中考数学五三习题整理-5-2.2分式方程
中考数学总复习《分式方程》专项提升练习题及答案(人教版)

中考数学总复习《分式方程》专项提升练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________【考点一】分式方程的概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法:(1)解分式方程的基本思路是去分母把分式方程转化为整式方程.(2)解分式方程的一般步骤:分式方程去分母→ 整式方程解整式方程→ x =a 检验→ {分式方程的分母不为零则x =a 是分式方程的解分式方程的分母为零则x =a 是分式方程的增根(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为“0”的根,称为方程的增根. 因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为“0”的根是增根应舍去.(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为“0”的因式.(5)分式方程的无解与增根:分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解.【考点二】分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行 “双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.一、单选题 1.已知实数x 满足22110x x x x +++=,那么x 的值为( )3.学校用500元钱到商场去购买“84”消毒液,经过还价,每瓶便宜1.5元,结果比用原价多买了10瓶,求A .()111x --=B .()111x +-=C .()112x x --=-D .()112x x +-=- 5.为了美化环境,某地政府计划对辖区内260km 的土地进行绿化,为了尽快完成任务,实际平均每月的绿602=;乙:A .x 表示原计划平均每月的绿化面积B .y 表示实际完成这项工程需要的月数C .□表示1.5xD .◇表示2y -6.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为( )是非负数,则所有满足条件的整数a 的值之和是( )A .10B .13C .15D .18二、填空题9.分式方程4122mx x x =+--无解,则m 的值为 . 10.若关于x 的方程2233x m x x x++=--的解是正数,则m 的取值范围为 . 11.为锻炼身体,小陈由开车上班改为骑自行车上班,已知小陈家距离上班地点14千米,开车每小时行驶的路程比骑自行车每小时行驶的路程的3倍还多5千米,且骑自行车上班所需时间是开车上班所需时间的3.5倍,则小陈骑自行车上班需要 小时.12.已知关于x 的分式方程()()212323nx x x x x =+----的解为正整数,且关于y 的不等式组()6131n y y y -<-⎧⎨-≥-⎩无解,则满足条件的所有整数n 的和为 .13.黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.如图,一芭蕾舞演员的身高为160cm ,但其上半身长与下半身长之比大于黄金比,当其表演时掂起脚尖,身高就可以增加10cm ,这时上半身长与下半身长之比就恰好满足黄金比,那么该演员的上半身长为 cm .(黄金分割比0.6≈)三、解答题14.解分式方程:(1)522112x x x +=-- (2)214111x x x +-=--a a>的正方形去掉一个边长为1m的正方形蓄水池后余下17.如图,“丰收1号”小麦的试验田是边长为m(1)a-的正方形,两块试验田的小麦都收获了1500kg.的部分,“丰收2号”小麦的试验田是边长为()1m(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的1.05倍,求“丰收2号”小麦的试验田的边长.18.今年初冬,受强冷空气影响,12月13日早晨开始,北京市出现强降雪天气,截至14日18时,北京市共出动专业作业人员11.5万人次,出动扫雪铲冰作业车辆1.7万车次,分成若干个小组,及时开展扫雪除冰工作,保障道路畅通及市民出行安全.其中甲、乙两组共同负责一条大街的扫雪工作,若由甲、乙两组合作则2小时可完成扫雪工作;若甲组先单独扫雪4小时,再由乙组单独扫雪1小时可完成扫雪工作.(1)求甲、乙两组单独完成此项工作各需要多少小时?(2)如果甲、乙两组合作时对道路交通有影响,单独工作时对交通无影响,且要求完成扫雪工作不超过2.5小时,问如何安排扫雪工作,对道路交通的影响会最小?参考答案 1.C2.D3.B4.D5.D6.A7.A8.B9.1或210.6m >-且3m ≠-11.1.412.2-13.63.7514.(1)=1x -(2)1x =15.(1)1x =(2)1a =或2a =16.小颖有道理17.(1)“丰收2号”小麦试验田的单位面积产量高;(2)“丰收2号”小麦试验田的边长为40m .18.(1)甲组单独完成此项工作需要6小时,乙组单独完成此项工作需要3小时(2)应安排甲乙合作1小时,然后再由乙组单独施工1.5小时,对道路交通的影响会最小。
2025年中考数学题型解析:分式方程(解析版)

分式方程课标要求考点考向1.能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型;2.能解可化为一元一次方程的分式方程:3.能根据具体问题的实际意义,检验方程的解是否合理.分式方程的运算考向一解分式方程考向二分式方程的解分式方程的应用考向一列分式方程考向二分式方程的实际应用考点一分式方程的运算易错易混提醒解分式方程过程中,易错点有:(1)去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;(2)忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.(3)增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根,若这个整式方程本身无解,当然原分式方程就一定无解.►考向一解分式方程1.(2024·海南·中考真题)分式方程1x-2=1的解是()A.x=3B.x=-3C.x=2D.x=-2【答案】A【分析】本题主要考查了解分式方程,先把分式方程去分母化为整式方程,再解方程,最后检验即可.【详解】解:1x-2=1去分得:1=x-2,解得x=3,检验,当x=3时,x-2≠0,∴x=3是原方程的解,故选:A.2.(2024·山东济宁·中考真题)解分式方程1-13x-1=-52-6x时,去分母变形正确的是()A.2-6x+2=-5B.6x-2-2=-5C.2-6x-1=5D.6x-2+1=5【答案】A【分析】本题考查通过去分母将分式方程转化为整式方程,方程两边同乘各分母的最简公分母,即可去分母.【详解】解:方程两边同乘2-6x,得2-6x-2-6x×13x-1=-52-6x×2-6x,整理可得:2-6x+2=-5故选:A.3.(2024·四川泸州·中考真题)分式方程1x-2-3=22-x的解是()A.x=-73B.x=-1 C.x=53D.x=3【答案】D【分析】本题考查解分式方程,根据解分式方程方法和步骤(去分母,去括号,移项,合并同类项,系数化为1,检验)求解,即可解题.