高中数学-算法与程序框图、基本算法语句分层练习

合集下载

算法与程序框图-习题(含答案)

算法与程序框图-习题(含答案)

算法与程序框图-习题(含答案)算法与程序框图习题(含答案)一、单选题1.执行如图所示的程序框图输出的结果是()A.8 B.6 C.5 D.32.已知某程序框图如图所示,则执行该程序后输出的结果是A.−1 B.12C . 1D . 23.下图是把二进制的数11111(2)化成十进制数的一个程序框图,则判断框内应填入的条件是( )A . i >4B . i ≤5C . i ≤4D . i >54.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首待:“我有一壶酒,携着游春走,遇店添一倍,逢有饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x =0,问一开始输入的x =( )A . 3132B . 1516C . 78D . 34 5.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙 子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位用纵式表示,十位,千位,十万位用横式表示,以此类推,例如2268用算筹表示就是=||丄|||.执行如图所示程序框图,若输人的x=1, y = 2,则输出的S用算筹表示为A. B. C.D.6.在ΔOAB中,∠AOB=120o,OA=OB= 2√3,边AB的四等分点分别为A1,A2,A3,A1靠近A,执行下图算法后结果为()A. 6 B. 7 C. 8 D. 97.宋元时期名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长五尺,若输入的a,b分别是5,2,则输出的n=()A.2 B.3 C.4 D.58.如图所示的程序框图,输出的S=A. 18 B. 41C. 88 D. 1839.执行图1所示的程序框图,则S的值为()图1A . 16B . 32C . 64D . 128二、填空题10.我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x ,y ,z ,则鸡翁、鸡母、鸡雏的数量即为方程组{5x +3y +z 3=100,x +y +z =100的解.其解题过程可用框图表示如下图所示,则框图中正整数m 的值为 ______.11.运行如图所示的程序,若输入的是−2018,则输出的值是__________.12.下图给出的伪代码运行结果x是_________ .13.如图是一个算法的流程图,则输出的n的值是________.14.执行如图所示的程序框图,输出的值为____________.15.如图所示是一算法的伪代码,执行此算法时,输出的结果是.16.执行如图所示的程序框图,若输出的a值大于 2 015,那么判断框内的条件应为________.17.如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a,b分别为98、63,则输出的a=_______.18.执行如图所示的程序框图,若M=1,则输出的S =__________;若输出的S =14,则整数M = __________.三、解答题19.编写一个程序,求满足1+12+13+⋅⋅⋅+1n >10的n 的最小值.20.在空间直角坐标系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1).(1)求|AB|的长度; (2)写出A 、B两点经此程序框图执行运算后的开始↓↓结束对应点A 0,B 0的坐标,并求出在方向上的投影.21.按右图所示的程序框图操作:(Ⅰ)写出输出的数所组成的数集.(Ⅱ)如何变更A 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}n 2的前7项?(Ⅲ)如何变更B 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}2n 3-的前7项?22.已知函数y =21,1{1,1 1 33,1x x x x x x -<-+-≤≤>,编写一个程序求函数值.23.在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含 5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客OA 0OB购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.24.图C1­6所示的程序框图表示了一个什么样的算法?试用当型循环写出它的算法并画出相应的程序框图.25.25.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.26.函数y={−x +1, x >0,0,x =0,x +1,x <0,试写出给定自变量x,求函数值y 的算法. 27.求函数()()222y={22x x x x -≥-<的值的程序框图如图所示.(1)指出程序框图中的错误,并写出算法;(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.①要使输出的值为正数,输入的x的值应满足什么条件?②要使输出的值为8,输入的x值应是多少?③要使输出的y值最小,输入的x值应是多少?参考答案1.A【解析】【分析】根据程序框图循环结构运算,依次代入求解即可。

