材料的基本物理参数有
材料的参数

材料的参数
材料的参数是指用来描述和衡量材料特性的各种属性和特征。
这些参数通常包括物理、化学、力学、电学等方面的指标,用来评估材料的性能和适用性。
以下是一些常见的材料参数及其描述。
1. 物理参数:
密度:材料的质量与体积的比值,用来衡量材料的重量。
熔点:材料从固态转变为液态的温度,用来判断材料的热稳定性。
导热系数:材料传导热量的能力,是热传导的重要参数。
热膨胀系数:材料在温度变化下长度或体积的变化率。
电导率:材料导电性或导热性的指标。
2. 化学参数:
化学组成:材料的化学成分,影响材料的性质和用途。
氧化还原性:材料与氧气或其他物质的反应能力。
电化学活性:材料在电化学反应中的电子交换能力,如电极材料的活性。
3. 力学参数:
强度:材料抵抗外力破坏的能力。
硬度:材料抵抗划伤或穿刺的能力。
韧性:材料抵抗断裂或变形的能力。
弹性模量:材料在受力时的变形量和应力的比值。
4. 电学参数:
电阻率:材料阻碍电流流动的能力。
介电常数:材料在电场中的相对极化能力。
击穿电压:材料在电场作用下失去绝缘性的电压。
这些参数对于材料的设计、选择和应用非常重要。
不同的材料参数适用于不同的应用领域,例如结构材料、电子材料、化工材料等。
通过对材料参数的认识和理解,可以更好地掌握材料的特性,从而提高材料的使用效果和性能。
建筑材料热物理性能计算参数

建筑材料热物理性能计算参数
建筑材料的热物理性能是指材料在热力学条件下的热传导、热导率、
热膨胀系数、比热容和热阻等性能参数。
这些参数的计算对于建筑材料的
选择、施工设计和能源消耗的评估都具有重要意义。
以下是几个常用的建
筑材料热物理性能计算参数。
1.热传导率:热传导率是材料传导热量的能力,是一个物质对热量传
递的导热性能的描述。
它用λ表示,单位为W/(m·K)。
热传导率的计算
需要考虑材料的组成、密度、热导率等因素。
2.热膨胀系数:热膨胀系数是描述材料热胀冷缩特性的参数,它衡量
了材料在温度变化下的尺寸变化能力。
它用α表示,单位为1/°C。
热
膨胀系数可以通过实验或者理论计算来得到。
3. 比热容:比热容是指单位质量材料温度升高1度所需吸收的热量,也可以理解为材料储存热量的能力。
比热容用C表示,单位为J/(kg·K)。
比热容可以通过实验测量或者计算得到。
4.热阻:热阻描述了材料阻碍热量流动的能力,是材料的导热性能与
厚度的比值。
热阻用R表示,单位为m^2·K/W。
热阻的计算需要考虑材
料的热传导系数和厚度。
以上是几个常用的建筑材料热物理性能计算参数,这些参数的准确计
算对于建筑能源消耗的评估和选择合适的建筑材料具有重要意义。
在研究
和设计中,可以通过实验、理论计算和模拟等方式来获取这些参数的数值。
计算参数的准确性将有助于提高建筑材料的性能,并降低热能损失。
材料的物理参数

-0.98
铂
26
石英
-6.2
水
-0.91
钴
金
-3.6
氮
-0.5
镍
汞
-2.9
钠
0.62
硅钢片
银
-2.6
镁
1.2
纯铁
铅
-1.8
铝
2.2
玻莫合金
锌
-1.4
锂
4.4
CO2
-1.0
钨
6.8
表E.1自由空间的常数
常数
符号
数值
光速
3×108(m/s)
电容率
磁导率
本征阻抗
表E.2电子和质子的物理常数
常数
符号
数值
电子的静止质量
电子的电荷
电子的电荷与质量之比
/
电子的半径
质子的静止质量
表E.3材料的相对电容率(介电常数)
材料
相对电容率
材料
相对电容率
材料
相对电容率
空气
1.0
纸
2~4
瓷
5.7
胶木
5.0
粗石蜡
2.2
橡胶
2.3~4.0
玻璃
4~10
有机玻璃
3.4
土壤(干)
3~4
云母
6.0
聚乙烯
2.3
聚四氟乙烯
2.1
油
2.3
聚苯乙烯
2.6
蒸馏水
80
表E.4材料的电导率
材料
电导率 /(s/m)
材料
电导率 /(s/m)
材料
电导率 /(s/m)
银
黄铜
干土
铜
青铜
材料科学中的物理性能分析

材料科学中的物理性能分析材料科学是一门研究材料结构、性质和制备方法的科学。
而物理性能分析则是材料学中非常重要的一个方面,它可以帮助科学家更好地了解材料的特性,因此对于材料研究和应用具有极大的意义。
材料的物理性能主要包括热学性能、导电性、磁性、光学性能等。
下面我们将分别介绍这些方面的物理性能分析。
一、热学性能分析热学性能是材料中一个非常重要的性能参数,它包括热导率、比热、热膨胀系数等。
其中热导率是材料热传导性能的重要参数之一,它决定了材料是否适用于制造热导管、散热器、加热器等热工设备。
热导率的测量方法包括横向热流法、纵向热流法、加热法等。