【详解】解:1x-2-3=22-x,1 x-2-3=-2x-2,1-3x-2=-2,1-3x+6=-2,-3x=-9,x=3,经检验x=3是该方程的解,故选:D.4.(2024·四川广元·中考真题)若点Q x,y满足1x+1y=1xy,则称点Q为“美好点”,写出一个“美好点”的坐标.【答案】2,-1(答案不唯一)【分析】此题考查了解分式方程,先将方程两边同时乘以xy后去分母,令x代入一个数值,得到y的值,以此为点的坐标即可,正确解分式方程是解题的关键【详解】解:等式两边都乘以xy,得x+y=1,令x=2,则y=-1,∴“美好点”的坐标为2,-1,故答案为2,-1(答案不唯一)5.(2024·浙江·中考真题)若2x-1=1,则x=【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2=x-1,移项合并得:-x=-3,解得:x=3,经检验,x=3是分式方程的解,故答案为:36.(2024·北京·中考真题)方程12x+3+1x=0的解为.【答案】x=-1【分析】本题考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题的关键.先去分母,转化为解一元一次方程,注意要检验是否有增根.【详解】解:12x+3+1x=0x+2x+3=0,解得:x=-1,经检验:x=-1是原方程的解,所以,原方程的解为x=-1,故答案为:x=-1.7.(2024·陕西·中考真题)解方程:2x2-1+xx-1=1.【答案】x=-3【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.【详解】解:2x2-1+xx-1=1,去分母得:2+x x+1=x2-1,去括号得:2+x2+x=x2-1,移项,合并同类项得:x=-3,检验:把x=-3代入x+1x-1得:-3+1-3-1=8≠0,∴x=-3是原方程的解.8.(2024·福建·中考真题)解方程:3x+2+1=xx-2.【答案】x=10.【分析】本题考查解分式方程,掌握解分式方程的步骤和方法,将分式方程化为整式方程求解,即可解题.【详解】解:3x+2+1=xx-2,方程两边都乘x+2x-2,得3x-2+x+2x-2=x x+2.去括号得:3x-6+x2-4=x2+2x,解得x=10.经检验,x=10是原方程的根.►考向二分式方程的解9.(2024·四川遂宁·中考真题)分式方程2x-1=1-mx-1的解为正数,则m的取值范围()A.m>-3B.m>-3且m≠-2C.m<3D.m<3且m≠-2【答案】B【分析】本题考查了解分式方程及分式方程的解,先解分式方程,求出分式方程的解,再根据分式方程解的情况解答即可求解,正确求出分式方程的解是解题的关键.【详解】解:方程两边同时乘以x-1得,2=x-1-m,解得x=m+3,∵分式方程2x-1=1-mx-1的解为正数,∴m+3>0,∴m>-3,又∵x≠1,即m+3≠1,∴m≠-2,∴m的取值范围为m>-3且m≠-2,故选:B.10.(2024·黑龙江大兴安岭地·中考真题)已知关于x的分式方程kxx-3-2=33-x无解,则k的值为()A.k=2或k=-1B.k=-2C.k=2或k=1D.k=-1【答案】A【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,kx-2(x-3)=-3,整理得,(k-2)x=-9,当k=2时,方程无解,当k≠2时,令x=3,解得k=-1,所以关于x的分式方程kxx-3-2=33-x无解时,k=2或k=-1.故选:A.11.(2024·黑龙江齐齐哈尔·中考真题)如果关于x的分式方程1x -mx+1=0的解是负数,那么实数m的取值范围是()A.m<1且m≠0B.m<1C.m>1D.m<1且m≠-1【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的解是负数得到m-1<0,并结合分式方程的解满足最简公分母不为0,求出m的取值范围即可,熟练掌握解分式方程的步骤是解题的关键.【详解】解:方程两边同时乘以x x+1得,x+1-mx=0,解得x=1m-1,∵分式方程的解是负数,∴m-1<0,∴m<1,又∵x x+1≠0,∴x+1≠0,∴1 m-1≠-1,∴m≠0,∴m<1且m≠0,故选:A.12.(2024·重庆·中考真题)若关于x的一元一次不等式组2x+13≤34x-2<3x+a的解集为x≤4,且关于y的分式方程a-8y+2-yy+2=1的解均为负整数,则所有满足条件的整数a的值之和是.【答案】12【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出a>2;解分式方程得到y=a-102,再由关于y的分式方程a-8y+2-yy+2=1的解均为负整数,推出a<10且a≠6且a是偶数,则2<a<10且a≠6且a是偶数,据此确定符合题意的a的值,最后求和即可.【详解】解:2x+13≤3①4x-2<3x+a②解不等式①得:x≤4,解不等式②得:x<a+2,∵不等式组的解集为x≤4,∴a+2>4,∴a>2;解分式方程a-8y+2-yy+2=1得y=a-102,∵关于y的分式方程a-8y+2-yy+2=1的解均为负整数,∴a-102<0且a-102是整数且y+2=a-102+2≠0,∴a<10且a≠6且a是偶数,∴2<a<10且a≠6且a是偶数,∴满足题意的a的值可以为4或8,∴所有满足条件的整数a的值之和是4+8=12.故答案为:12.考点二分式方程的应用►考向一列分式方程13.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km,一部分学生乘慢车先行0.5h,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km,求慢车的速度?设慢车的速度为xkm/h,则可列方程为()A.60x -60x+20=12B.60x-20-60x=12C.60x+20-60x=12D.60x-60x-20=12【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为xkm/h,则快车的速度是x+20km/h,再根据题意列出方程即可.【详解】解:设慢车的速度为xkm/h,则快车的速度为x+20km/h,根据题意可得:60x -60x +20=12.故选:A .14.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A 、B 两种绿植,已知A 种绿植单价是B 种绿植单价的3倍,用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株.设B 种绿植单价是x 元,则可列方程是()A.67503x -50=3000x B.30003x -50=6750x C.67503x +50=3000xD.30003x +50=6750x【答案】C【分析】本题主要考查了分式方程的应用,设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株,列出方程即可.【详解】解:设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据题意得:67503x +50=3000x ,故选:C .15.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x 元,所得方程正确的是()A.240x -240x +2=10B.240x -240x -2=10C.240x -2-240x=10D.240x +2-240x=10【答案】C【分析】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.