2017-2018学年高中数学必修三(人教B版)练习:1.1算法与程序框图1.1.1 Word版含解析

2017-2018学年高中数学必修三(人教B版)练习:1.1算法与程序框图1.1.1 Word版含解析

第一章 1.1 1.1.1A级基础巩固一、选择题1.下列语句中是算法的是导学号95064017(A)A.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1B.吃饭C.做饭D.写作业[解析]选项A是解一元一次方程的具体步骤,故它是算法,而B、C、D是说的三个事实,不是算法.2.计算下列各式中的S值,能设计算法求解的是导学号95064018(B)①S=1+2+3+ (100)②S=1+2+3+…+100+…;③S=1+2+3+…+n(n≥1,且n∈N).A.①②B.①③C.②D.②③[解析]由算法的确定性、有限性知选B.3.早上从起床到出门需要洗脸、刷牙(5 min),刷水壶(2 min),烧水(8 min),泡面(3 min),吃饭(10 min),听广播(8 min)几个过程,下列选项中最好的一种算法是导学号95064019 (C)A.第一步,洗脸刷牙;第二步,刷水壶;第三步,烧水;第四步,泡面;第五步,吃饭;第六步,听广播B.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭;第五步,听广播C.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭同时听广播D.第一步,吃饭同时听广播;第二步,泡面;第三步,烧水同时洗脸刷牙;第四步,刷水壶[解析]因为A选项共用时36 min,B选项共有时31 min,C选项共用时23 min,选项D的算法步骤不符合常理,所以最好的一种算法为C选项.4.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2,在写求此方程组解的算法时,需要我们注意的是导学号 95064020( C )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠0[解析] 由二元一次方程组的公式算法即知C 正确. 5.下面是对高斯消去法的理解: ①它是解方程的一种方法; ②它只能用来解二元一次方程组; ③它可以用来解多元一次方程组;④用它来解方程组时,有些方程组的答案可能不准确. 其中正确的是导学号 95064021( A ) A .①② B .②④ C .①③D .②③[解析] 高斯消去法是只能用来解二元一次方程组的一种方法,故①②正确. 6.一个算法步骤如下: S1 S 取值0,i 取值2;S2 如果i ≤10,则执行S3,否则执行S6; S3 计算S +i 并将结果代替S ; S4 用i +2的值代替; S5 转去执行S2; S6 输出S .运行以上步骤输出的结果为导学号 95064022( B ) A .25 B .30 C .35D .40[解析] 按算法步骤一步一步地循环计算替换,该算法作用为求和S =2+4+6+8+10=30.二、填空题7.已知直角三角形两条直角边长分别为a 、b ,求斜边长c 的算法如下:导学号 95064023S1 输入两直角边长a 、b 的值. S2 计算c =a 2+b 2的值;S3____________.将算法补充完整,横线处应填__输出斜边长c的值__.[解析]算法要有输出,故S3应为输出c的值.8.一个算法步骤如下:导学号95064024S1S取值0,i取值1;S2如果i≤12,则执行S3,否则执行S6;S3计算S+i并将结果代替S;S4用i+3的值代替i;S5转去执行S2;S6输出S.运行以上步骤输出的结果为S=__22__.[解析]由以上算法可知:S=1+4+7+10=22.三、解答题9.某年青歌赛流行唱法个人组决赛中,某歌手以99.19分夺得金奖.青歌赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.导学号95064025[解析]S1先假定其中一个为“最高分”;S2将第二个分数与“最高分”比较,如果它比“最高分”还高,就假定这个分数为“最高分”;否则“最高分”不变;S3如果还有其他分数,重复S2;S4一直到没有可比的分数为止,这时假定的“最高分”就是所有评委打分中的最高分.10.一个人带三只狼和三只羚羊过河,只有一条船,同船最多可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.导学号95064026[解析]算法如下:S1人带两只狼过河;S2人自己返回;S3人带一只羚羊过河;S4人带两只狼返回;S5人带两只羚羊过河;S6人自己返回;S7人带两只狼过河;S8人自己返回;S9人带一只狼过河.B级素养提升一、选择题1.算法:S1输入n;S2判断n是否是2.若n=2,则n满足条件;若n>2,则执行S3;S3依次从2到n-1检验能不能整除n,若不能整除n,则满足条件.上述满足条件的数是导学号95064027(A)A.质数B.奇数C.偶数D.4的倍数[解析]根据算法可知,如果n=2直接就是满足条件的数.n不是2时,验证从2到n -1有没有n的因数,如果没有就满足条件.显然,满足这个算法中条件的数是质数.故选A.2.现用若干张扑克牌进行扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是导学号95064028(B)A.4 B.5C.6 D.8[解析]按各放3张,可以算出答案是5,各放x张答案也是一样的.二、填空题3.下面算法运行后输出结果为__720__.导学号95064029S1设i=1,P=1;S2如果i≤6则执行S3,否则执行S5;S3计算P×i,并将结果代替P的值;S4用i+1的值代替i的值,转去执行S2;S5输出P.[解析]该算法包含一个循环结构,计数变量i的初值为1,每次循环它的值增加1.由1变到6.P 是一个累乘变量,每一次循环得到一个新的结果,并用新的结果替代原值. 第一次循环i =1,P =1.第二次循环i =2,P =2.第三次循环i =3,P =6.第四次循环i =4,P =24.第五次循环i =5,P =120.第六次循环i =6,P =720.4.下面是解决一个问题的算法:导学号 95064030 S1 输入x ;S2 若x ≥4,转到S3;否则转到S4; S3 输出2x -1; S4 输出x 2-2x +3.当输入x 的值为__1__输出的数值最小值为__2__.[解析] 所给算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥4)x 2-2x +3 (x <4)的函数值的问题当x ≥4时,f (x )=2x -1≥2×4-1=7;当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2.所以f (x )min =2,此时x =1.即当输入x 的值为1时,输出的数值最小,且最小值是2.三、解答题5.设计一个算法,求表面积为16π的球的体积. 导学号 95064031 [解析] S1 取S =16π; S2 计算R =S4π(由于S =4πR 2); S3 计算V =43πR 3;S4 输出运算结果.6.设火车托运行李,当行李重量为m (kg)时,每千米的费用(单位:元)标准为y =⎩⎪⎨⎪⎧0.3m (m ≤30 kg )0.3×30+0.5(m -30)(m >30 kg ),试写出当托运路程为S 千米时计算运费的算法.导学号 95064032[解析] 算法如下: S1 输入m ;S2 若m ≤30,则执行S3,若m >30,则执行S4; S3 输出0.3m ×S ;S4 输出[0.3×30+0.5(m -30)]×S .C 级 能力拔高1.已知函数y =⎩⎪⎨⎪⎧2x-1(x ≤-1)log 2(x +1)(-1<x <2)x 2(x ≥2),请设计一个算法,输入x 的值,求对应的函数值.导学号95064033[解析]算法如下:S1输入x的值;S2当x≤-1时,计算y=2x-1,否则执行S3;S3当x<2时,计算y=log2(x+1),否则执行S4;S4计算y=x2;S5输出y.2.试描述判断圆(x-x0)2+(y-y0)2=r2和直线Ax+By+C=0的位置关系的算法.导学号95064034[解析]S1输入圆心的坐标(x0,y0),直线方程的系数A,B,C和半径r;S2计算z1=Ax0+By0+C;S3计算z2=A2+B2;S4计算d=|z1|z2;S5如果d>r,则相离;如果d=r,则相切;如果d<r,则相交.。