比热是固体、液体、气体等物质吸收或释放热时所需要的热量与其温度变化之比,它是材料的另一个重要参数。
测量比热的方法主要有差热分析法、热容热偏差法、放热法等。
热膨胀系数是材料热膨胀的能力,它通常用来描述材料在加热或降温过程中的体积变化程度。
热膨胀系数的测量方法包括悬铂法、差热分析法、干涉仪法等。
二、导电性能分析导电性是材料的另一个关键性质之一,它通常用来描述材料中导电的能力。
材料导电性能的主要因素包括材料中自由电子的浓度、载流子的迁移率等。
材料导电性能的分析方法主要有电阻率测量法、霍尔效应测量法等。
电阻率测量法是一种常见的测量材料导电性的方法,它是通过测量电流流过材料时的电阻,来计算材料的电阻率。
电阻率测量法可以用于测量各种类型的材料导电性。
霍尔效应测量法是一种可以测量半导体中载流子浓度、迁移率和极性的方法。
它基于霍尔效应的原理,而霍尔效应是指电磁场引起空间中电荷移动的现象。
霍尔效应测量法可以用于测量各种类型的材料的导电性。
三、磁性能分析磁性是材料的另一种重要性质。
根据磁性的不同,材料可以分为铁磁性、抗磁性、顺磁性、反铁磁性等类型。
材料磁性能的分析方法主要有振动样品磁强计法、SQUID磁强计法、磁化率测量法等。
振动样品磁强计法是一种测量磁性的方法,它可以通过观察材料在磁场中的振动状态,依据材料在磁性强场下发生的微小位移来测量材料的磁性。
材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的常用力学性能指标有哪些材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能.锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等.(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力.强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD.(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力.塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度.(3)韧性韧性是指金属材料抵抗冲击负荷的能力.韧性常用冲击功Ak和冲击韧性值αk表示.Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化.而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性.表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力.(4)硬度硬度是衡量材料软硬程度的一个性能指标.硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样.最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力.而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小.因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标.力学性能主要包括哪些指标材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征.性能指标包括:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度.钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.金属材料的力学性能指标有哪些一:弹性指标1.正弹性模量2.切变弹性模量3.比例极限4.弹性极限二:强度性能指标1.强度极限2.抗拉强度3.抗弯强度4.抗压强度5.抗剪强度6.抗扭强度7.屈服极限(或者称屈服点)8.屈服强度9.持久强度10.蠕变强度三:硬度性能指标1.洛氏硬度2.维氏硬度3.肖氏硬度四:塑性指标1:伸长率(延伸率)2:断面收缩率五:韧性指标1.冲击韧性2.冲击吸收功3.小能量多次冲击力六:疲劳性能指标1.疲劳极限(或者称疲劳强度) 七:断裂韧度性能指标1.平面应变断裂韧度2.条件断裂韧度衡量钢材力学性能的常用指标有哪钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.1. 