根据降价后用240元可以比降价前多购买10袋,可以列出相应的分式方程.【详解】解:由题意可得,240x -2-240x =10,故选:C .16.(2024·山西·中考真题)某校组织学生开展“茶韵与书画”为主题的研学课程,已知学校用于购买扇子的费用为4000元,购买茶具的费用为3200元,其中购买扇子的数量是购买茶具数量的2倍,并且扇子的单价比茶具的单价便宜3元.设购买扇子的单价为x 元.则x 满足的方程为()A.4000x =2×3200x +3B.2×4000x =3200x +3C.4000x -3=2×3200xD.2×4000x -3=3200x【答案】A【分析】题目主要考查分式方程的应用,设购买扇子的单价为x 元,则茶具的单价为x +3 元,根据“购买扇子的数量是购买茶具数量的2倍”列出分式方程即可,理解题意是解题关键.【详解】解:设购买扇子的单价为x 元,则茶具的单价为x +3 元,根据题意得:4000x =2×3200x +3,故选:A .►考向二分式方程的实际应用17.(2024·内蒙古呼伦贝尔·中考真题)A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30千克,A 型机器人搬运900千克所用时间与B 型机器人搬运600千克所用时间相等.A ,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30B.90,120C.60,90D.90,60【答案】D【分析】本题考查了分式方程的应用,设B 型机器人每小时搬运x 千克,则A 型机器人每小时搬运x +30 千克,根据“A 型机器人搬运900千克所用时间与B 型机器人搬运600千克所用时间相等”列分式方程求解即可.【详解】解:设B 型机器人每小时搬运x 千克,则A 型机器人每小时搬运x +30 千克,根据题意,得900x +30=600x,解得x =60,经检验,x =60是原方程的解,∴x +30=90,答:A 型机器人每小时搬运90千克,B 型机器人每小时搬运60千克.故选:D .18.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为40km/h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A.5km/hB.6km/hC.7km/hD.8km/h【答案】D【分析】此题主要考查了分式方程的应用,利用顺水速=静水速+水速,逆水速=静水速-水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为x km/h ,根据题意可得:12040+x =8040-x ,解得:x =8,经检验:x =8是原方程的根,答:江水的流速为8km/h .故选:D .19.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A.200B.300C.400D.500【答案】B【分析】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为x -100 ,根据“改造后生产600件的时间与改造前生产400件的时间相同”列出分式方程,解方程即可.【详解】解:设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为x -100 ,根据题意,得:600x =400x -100,解得:x =300,经检验x =300是分式方程的解,且符合题意,答:改造后每天生产的产品件数300.故选:B .20.(2024·内蒙古·中考真题)2024年春晚吉祥物“龙辰辰”,以十二生肖龙的专属汉字“辰”为名.某厂家生产大小两种型号的“龙辰辰”,大号“龙辰辰”单价比小号“龙辰辰”单价贵15元,且用2400元购进小号“龙辰辰”的数量是用2200元购进大号“龙辰辰”数量的1.5倍,则大号“龙辰辰”的单价为元.某网店在该厂家购进了两种型号的“龙辰辰”共60个,且大号“龙辰辰”的个数不超过小号“龙辰辰”个数的一半,小号“龙辰辰”售价为60元,大号“龙辰辰”的售价比小号“龙辰辰”的售价多30%.若两种型号的“龙辰辰”全部售出,则该网店所获最大利润为元.【答案】551260【分析】本题考查了分式方程的应用、一元一次不等式组的应用、一次函数的应用,熟练掌握一次函数的性质是解题关键.设大号“龙辰辰”的单价为x 元,则小号“龙辰辰”的单价为x -15 元,根据题意建立分式方程,解方程即可得;设购进小号“龙辰辰”的数量为a 个,则购进大号“龙辰辰”的数量为60-a 个,先求出a 的取值范围,再设该网店所获利润为w 元,建立w 关于a 的函数关系式,利用一次函数的性质求解即可得.【详解】解:设大号“龙辰辰”的单价为x 元,则小号“龙辰辰”的单价为x -15 元,由题意得:2400x -15=1.5×2200x,解得x =55,经检验,x =55是所列分式方程的解,所以大号“龙辰辰”的单价为55元,小号“龙辰辰”的单价为40元.设购进小号“龙辰辰”的数量为a 个,则购进大号“龙辰辰”的数量为60-a 个,由题意得:0<60-a ≤12a ,解得40≤a <60,设该网店所获利润为w 元,则w =60-40 a +60×1+30% -55 60-a =-3a +1380,由一次函数的性质可知,在40≤a <60内,w 随a 的增大而减小,则当a =40时,w 取得最大值,最大值为-3×40+1380=1260,即该网店所获最大利润为1260元,故答案为:55;1260.21.(2024·山东东营·中考真题)水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的14.小丽家去年5月份的水费是28元,而今年5月份的水费则是24.5元.已知小丽家今年5月份的用水量比去年5月份的用水量少3m 3.设该市去年居民用水价格为x 元/m 3,则可列分式方程为.【答案】28x -24.554x =3【分析】本题主要考查了分式方程的应用,设该市去年居民用水价格为x 元/m 3,则今年居民用水价格为54x 元/m 3,根据小丽家今年5月份的用水量比去年5月份的用水量少3m 3,列出方程即可.【详解】解:设该市去年居民用水价格为x 元/m 3,则今年居民用水价格为1+14x 元/m 3,根据题意得:28x -24.554x =3.故答案为:28x -24.554x =3.22.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m ×0.8m ,装裱后,上、下、左、右边衬的宽度分别是am 、bm 、cm 、dm .若装裱后AB 与AD 的比是16:10,且a =b ,c =d ,c =2a ,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 、0.1m 、0.2m 、0.2m【分析】本题考查分式方程的应用,分别表示出AB ,AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得:AB =1.2+c +d =1.2+2c =1.2+4a ,AD =0.8+a +b =0.8+2a ,∵AB 与AD 的比是16:10,∴1.2+4a 0.8+2a =1610,解得:a =0.1,经检验a =0.1是原方程的解.