高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析1.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】A【解析】条件成立,第一次执行循环体,条件成立,第二次执行循环体条件成立,第三次执行循环体;条件不成立,退出循环,输出.【考点】程序框图的识别和应用.2.若某程序图如图所示,则该程序运行后输出的k的值是()A.4B.5C.6D.7【答案】B【解析】第一次执行循环体,.第二次执行循环体,,.第三次执行循环体,【考点】理解程序框图的逻辑结构.3.如下图所示程序框图,已知集合是程序框图中输出的值},集合是程序框图中输出的值},全集U=Z,Z为整数集,当时,等于( )A.B.{-3. -1,5,7}C.{-3, -1,7}D.{-3, -1,7,9}【答案】D.【解析】依次执行程序框图中的语句:,;,;,;,;,;,;,;∴,,∴.【考点】读程序框图.4.在如图所示的程序框图中,输入A=192,B=22,则输出的结果是( ).A.0B.2C.4D.6【答案】B.【解析】本题要注意的是C是A除以B所得的余数,按程序框图可知有如下过程:原来:,第一次:C=16,A=22,B=16;第二次:C=6,A=16,B=6;第三次:C=4,A=6,B=4;第四次:C=2,A=4,B=2;第五次:C=0,A=2,B=0,此时B=0,则输出A=2,故选B.【考点】读懂程序框图的流程,赋值语句(如A=B,是把B的值赋值给A).5.如果执行右边的程序框图,那么输出的()A.22B.46C.94D.190【答案】C【解析】.运行第1次,=1,=1,=2,=4,=2>5,否,循环;运行第2次,=3,=10,=3>5,否,循环;运行第3次,=4,=22,=4>5,否,循环;运行第4次,=5,=46,=5>5,否,循环;运行第5次,=6,=94,=6>5,是,输出S=94,故选C【考点】程序框图6.按右边程序框图运算:若,则运算进行几次才停止?A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,第五次循环。