屈服强度钢材单向拉伸应力—应变曲线中屈服平台对应的强度称为屈服强度,也称屈服点,是建筑钢材的一个重要力学特征.屈服点是弹性变形的终点,而且在较大变形范围内应力不会增加,形成理想的弹塑性模型.低碳钢和低合金钢都具有明显的屈服平台,而热处理钢材和高碳钢则没有.2. 抗拉强度单向拉伸应力—应变曲线中最高点所对应的强度,称为抗拉强度,它是钢材所能承受的最大应力值.由于钢材屈服后具有较大的残余变形,已超出结构正常使用范畴,因此抗拉强度只能作为结构的安全储备.3. 伸长率伸长率是试件断裂时的永久变形与原标定长度的百分比.伸长率代表钢材断裂前具有的塑性变形能力,这种能力使得结构制造时,钢材即使经受剪切、冲压、弯曲及捶击作用产生局部屈服而无明显破坏.伸长率越大,钢材的塑性和延性越好.屈服强度、抗拉强度、伸长率是钢材的三个重要力学性能指标.钢结构中所有钢材都应满足规范对这三个指标的规定.4. 冷弯性能根据试样厚度,在常温条件下按照规定的弯心直径将试样弯曲180°,其表面无裂纹和分层即为冷弯合格.冷弯性能是一项综合指标,冷弯合格一方面表示钢材的塑性变形能力符合要求,另一方面也表示钢材的冶金质量(颗粒结晶及非金属夹杂等)符合要求.重要结构中需要钢材有良好的冷、热加工工艺性能时,应有冷弯试验合格保证.5. 冲击韧性冲击韧性是钢材抵抗冲击荷载的能力,它用钢材断裂时所吸收的总能量来衡量.单向拉伸试验所表现的钢材性能都是静力性能,韧性则是动力性能.韧性是钢材强度、塑性的综合指标,韧性越低则发生脆性破坏的可能性越大.韧性值受温度影响很大,当温度低于某一值时将急剧下降,因此应根据相应温度提出要求.力学性能指标符号是什么?任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用.如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等.这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力.这种能力就是材料的力学性能.金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标.1.1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力.强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa.工程中常用的强度指标有屈服强度和抗拉强度.屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示.抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示.对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据.1.1.2 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力.工程中常用的塑性指标有伸长率和断面收缩率.伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示.断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示.伸长率和断面收缩率越大,其塑性越好;反之,塑性越差.良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件.1.1.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力.硬度的测试方法很多,生产中常用的硬度测试方法有布氏硬度测试法和洛氏硬度试验方法两种.(一)布氏硬度试验法布氏硬度试验法是用一直径为D的淬火钢球或硬质合金球作为压头,在载荷P的作用下压入被测试金属表面,保持一定时间后卸载,测量金属表面形成的压痕直径d,以压痕的单位面积所承受的平均压力作为被测金属的布氏硬度值.布氏硬度指标有HBS和HBW,前者所用压头为淬火钢球,适用于布氏硬度值低于450的金属材料,如退火钢、正火钢、调质钢及铸铁、有色金属等;后者压头为硬质合金,适用于布氏硬度值为450~650的金属材料,如淬火钢等.布氏硬度测试法,因压痕较大,故不宜测试成品件或薄片金属的硬度.(二)洛氏硬度试验法洛氏硬度试验法是用一锥顶角为120°的金刚石圆锥体或直径为f1.558mm(1/16英寸)的淬火钢球为压头,以一不定的载荷压入被测试金属材料表面,根据压痕深度可直接在洛氏硬度计的指示盘上读出硬度值.常用的洛氏硬度指标有HRA、HRB和HRC三种.