∴上、下、左、右边衬的宽度分别是0.1m 、0.1m 、0.2m 、0.2m .23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00-23:00,用电低谷时段(简称谷时):23:00-次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.【答案】该市谷时电价0.3元/度【分析】本题考查了分式方程的应用,设该市谷时电价为x 元/度,则峰时电价x +0.2 元/度,根据题意列出分式方程,解方程并检验,即可求解.【详解】解:设该市谷时电价为x 元/度,则峰时电价x +0.2 元/度,根据题意得,50x +0.2=30x ,解得:x =0.3,经检验x =0.3是原方程的解,答:该市谷时电价0.3元/度.24.(2024·山东泰安·中考真题)随着快递行业的快速发展,全国各地的农产品有了更广阔的销售空间,某农产品加工企业有甲、乙两个组共35名工人.甲组每天加工3000件农产品,乙组每天加工2700件农产品,已知乙组每人每天平均加工的农产品数量是甲组每人每天平均加工农产品数量的1.2倍,求甲、乙两组各有多少名工人?【答案】甲组有20名工人,乙组有15名工人【分析】本题考查了分式方程的实际应用,设甲组有x 名工人,则乙组有35-x 名工人.根据题意得270035-x=3000x ×1.2,据此即可求解.【详解】解:设甲组有x 名工人,则乙组有35-x 名工人.根据题意得:270035-x =3000x×1.2,解答:x =20,经检验,x =20是所列方程的解,且符合题意,∴35-x =35-20=15.答:甲组有20名工人,乙组有15名工人.25.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:d 后=0.5d 前0.5+w.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;(1)把d 后=0.01%,d 前=0.2%代入d 后=0.5d 前0.5+w,再解方程即可;(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;(3)根据(1)(2)的结果得出结论即可.【详解】(1)解:把d后=0.01%,d 前=0.2%代入d 后=0.5d 前0.5+w得0.01%=0.5×0.2%0.5+w,解得w =9.5.经检验符合题意;∴只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.(2)解:第一次漂洗:把w =2kg ,d 前=0.2%代入d 后=0.5d 前0.5+w,∴d 后=0.5×0.2%0.5+2=0.04%,第二次漂洗:把w =2kg ,d 前=0.04%代入d 后=0.5d 前0.5+w,∴d 后=0.5×0.04%0.5+2=0.008%,而0.008%<0.01%,∴进行两次漂洗,能达到洗衣目标;(3)解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.26.(2024·云南·中考真题)某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km/h【分析】本题考查分式方程的应用,设D 型车的平均速度为xkm /h ,则C 型车的平均速度是3xkm /h ,根据“乘坐C 型车比乘坐D 型车少用2小时,”建立方程求解,并检验,即可解题.【详解】解:设D 型车的平均速度为xkm /h ,则C 型车的平均速度是3xkm /h ,根据题意可得,300x -3003x=2,整理得,6x =600,解得x =100,经检验x =100是该方程的解,答:D 型车的平均速度为100km/h .27.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元【分析】本题考查的是一元一次方程的应用,分式方程的应用,理解题意,确定相等关系是解本题的关键.(1)设该企业甲类生产线有x 条,则乙类生产线各有30-x 条,再利用更新完这30条生产线的设备,该企业可获得70万元的补贴,再建立方程求解即可;(2)设购买更新1条甲类生产线的设备为m 万元,则购买更新1条乙类生产线的设备为m -5 万元,利用用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,再建立分式方程,进一步求解.【详解】(1)解:设该企业甲类生产线有x 条,则乙类生产线各有30-x 条,则3x +230-x =70,解得:x =10,则30-x =20;答:该企业甲类生产线有10条,则乙类生产线各有20条;(2)解:设购买更新1条甲类生产线的设备为m 万元,则购买更新1条乙类生产线的设备为m -5 万元,则200m =180m -5,解得:m =50,经检验:m =50是原方程的根,且符合题意;则m -5=45,则还需要更新设备费用为10×50+20×45-70=1330(万元);28.(2024·重庆·中考真题)某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键;(1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为x -2 元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【详解】(1)解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为x -2 元,∴300x +300x -2 =15000,解得:x =26,∴x -2=24,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;∴50045y -5=500y ,解得:y =25,经检验:y =25是原方程的根且符合题意,答:甲每小时粉刷外墙的面积是25平方米.一、单选题29.(2024·广西贺州·三模)下列式子是分式方程的是()A.x+12=53B.13x-1+4x3x+1C.x2x-1+32x+1=1 D.3-x4+2=x-13【答案】C【分析】此题考查了分式方程,分母中含有未知数的有理方程是分式方程,据此进行判断即可.【详解】解:A.x+12=53是一元一次方程,故选项不符合题意;B.13x-1+4x3x+1不是方程,故选项不符合题意;C.x2x-1+32x+1=1是分式方程,故选项符合题意;D.3-x4+2=x-13是一元一次方程,故选项符合题意.故选:C.30.(2024·辽宁·模拟预测)某生鲜超市在三月份用20000元进购一批铁皮西红柿,四月份这种铁皮西红柿每千克降价了1元,此生鲜超市用18000元进购同种铁皮西红柿,却多进货500千克.求三月份这种铁皮西红柿每千克多少元?设三月份这种铁皮西红柿每千克x元,可列方程得()A.20000x+1+500=18000xB.20000x+500=18000x+1C.20000x-1+500=18000xD.20000x+500=18000x-1【答案】D【分析】本题考查了分式方程的实际应用,设三月份这种铁皮西红柿每千克x元,则四月份这种铁皮西红柿每千克x-1元,根据三月进货量+500=四月进货量,列出方程即可.【详解】解:设三月份这种铁皮西红柿每千克x元,则四月份这种铁皮西红柿每千克x-1元,可列方程得20000x+500=18000x-1,故选:D.31.(2024·上海宝山·一模)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为;把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍.根据题意列方程为1800x+1=900x-3,其中x表示()A.快马的速度B.慢马的速度C.规定的时间D.以上都不对【答案】C【分析】本题考查了由实际问题抽象出分式方程以及数学常识,根据各数量之间的关系及所列的方程,找出x的含义是解题的关键.由快、慢马速度间的关系,结合所列的方程,可得出900x+1表示慢马的速度,900x-3表示快马的速度,结合快、慢马所需时间与规定时间之间的关系,可得出x表示规定的时间.【详解】解:∵快马的速度是慢马的2倍,所列方程为900x+1×2=900x-3,即1800x+1=900x-3,∴900x+1表示慢马的速度,900x-3表示快马的速度;∵把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天,∴x表示规定的时间.故选:C.32.(2024·广东·模拟预测)已知x=5是分式方程4x+2=1-k2+x的解,则k的值为()A.5B.4C.3D.2【答案】C【分析】本题主要考查了分式方程解的定义,分式方程的解是使方程左右两边相等的未知数的值,据此把x= 5代入原方程求出k的值即可.【详解】解:∵x=5是分式方程4x+2=1-k2+x的解,∴4 5+2=1-k2+5,解得:k=3,故选:C.33.(2024·上海·模拟预测)野豪猪内卷会用6000元购进一批试卷,每套试卷含数理化三科,每套以比进价高10元的优惠价格卖给成员,在销售过程中,因多出5套试卷,以每套10元的白菜价送给了其他同学,最后野豪猪内卷会盈利950元,则一套试卷的进价为()A.50元B.100元C.120元D.240元【答案】A【分析】本题考查了分式方程的应用.设每套试卷的进价为x元,则每套试卷的售价为x+10元,根据题意列出分式方程,解之即可,注意检验.【详解】解:设每套试卷的进价为x元,则每套试卷的售价为x+10元,根据题意得6000x-5=6000+950-5×10x+10,整理得x2+190x-12000=0,解得x1=50,x2=-240(不合题意,舍去),经检验,x=50是原方程的解,且符合题意;答:每套试卷的进价为50元,故选:A.34.(2024·安徽·模拟预测)为改善生态环境,打造宜居城市,某市园林绿化部门计划植树20万棵,由于工程进度需要,实际每天植树棵数比原计划增加了25%,结果提前4天完成任务.若设实际每天植树x万棵,则根据题意可得方程为()A.201+25%x-20x=4 B.2025%x-20x=4C.201+25%x -20x=4 D.20x-201+25%x=4。
初三复习分式方程练习题

初三复习分式方程练习题分式方程是初中数学中的重要内容,掌握解决分式方程的方法对于学生来说是非常重要的。
在这里,我将为大家提供一些初三复习分式方程的练习题,希望能够帮助大家熟悉该内容并提高解题能力。
1. 解方程:$\frac{2}{x-3} - \frac{1}{x+2} = \frac{5}{4}$解:首先将分式的等式化为相同分母的形式$\frac{2(x+2)}{(x-3)(x+2)} -\frac{1(x-3)}{(x-3)(x+2)} = \frac{5(x-3)}{4(x-3)(x+2)}$化简得:$2(x+2) - (x-3) = \frac{5(x-3)}{4}$$2x + 4 - x + 3 = \frac{5x - 15}{4}$$x + 7 = \frac{5x - 15}{4}$$x + 7 = \frac{5x - 15}{4}$4(x + 7) = 5x - 154x + 28 = 5x - 1528 + 15 = 5x - 4x43 = x所以,方程的解为x = 43.2. 解方程:$\frac{3}{x+1} - \frac{x}{2} = \frac{1}{4}$解:同样地,我们将分式的等式化为相同分母的形式:$\frac{3(2)}{(x+1)(2)} - \frac{(x+1)(x)}{x+1)2} =\frac{(x+1)(1)}{4(x+1)}$化简得:$\frac{6}{2(x+1)} - \frac{x(x+1)}{2(x+1)} = \frac{x+1}{4}$ $\frac{6-x(x+1)}{2(x+1)} = \frac{x+1}{4}$$4(6-x(x+1)) = 2(x+1)(x+1)$$24 - 4x(x+1) = 2(x^2 + 2x + 1)$$24 - 4x^2 - 4x = 2x^2 + 4x + 2$$-4x^2 - 4x + 2x^2 + 8x + 2 - 24 = 0$$-2x^2 + 4x - 22 = 0$通过配方法,或者使用求根公式,最终可得$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$x = \frac{-4 \pm \sqrt{4^2 - 4(-2)(-22)}}{2(-2)}$$x = \frac{-4 \pm \sqrt{16 - 176}}{-4}$$x = \frac{-4 \pm \sqrt{-160}}{-4}$因为括号内为负数,所以方程无实数解。
中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
初三数学分式方程练习题

初三数学分式方程练习题解答:初三数学分式方程练习题分式方程是初中数学中一个重要的概念,对于初三的学生来说,掌握分式方程的解题方法是必不可少的。
下面是一些初三数学分式方程练习题,供同学们进行练习。
1. 解方程:$\frac{1}{x} + \frac{1}{2x-1} = \frac{3}{2}$首先,我们可以将分式中的分母进行通分,得到:$\frac{2(2x-1) + x}{x(2x-1)} = \frac{3}{2}$化简得:$\frac{4x - 2 + x}{2x^2 - x} = \frac{3}{2}$再次化简得:$\frac{5x - 2}{2x^2-x} = \frac{3}{2}$接下来,我们可以通过交叉相乘的方法解方程,得到:$2(5x-2) =3(2x^2-x)$化简得:$10x - 4 = 6x^2 - 3x$移项得:$6x^2 - 3x - 10x + 4 = 0$合并同类项得:$6x^2 - 13x + 4 = 0$接下来,我们可以使用因式分解、配方法或求根公式等方法解方程。
2. 解方程:$\frac{x+1}{x-2} - \frac{1}{x+2} = \frac{2}{x^2-4}$首先,我们可以将分式中的分母进行通分,得到:$\frac{(x+1)(x+2) - (x-2)}{(x-2)(x+2)} = \frac{2}{x^2-4}$化简得:$\frac{x^2 + 3x + 2 - x + 2}{x^2-2^2} = \frac{2}{x^2-4}$再次化简得:$\frac{x^2 + 2x + 4}{x^2-4} = \frac{2}{x^2-4}$我们可以发现,分式的分子和分母都含有$x^2-4$这个因子,可以将其约去,得到:$\frac{x^2 + 2x + 4}{x^2-4} = \frac{2}{1}$化简得:$x^2 + 2x + 4 = 2(x^2-4)$移项得:$x^2 + 2x + 4 = 2x^2 - 8$合并同类项得:$x^2 - 2x - 12 = 0$接下来,我们可以使用因式分解、配方法或求根公式等方法解方程。
初三中考数学复习分式方程专项复习练习含答案与解析

x- 3
3- m
3-m
=3-m,即 x= 3 ,原方程无解,即此时存在 x= 3 =3,m=- 6.
