合不构成实数域上的线性空间;R n R二:线性空间的基本概念及其性质定义:线性组合;线性表出;线性相关;线性无关;向量组的极大线性无关组;向量组的秩向量组的极大线性无关组向量组的秩R例1实数域上的函数空间中,函数组2x x1,cos,cos2是线性相关的函数组。
矩阵分析

矩阵分析课后习题答案第二章 内积空间14 . 设A , B 均为厄米特矩阵, 证明: AB 为厄米特矩阵的充要条件是AB = BA .证明: H A A =,H B B =()HH H AB AB B A AB =⇔=即 AB BA =17 . 证明:两个正规矩阵相似( 酉等价) 的充要条件是特征多项式相同.证明:设A , B 是两个n 阶的正规矩阵,如果A 与B 是酉等价的,则存在酉矩阵Q ,使得1H B Q AQ Q AQ -==()11E B E Q AQ Q E A Q E A λλλλ--⇒-=-=-=-即A , B 有相同的特征多项式反之,A , B 有相同的特征多项式,因而有相同的特征值集合{}12,,,n λλλA ,B 是正规矩阵,则存在酉矩阵1Q 及2Q ,使得1111122n Q AQ Q BQ λλλ2--⎡⎤⎢⎥⎢⎥==⎢⎥ ⎢⎥ ⎣⎦ 则有 ()()11111121121212B Q Q A Q Q Q QA Q QP A P------=== 易知,112p Q Q -=是酉矩阵,即A , B 是酉相似的。
第三章 矩阵的标准形6 . 在复数域上, 求下列矩阵的约当标准形:()11 -1 2 3 7 -3 3 0 8 4 5 -2⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 3 -3 6 ; (2) -2 -5 2; (3) 3 -1 6; (4) -⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥2 -2 4-4 -10 3-2 0 -5⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥2 -2 1 ⎢⎥⎢⎥-1 -1 1⎣⎦解 (1) 特征矩阵为λλλ-1 1 -2⎡⎤⎢⎥-3 +3 - 6⎢⎥⎢⎥-2 2 -4⎣⎦所以行列式因子为()()121D D λλλ==,,()()232D λλλ=-不变因子为()()()()()()()()()231123121,D D d D d d D D λλλλλλλλλλλ== ==, ==-2全部初级因子为()2,,λλλ-故约当标准型为 2J 0 0⎡⎤⎢⎥=0 0 0⎢⎥⎢⎥0 0 0⎣⎦(2) 特征矩阵为λλλ -3 - 7 3⎡⎤⎢⎥ 2 +5 -2⎢⎥⎢⎥ 4 10 - 3⎣⎦所以行列式因子为()()211D D λλ==,()()31()()D i i λλλλ=--+不变因子为()()()()()()()()()231123121,1()()D D d D d d i i D D λλλλλλλλλλλ== ==1, ==--+全部初级因子为1,,i i λλλ- - +故约当标准型为 J i i 1 0 0⎡⎤⎢⎥=0 0⎢⎥⎢⎥0 0 -⎣⎦(3) 特征矩阵为5λλλ -3 0 -8⎡⎤⎢⎥ -3 +1 -6⎢⎥⎢⎥ 2 0 +⎣⎦所以行列式因子为()()()()1231,1,1D D D λλλλλ3= =+ =+不变因子为()()()()()()()()()2231123121,1D D d D d d D D λλλλλλλλλλ== ==+1, ==+全部初级因子为21,1)λλ+ (+故约当标准型为 J -1 0 0⎡⎤⎢⎥= 0 -1 0⎢⎥⎢⎥ 0 1 -1⎣⎦(4) 特征矩阵为λλλ -4 - 5 2⎡⎤⎢⎥ 2 +2 -1⎢⎥⎢⎥ 1 1 - 1⎣⎦所以行列式因子为()()211D D λλ==,()()331D λλ=-不变因子为()()()()()()()()()3231123121,D D d D d d D D λλλλλλλλλ== ==1, ==-1全部初级因子为()31λ-故约当标准型为 J 1 0 0⎡⎤⎢⎥=1 1 0⎢⎥⎢⎥0 1 1⎣⎦8 . 证明: ( 1)方阵A 的特征值全是零的充要条件是存在自然数m ,使得A m = 0; ( 2) 若A m = 0 , 则1A E +=.证明:(1) 如λ为A 的任一特征值,A 为n 阶方阵,则m λ为m A 的特征值,若0m A =则m n E A E λλλ-==,即A 的特征值为0。
矩阵分析第章习题答案