采用120°金刚石圆锥体为压头,施加压为600N时,用HRA表示.其测量范围为60~85,适于测量合金、表面硬化钢及较薄零件.采用f1.588mm淬火钢球为压头,施加压力为1000N时,用HRC表示,其测量硬度值范围为25~100,适于测量有色金属、退火和正火钢及锻铁等.采用120°金刚石圆锥体为压头,施加压力为1500N时,用HRC表示,其测量硬度值范围为20~67,适于测量淬火钢、调质钢等.洛氏硬度测试,操作迅速、简便,且压痕小不损伤工件表面,故适于成品检验.硬度是材料的重要力学性能指标.一般材料的硬度越高,其耐磨性越好.材料的强度越高,塑性变形抗力越大,硬度值也越高.1.1.4 冲击韧性金属材料抵抗冲击载荷的能力称为冲击韧性,用ak表示,单位为J/cm2.冲击韧性常用一次摆锤冲击弯曲试验测定,即把被测材料做成标准冲击试样,用摆锤一次冲断,测出冲断试样所消耗的冲击AK,然后用试样缺口处单位截面积F上所消耗的冲击功ak表示冲击韧性.ak值越大,则材料的韧性就越好.ak值低的材料叫做脆性材料,ak值高的材料叫韧性材料.很多零件,如齿轮、连杆等,工作时受到很大的冲击载荷,因此要用ak值高的材料制造.铸铁的ak值很低,灰口铸铁ak值近于零,不能用来制造承受冲击载荷的零件.低碳钢的力学性能指标低碳钢由于含碳量低,它的延展性、韧性和可塑性都是高于铸铁的,拉伸开始时,低碳钢试棒受力大,先发生变形,随着变形的增大,受力逐渐减小,当试棒断开的瞬间,受力为“0”,其受力曲线是呈正弦波>0的形状.铸铁由于轫性差,拉伸开始时,受力是逐步加大的,当达到并超过它的拉伸极限时,试棒断开,受力瞬间为“0”,其受力曲线是随受力时间延长,一条直线向斜上方发展,试棒断开,直线垂直向下归“0”.同样的道理:低碳钢抗压缩的能力比铸铁要低,当对低碳钢试块进行压缩实验时,受力逐渐加大,试块随外力变形,当试块变形达到极限时,其受力也达到最大值,其受力曲线是一条向斜上方的直线.铸铁则不然,开始时与低碳钢受力情况基本相同,只是当铸铁试块受力达到本身的破坏极限时,受力逐渐减小,直到试块在外力下被破坏(裂开),受力为“0”其受力曲线与低碳钢拉伸时的受力曲线相同.以上就是低碳钢和铸铁在拉伸和压缩时力学性质的异同点.简述常用力学性能指标在选材中的意义?钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性.简单的可这样解释:强度,是指材料抵抗变形或断裂的能力.有二种:屈服强度σb、抗拉强度σs.强度指标是衡量结构钢的重要指标,强度越高说明钢材承受的力(也叫载荷)越大;硬度,是指材料表面抵抗硬物压人的能力.常见有三种:布氏硬度HBS、洛氏硬度HRC、维氏硬度HV.硬度是衡量钢材表面变形能力的指标,硬度越高,说明钢的耐磨性越好;即不容易磨损;塑性,是指材料产生变形而不断裂的能力.有两种表示方法:伸长率δ、断面收缩率ψ.塑性是衡量钢材成型能力的指标,塑性越高,说明钢材的延展性越好,即容易拉丝或轧板;韧性也叫冲击韧性,是指材料抵抗冲击变形的能力,表示方法为冲击值αk.冲击韧性是衡量钢材抗冲击能力的指标,数值越高,说明钢材抵抗运动载荷的能力越强.一般情况下,强度低的钢材,硬度也低,塑性和韧性就高,例如钢板、型材,就是由强度较低的钢材生产的;而强度较高的钢材,硬度也高,但塑性和韧性就差,例如生产机械零件的中碳钢、高碳钢,就很少看到轧成板或拉成丝."钢材的主要力学性能指标有哪些(1)拉伸性能反映建筑钢材拉伸性能的指标,包括屈服强度、抗拉强度和伸长率.屈服强度是结构设计中钢材强度的取值依据.抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数.强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料.钢材在受力破坏前可以经受永久变形的性能,称为塑性.在工程应用中,钢材的塑性指标通常用伸长率表示.伸长率是钢材发生断裂时所能承受永久变形的能力.伸长率越大,说明钢材的塑性越大.试件拉断后标距长度的增量与原标距长度之比的百分比即为断后伸长率.对常用的热轧钢筋而言,还有一个最大力总伸长率的指标要求.预应力混凝土用高强度钢筋和钢丝具有硬钢的特点,抗拉强度高,无明显的屈服阶段,伸长率小.由于屈服现象不明显,不能测定屈服点,故常以发生残余变形为0.2%原标距长度时的应力作为屈服强度,称条件屈服强度,用σ0.2表示.(2)冲击性能冲击性能是指钢材抵抗冲击荷载的能力.钢的化学成分及冶炼、加工质量都对冲击性能有明显的影响.