7. 解:方程两边同乘以 (x-1),得 2=1+x-1,解得 x=2,把 x=2 代入原方 程检验: ∵左边=右边, ∴x=2 是分式方程的根 8. 解:方程两边同乘 x-2,1-3(x-2)=- (x-1),即 1-3x+6=- x+1,则 -2x=- 6,得 x=3.检验,当 x=3 时, x-2 ≠,0所以原方程的解为 x=3 【解析】分式方程同乘 (x-2)去分母转化为整式方程. 9. 解:去分母得 x+1=2x-14,解得 x=15, 经检验 x=15 是分式方程的解
y 900 (2)小明家与图书馆之间的路程最多是 y 米,根据题意可得 60≤180×2,解得 y≤ 60,0 则小明家与图书馆之间的路程最多是 600 米
【解析】 (1)根据等量关系:小明步行回家的时间=骑车返回时间+ 10 分钟,列 分式方程求解即可; (2)根据 (1)中计算的速度列出不等式解答即可.
【解析】 (1)设原计划每年绿化面积为 x 万平方米,则实际每年绿化面积为 1.6x
万平方米.根据 “实际每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任
务”列出方程; (2)设平均每年绿化面积增加 a 万平方米.则由 “完成新增绿化面
积不超过 2 年”列出不等式. 13. 解:设甲队每天筑路 5x 公里,乙队每天筑路 8x 公里,根据题意得
m
无解,求 m 的值.
x-5 10-2x
12. 某市为创建全国文明城市,开展 “美化绿化城市 ”活动,计划经过若干年使城 区绿化总面积新增 360 万平方米.自 2013 年初开始实施后,实际每年绿化面积 是原计划的 1.6 倍,这样可提前 4 年完成任务. (1)问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016 年起加快绿化速度,要求不超过 2 年完 成,那么实际平均每年绿化面积至少还要增加多少万平方米?
中考数学专题复习练习 分式方程(答案不全)(2021年整理)

2017届中考数学专题复习练习分式方程(答案不全)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届中考数学专题复习练习分式方程(答案不全))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届中考数学专题复习练习分式方程(答案不全)的全部内容。
分式方程一.选择题(共8小题)1.分式方程的解为()A.1 B.2 C.3 D.42.解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1) 3.若关于x的方程+=3的解为正数,则m的取值范围是( )A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣4.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. =B. =C. =D. =5.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A. =﹣5 B. =+5 C. =8x﹣5 D. =8x+56.若关于x的方程有增根,则m的值为( )A.0 B.1 C.﹣1 D.27.周末,几名同学包租一辆面包车前往“黄冈山”游玩,面包车的租价为180元,出发时,又增加了2名学生,结果每个同学比原来少分担3元车费,设原来参加游玩的同学为x人,则可得方程()A.﹣=3 B.﹣3180x=3C.﹣=3 D.﹣=38.如果关于x的方程无解,则m的值等于()A.﹣3 B.﹣2 C.﹣1 D.3二.填空题(共9小题)9.分式方程的解是.10.关于x的方程的解是负数,则a的取值范围是.11.要使与的值相等,则x= .12.分式方程+1=的解是.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.14.要使方程=有正数解,则a的取值范围是.15.若分式方程有增根,则m= .16.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为元.17.已知,甲队修路120m与乙队修路100m所用天数相同,且甲队比乙队每天多修10m.设甲队每天修路xm,请根据题意列出方程:.三.解答题(共6小题)18.解方程:.19.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?20.阅读材料:关于x的方程:x+的解为:x1=c,x2=x﹣(可变形为x+)的解为:x1=c,x2=x+的解为:x1=c,x2=x+的解为:x1=c,x2=…根据以上材料解答下列问题:(1)①方程x+的解为②方程x﹣1+=2+的解为(2)解关于x方程:x﹣(a≠2)21.已知关于x的方程﹣=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.22.小芳每次骑车从家到学校都要经过一段坡度相同的上坡路和下坡路,假设她骑车坡度相等的上坡路与下坡路平均速度基本相同,且上坡路骑行50米与下坡路骑行80米所用的时间相等.当她从家到学校时,下坡路的长为400米,下坡路比上坡路多花一分钟,设她骑行下坡路的速度为x米/分钟.(1)用含x的代数式表示她从家到学校时上坡路段的路程.(2)当她从学校回家时,在这两个坡道所花的时间为10分30秒,请求出她回家时在下坡路段所花的时间.23.若关于x的方程+=有增根,求增根和k的值.参考答案一.选择题(共8小题)1.D;2.D;3.B;4.A;5.B;6.C;7.A;8.B;二.填空题(共9小题)9.x=9;10.a<6且a≠4;11.6;12.x=1;13.;14.a<2且a≠1;15.2;16.28;17. =;三.解答题(共6小题)18.;19.;20.;;21.;22.;23.;。
中考数学分式方程专项练习题(含答案)

中考数学分式方程专项练习题(含答案)
一、分式方程基础知识点梳理
1.分式方程的概念
分母中含有未知数的方程叫作分式方程.