矩阵分析第章习题答案第三章1、已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量1212(,,,),(,,,)n n x x x y y y αβ==定义内积为(,)H A αβαβ=(1)证明在上述定义下,n C 是⾣空间;(2)写出n C 中的Canchy-Schwarz 不等式。
2、已知2111311101A --??=?-,求()N A 的标准正交基。
提⽰:即求⽅程0AX =的基础解系再正交化单位化。
3、已知308126(1)316,(2)103205114A A --??=-=-??----试求⾣矩阵U ,使得H U AU 是上三⾓矩阵。
提⽰:参见教材上的例⼦4、试证:在nC上的任何⼀个正交投影矩阵P 是半正定的Hermite 矩阵。
5、验证下列矩阵是正规矩阵,并求⾣矩阵U,使H U AU 为对⾓矩阵,已知131(1)612A=01(2)10000i A i -=??,434621(3)44326962260ii i A i i i i i +--=----?+--??11(4)11A -??=??6、试求正交矩阵Q ,使TQ AQ 为对⾓矩阵,已知220(1)212020A -=---??,11011110(2)01111011A -??-?=-??-??7、试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +=--??,222(2)254245A -??=---8、设n 阶⾣矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是⾣矩阵。
证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,⽭盾,所以矩阵E U +满秩。
矩阵分析 史荣昌 魏丰 第三版 第一章-第四章 期末复习总结

定义:若v1 ∩ v =0,则称v1与v 2 的和空间v1 + v 2 是直和,用记号v1 ⊕ v 2 表示
交
定理:设v1与v 2 是线性空间 v 的两个子空间,则下列命题是等价的
与
和
1) v1 + v 2 是直和
直和
2) dim(v1 + v 2 )= dim v1 + dim v 2
3)
设
α1, αn1
α α α 定理:(1) R(T)=span{T( 1 ),T( 2 ),……T( n )} (2)rank(T)=rank(A)(A 为线性映射在基下的矩阵表示)
值
域
性质:
设 A 是 n 维线性空间V1 到 m 维线性空间V2 的线性映射,α1,α2, αn
是V1
的一组基,β1,
β
2
,
,βm
是V2 的一组基。线性映射 A 在这组基下的矩阵表示是 m*n 矩阵 A=( A1,A2, An
特征子
空间
V 性质:特征子空间 λi 是线性变换 T 的不变子空间。
定义:设v1和v 2 是数域 F 上的两个线性空间,映射 A:v1 → v 2 ,如果对任何两个向量 α1,α2 ∈ v1和任何数λ ∈ F
有 A( α1 + α2 )=A( α1 )+A( α2 ),A( λα1 )= λ A( α1 ),便称 映射 A 是由v 1到v 2 的线性映射
α1,α
2
,
αr
生成的子空间为
T
的不变子空间。
0 0 an,r +1 ann
λ α λ λ λ 定义:设 T 是数域 F 上 n 维线性空间 V 的线性变换,如果 V 中存在非零向量α,使得 T(α)= 0 , 0 ∈F.那么称 0 是 T 的一个特征值,称α是 T 的属于 0 的一个特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 线性空间和线性变换(详解)1-1 证:用iiE 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,iiE ,ijE 都是对称矩阵,iiE 有(1)2n n -个.不难证明iiE ,ijE 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A EE E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基;(2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A 在21,(),(),,()n -ξξξξA AA下矩阵表示为n 阶矩阵000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A 的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求;(2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。