除此以外,钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;当降到一定温度范围时,冲击值急剧下降,从而可使钢材出现脆性断裂,这种性质称为钢的冷脆性,这时的温度称为脆性临界温度.脆性临界温度的数值愈低,钢材的低温冲击性能愈好.所以,在负温下使用的结构,应当选用脆性临界温度较使用温度低的钢材.(3)疲劳性能受交变荷载反复作用时,钢材在应力远低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏.疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故.钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高.硬度硬度,物理学专业术语,材料局部抵抗硬物压入其表面的能力称为硬度。
常用塑料材料性能参数

常用塑料材料性能参数1.物理性能参数:-密度:塑料的密度很轻,通常在0.9-1.4克/立方厘米之间,甚至更低。
这使得塑料成为一种轻便且易于加工的材料。
-融点:不同类型的塑料都有不同的融点范围,一般在100-250摄氏度之间。
较低的融点使得塑料更容易加工和成型。
-热导率:塑料的热导率较低,通常为0.1-0.5瓦特/(米-开尔文),这使得塑料具有较好的保温性能。
-热膨胀系数:塑料的热膨胀系数较大,一般在50-200×10^-6/摄氏度之间。
这意味着塑料在受热膨胀时会比其他材料更明显。
2.机械性能参数:-强度:塑料的强度通常较低,但不同类型的塑料具有不同的强度水平。
通常情况下,塑料的强度在10-100兆帕之间。
-弹性模量:塑料的弹性模量也较低,一般在100-4000兆帕之间。
较低的弹性模量使得塑料更容易变形和弯曲。
-韧性:塑料的韧性较好,通常可以在不同的应力条件下具有较好的延展性和抗冲击性能。
-硬度:塑料的硬度范围很广,从非常软的弹性材料到硬度较高的工程塑料都有。
3.热性能参数:-热稳定性:不同类型的塑料具有不同的热稳定性。
一些热塑性塑料在高温下会熔化,而一些热固性塑料则可以在更高温度下保持较好的性能。
-燃烧性:塑料的燃烧性能也有所不同,一些塑料易燃,而另一些则具有较好的阻燃性能。
-热变形温度:塑料的热变形温度是指在一定的负荷作用下,塑料开始变形的温度。
不同的塑料具有不同的热变形温度。
4.化学性能参数:-耐腐蚀性:塑料具有不同程度的耐腐蚀性,不同的塑料对于不同的化学物质有不同的抵抗能力。
-可降解性:一些塑料是可降解的,可以在特定条件下分解成可溶性物质,对环境造成较小的危害。
5.电气性能参数:-绝缘性能:塑料具有较好的绝缘性能,可以用于电气绝缘材料的制造。
-介电常数:塑料的介电常数通常较低,可以在电气应用中减少电能损耗。
-表面电阻率:塑料的表面电阻率通常较高,可以在一定程度上防止静电。
总结起来,常用塑料材料性能参数涵盖了物理性能、机械性能、热性能、化学性能和电气性能等多个方面。
材料的三大参数

剪切弹性模量(elastic shear modulus)G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊松比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
其定义为:G=τ/γ,其中G(M pa)为切变弹性模量;τ为剪切应力(M pa);γ为剪切应变(弧度)。
剪切模量:材料常数,是剪切应力与应变的比值。
又称切变模量或刚性模量。
材料的力学性能指标之一。
是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。
它表征材料抵抗切应变的能力。
模量大,则表示材料的刚性强。
剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。
剪切应力shear stress物体由于外因(载荷、温度变化等)而变形时,在它内部任一截面的两方出现的相互作用力,称为“内力”。
内力的集度,即单位面积上的内力称为“应力”。
应力可分解为垂直于截面的分量,称为“正应力”或“法向应力”;相切于截面的分量称为“剪切应力”。
作用在构件两侧面上的外力的合力是一对大小相等,方向相反,作用线相距很近的横向集中力。
在这样的外力作用下,构件的变形特点是:以两力之间的横截面为分界线,构件的两部分沿该面发生相对错动。
构件的这种变形形式称为剪切,其截面为剪切面。
截面的单位面积上剪力的大小,称为剪应力。
剪切应力的计算:在实用计算中,假设在剪切面上剪切应力是均匀分布的。
若以A表示剪切面面积,则应力是τ 与剪切面相切,故称:切应力剪切应变shear strain剪切时物体所产生的相对形变量。