2.可化为一元一次方程的分式方程的解法
⑴解分式方程的基本思想是:把分式方程转化为整式方程.
⑵可化为一元一次方程的分式方程的一般方法和步骤:
①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;
②解这个整式方程;
③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:⑴增根能使最简公分母等于0.
⑵增根是去分母后所得整式方程的根.
3.解分式方程产生增根的原因
增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的
方程是原方程的同解方程,如果方程的两边都乘以的数是0,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根,即分式方程无解.
二、必备50道练习题
11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2 分式方程A 组 2015—2019年山东中考题组考点一 分式方程及其解法1.(2018德州,8,4分)分式方程)2)(1(311+-=--x x x x 的解为 ( ) A.1=x B.2=x C.1-=x D.无解 2.(2015枣庄,6,3分)已知关于x 的分式方程112=+-x a x 的解为正数,则字母a 的取值范围是( )A.1-≥aB.1->aC.1-≤aD.1-<a3.(2017聊城,7,3分)如果关于x 的分式方程1222=---xx x m 出现增根,那么m 的值为 ( )A.-2B.2C.4D.-44.(2019德州,14,4分)方程113)1)(1(6=---+x x x 的解为 . 5.(2019滨州,14,5分)方程xx x -=+--23123的解是 . 6.(2019烟台,14,3分)若关于x 的分式方程23123-+=--x m x x 有增根,则m 的值为 .7.(2017泰安,21,3分)分式27-x 与xx -2的和为4,则x 的值为 . 8.(2018潍坊,14,3分)当=m 时,解分式方程xm x x -=--335会出现增根. 9.(2019临沂,20,7分)解方程:x x 335=-.考点二 分式方程的应用1.(2019济宁,6,3分)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是 ( ) A.4510500500=-x x B.4550010500=-xx C.455005000=-x x D.455000500=-x x2.(2018临沂,10,3分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5 000万元.今年5~1月份,每辆车的销售价格比去年降低1万元,销售数量与去年一整年的相同.销售总额比去年一整年的少20%.今年5~1月份每辆车的销售价格是多少万元?设今年5~1月份每辆车的销售价格为x 万元.根据题意,列方程正确的是 ( ) A.x x %)201(500015000-⨯=+ B.xx %)201(500015000+⨯=+ C.x x %)201(500015000-⨯=- D.x x %)201(500015000+⨯=- 3.(2018淄博,10,4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是 ( ) A.30%)251(6060=+-x x B.3060%)251(60=-+xx C.3060%)251(60=-+⨯x x D.30%)251(6060=+⨯-x x 4.(2017德州,10,3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料.若设第一次买了x 本资料,列方程正确的是 ( ) A.412020240=--x x B.412020240=-+xx C.420120240=--x x D.420120240=+-x x 5.(2016青岛,6,3分)A,B 两地相距180 km,新修的高速公路开通后,在A,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1 h.若设原来的平均车速为x km/h,则根据题意可列方程为 ( ) A.1%)501(180180=+-x x B.1180%)501(180=-+xx C.1%)501(180180=--x x D.1180%)501(180=--x x 6.(2019威海,19,7分)列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们到体育公园的距离分别是1 200米,3 000米.小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.7.(2019菏泽,18,6分)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶在高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.8.(2019青岛,20,8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件;(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3 000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成,如果总加工费不超过7 800元,那么甲至少加工了多少天?B 组 2015—2019年全国中考题组考点一 分式方程及其解法1.(2018四川成都,8,3分)分式方程1211=-++x x x 的解是 ( ) A.1=x B.1-=x C.3=x D.3-=x2.(2017河南,4,3分)解分式方程x x -=--13211,去分母得 ( ) A.3)1(21-=--x B.3)1(21=--xC.3221-=--xD.3221=+-x3.(2017四川凉山,9,4分)若关于x 的方程0322=-+x x 与ax x -=+132有一个解相同,则a 的值为 ( )A.1B.1或-3C.-1D.-1或34.(2017重庆A 卷,12,4分)若数a 使关于x 的分式方程4112=-+-xa x 的解为正数,且使关于y 的不等式组10)(2232>⎪⎩⎪⎨⎧≤--+a y y y 的解集为2-<y ,则符合条件的所有整数a 的和为 ( )A.10B.12C.14D.165. (2018内蒙古呼和浩特,17(2),5分)解方程:xx x -=+--23123.考点二 分式方程的应用1.(2018云南昆明,13,4分)甲、乙两船从相距300 km 的A,B 两地同时出发相向而行,甲船从A 地顺流航行180 km 时与从B 地逆流航行的乙船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为 ( ) A.61206180-=+x x B.61206180+=-x x C.x x 1206180=+ D.6120180-=x x 2.(2018湖南益阳,9,4分)体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是 ( )A.8004025.140=-⨯x xB.4025.2800800=-xx C.4025.1800800=-x x D.4080025.1800=-x x 3.(2018新疆乌鲁木齐,19,10分)某校组织学生去9 km 外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.C 组 教师专用题组考点一 分式方程及其解法1.(2018湖北荆州,5,3分)解分式方程xx -=--24321时,去分母可得( ) A.4)2(31=--x B.4)2(31-=--xC.4)2(31-=---xD.4)2(31=--x2.(2018湖南张家界,2,3分)若关于x 的分式方程113=--x m 的解为2=x ,则m 的值为 ( )A.5B.4C.3D.23.(2016黑龙江龙东地区,16,3分)关于x 的分式方程213=--x m x 的解是负数,则字母m 的取值范围是 ( )A.2>mB.2<mC.2->mD.2-<m4.