即指在简单剪切的情况下,材料受到的力F是与截面A0相平行的大小相等、方向相反的两个力,在此剪切力作用下,材料将发生偏斜。
偏斜角θ的正切定义为剪切应变γ:即γ=tanθ。
当剪切应变足够小时,γ=θ,相应地剪切应力为τ=F/A。
杨氏弹性模量杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。
建筑材料物理性能

2.1 建筑材料的基本物理性质建筑材料在建筑物的各个部位的功能不同,均要承受各种不同的作用,因而要求建筑材料必须具有相应的基本性质。
物理性质包括密度、密实性、空隙率、孔隙率(计算材料用量、构件自重、配料计算、确定堆放空间)一、材料的密度、表观密度与堆积密度密度是指物质单位体积的质量。
单位为g/cm3或kg/m3。
由于材料所处的体积状况不同,故有实际密度(密度)、表观密度和堆积密度之分。
(1)实际密度 (True Density)以前称比重、真实密度),简称密度(Density)。
实际密度是指材料在绝对密实状态下,单位体积所具有的质量,按下式计算:式中: ρ-实际密度(g/cm3);m-材料在干燥状态下的质量(g);V-材料在绝对密实状态下的体积(cm3)。
绝对密实状态下的体积是指不包括孔隙在内的体积。
除了钢材、玻璃等少数接近于绝对密实的材料外,绝大多数材料都有一些孔隙,如砖、石材等块状材料。
在测定有孔隙的材料密度时,应把材料磨成细粉以排除其内部孔隙,经干燥至恒重后,用密度瓶(李氏瓶)测定其实际体积,该体积即可视为材料绝对密实状态下的体积。
材料磨得愈细,测定的密度值愈精确。
(2)表观密度 (Apparent Density)以前称容重、有的也称毛体积密度。
表观密度是指材料在自然状态下,单位体积所具有的质量,按下式计算:式中: ρ0-表观密度(g/cm3或kg/m3);m-材料的质量(g或kg);V0-材料在自然状态下的体积,或称表观体积(cm3或m3)。
材料在自然状态下的体积是指材料的实体积与材料内所含全部孔隙体积之和。
对于外形规则的材料,其测定很简便,只要测得材料的重量和体积,即可算得表观密度。
不规则材料的体积要采用排水法求得,但材料表面应预先涂上蜡,以防水分渗人材料内部而影响测定值。
(3)堆积密度 (Bulk Density)散粒材料在自然堆积状态下单位体积的重量称为堆积密度。
可用下式表示:式中: ρ0'-堆积密度(kg/m3);m-材料的质量(kg);V0'-材料的堆积体积(m3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料的基本物理参数有
材料的基本物理参数是指描述材料性质和行为的一些基本物理量。
这些参数可以用来研究材料的力学特性、热学特性、电学特性等。
下面将介绍一些常见的材料基本物理参数。
1. 密度:材料的密度是指单位体积的质量,通常用公式ρ = m/V 表示,其中 m 是材料的质量,V 是材料的体积。
密度是一个重要的物理参数,可以用来研究材料的质量和体积之间的关系,也可以用来研究材料的浮力和沉降等现象。
2. 弹性模量:材料的弹性模量描述了材料在受力时的变形和恢复能力。
弹性模量通常用符号 E 表示,是一个表示材料刚性和柔软程度的物理量。
不同材料具有不同的弹性模量,例如,金属材料通常具有较高的弹性模量,而橡胶材料具有较低的弹性模量。
3. 热膨胀系数:材料的热膨胀系数描述了材料在温度变化时的线膨胀程度。
热膨胀系数通常用符号α 表示,是一个表示材料热膨胀性质的物理量。
热膨胀系数可以用来研究材料在温度变化时的尺寸变化和应力分布。
4. 热导率:材料的热导率描述了材料传导热量的能力。
热导率通常用符号λ 表示,是一个表示材料导热性质的物理量。
热导率可以用来研究材料的热传导过程和热传导速度。
5. 电导率:材料的电导率描述了材料导电的能力。
电导率通常用符号σ 表示,是一个表示材料导电性质的物理量。
不同材料具有不同的电导率,可以用来研究材料的导电性质和电导过程。
6. 磁导率:材料的磁导率描述了材料对磁场的响应能力。
磁导率通常用符号μ 表示,是一个表示材料磁性质的物理量。
磁导率可以用来研究材料的磁场分布和磁场强度。
7. 光折射率:材料的光折射率描述了材料对光的折射能力。
光折射率通常用符号 n 表示,是一个表示材料光学性质的物理量。
光折射率可以用来研究材料的光传播和光折射过程。
材料的基本物理参数对于研究材料的性质和行为非常重要。
通过研究材料的基本物理参数,可以深入了解材料的力学特性、热学特性、电学特性等,为材料的应用提供科学依据。
同时,对于材料工程和材料科学的研究和应用也具有重要意义。