(2018江苏无锡,13,3分)方程13+=-x x xx 的解是 . 5.(2018广西柳州,22,8分)解方程:212-=x x .6. (2018广西贵港,19(2), 5分)解分式方程:211442-=+-x x .7. (2017湖北随州,18,6分)解分式方程:1132-=+-x x x x .考点二 分式方程的应用1.(2017新疆,8,5分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同.设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是 ( ) A.x x 48040600=- B.x x 48040600=+ C.40480600+=x x D.40480600-=x x 2.(2016广东深圳,9,3分)施工队要铺设一段全长2 000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是 ( ) A.2502000-2000=+x xB.22000-502000=+x xC.2502000-2000=-x xD.22000-502000=-x x 3.(2018湖南衡阳,8,3分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为 ( ) A.105.13630=-x x B.105.13030=-xx C.10305.136=-x x D.105.13630=+x x 4.(2017江苏南通,16,3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做的零件的个数为 .5.(2017辽宁营口,16,3分)某市为绿化环境计划植树2 400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 .6.(2019泰安,22,11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3 000元购进A 、B 两种粽子1 100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍.(1)求A 、B 两种粽子的单价各是多少;(2)若计划用不超过7 000元的资金再次购进A 、B 两种粽子共2 600个,已知A 、B 两种粽子的进价不变.求A 种粽子最多能购进多少个.7.(2017辽宁大连,21,9分)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?8.(2018云南,18,6分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时.乙工程队每小时能完成多少平方米的绿化面积?9.(2017湖北黄冈,18,6分)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12 000元购买的科普类图书的本数与用9 000元购买的文学类图书的本数相等.求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?三年模拟A 组2017-2019年模拟基础题组一、选择题(每小题3分,共12分)1.(2019济宁梁山一模,7)如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A 和B 分别代表的是 ( )A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠02.(2019德州德城一模,10)某人承包1 125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺 ( )A.75平方米B.65平方米C.70平方米D.85平方米3.(2019临沂平邑一模,6)关于x 的方程4332=-+x a ax 的解为1=x ,则=a ( ) A.1 B.3 C.-1 D.-34.(2018济南天桥一模,9)解分式方程1613122-=-++x x x ,分以下四步,其中错误的一步是 ( )A.方程两边分式的最简公分母是)1)(1(+-x xB.方程两边都乘)1)(1(+-x x ),得整式方程6)1(3)1(2=++-x xC.解这个整式方程,得1=xD.原方程的解为1=x二、填空题(每小题3分,共6分) 5.(2019济南天桥一模,17)若代数式26+x 与x4的值相等,则=x . 6.(2019德州德城一模,16)若关于x 的分式方程1317-=+-x m x 有增根,则m 的值为 .三、解答题(共48分)7.(2019淄博博山二模,18)解方程:113=-+xx x .8.(2019济南平阴一模,23)某内陆城市为了落实国家“一带一路”倡议,促进经济发展,增强对外贸易的竞争力,把距离港口420 km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h.求汽车原来的平均速度.9.(2019曹县一模,18)某自动化车间计划生产40个零件,当生产任务完成一半时,停止生产进行自动化程序升级改造,用时20分钟,恢复生产后工作效率比原来提高了31,结果完成任务时比原计划提前了40分钟,求升级改造前每小时生产多少个零件.10. (2018聊城一模,18)解方程:23749392+--=-+x x x x .11. (2018济南高新区二模,23)2017年12月3日至5日,第四届世界互联网大会在浙江省乌镇举行.会议期间,某公司的无人超市,让人们感受到互联网新零售带来的全新体验.小张购买了钥匙扣和毛绒玩具两种商品共15件,离开超市后,收到短信显示,购买钥匙扣支付240元,购买毛绒玩具支付180元.已知毛绒玩具的单价是钥匙扣单价的1.5倍,那么钥匙扣和毛绒玩具的单价各是多少?12.(2018聊城莘县三模,22)李老师家距学校1 900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车去学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.B 组 2017-2019模拟提升题组一、选择题(每小题3分,共9分)1.(2019聊城莘县一模,16)若关于x 的分式方程131=---xx a x 无解,则=a . 2.(2018聊城4月模拟,16)若关于x 的分式方程211=--x m 的解为非负数,则m 的取值范围是 .3.(2017济宁十三中模拟,14)已知A,B 两地相距160 km,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,这辆汽车原来的速度是 km/h.二、解答题(共24分)4.(2019泰安中考样题,23)某商场购进甲、乙两种羽毛球拍,甲种羽毛球拍共用了2 000元,乙种羽毛球拍共用了2 400元,已知乙种羽毛球拍每支进价比甲种羽毛球拍每支进价多8元,且购进的甲、乙两种羽毛球拍支数相同.(1)求甲、乙两种羽毛球拍的每支进价;(2)该商城将购进的甲、乙两种羽毛球拍进行销售,甲种羽毛球拍的销售单价为60元,乙种羽毛球拍的销售单价为88元.销售过程中发现甲种羽毛球拍销量不好,商场决定:甲种羽毛球拍销售一定数量后,将甲种羽毛球拍按原销售单价的七折销售;乙种羽毛球拍销售单价保持不变,要使两种羽毛球拍全部售完共获利不少于2 460元,问甲种羽毛球拍按原销售单价至少销售多少支?5.(2018泰安中考样题,23)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因为天气炎热,空调很快售完,商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?6.(2017潍坊诸城模拟,20)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1 000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工成蒜粉的大蒜数量不少于加工成蒜片的大蒜数量的一半.为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?。