高一数学算法和程序框图试题

高一数学算法和程序框图试题

高一数学算法和程序框图试题1.执行如图所示的程序框图,若输入,则输出的值为_________.【答案】3.【解析】输入时,判定框的条件不成立,因此.【考点】程序框图的应用.2.如图,该程序运行后的输出结果为()A.B.C.D.【答案】B【解析】第一次运行结果:;第二次运行结果:;第三次运行结果:;此时,条件不满足,跳出循环,输出的值为,故选择B,注意多次给一个量赋值以最后一次的赋值为准.【考点】程序框图中的循环结构.3.执行如图所示的程序框图,若输入的值为3,则输出的值是()A.1B.2C.4D.7【答案】C【解析】当i=1时,S=1+1-1=1;当i=2时,S=1+2-1=2;当i=3时,S=2+3-1=4;当i=4时,退出循环,输出S=4;故选C.【考点】程序框图.4.某程序框图如图所示,若输入,则该程序运行后输出的值分别是()A.B.C.D.【答案】A【解析】由框图的流程得:输入,,故输出【考点】算法和程序框图5.(12分)(1)已知函数,编写程序求函数值(只写程序)(2)画出程序框图:求和:(只画程序框图,循环体不对不得分)【答案】(1)程序详见试题解析;(2)详见试题解析.【解析】本题考查算法语句及算法框图,重点是循环结构的运用.(1)INPUT xIF x<0 THENy=2*x+1ELSEIF x<="1" THENy=x^3ELSEy=SQR(x)END IFEND IFPRINT yEND -----6分(2)程序框图略,循环体不对不得分 -----12分【考点】算法语句、算法框图.6.给出30个数:1,2,4,7,……,其规律是:第1个数是1,第2个数比第1个数大1, 第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示)(I)请在图中判断框内(1)处和执行框中的(2)处填上合适的语句,使之能完成该题算法功能;(II)根据程序框图写出程序.【答案】(I)(1)处应填i≤30;(2)处应填p=p+i.(II)略(参考解析)【解析】(I)判断语句的应用及当型循环程序的应用.(1)是控制循环的次数根据题意应该是30次.(2)中是要求30个数的累加和.(II)当型循环的程序的编写.按照格式编写.这是一个典型的求和程序的编写,要牢记.试题解析:(I)该算法使用了当型循环结构,因为是求30个数的和,故循环体应执行30次,其中i是计数变量,因此判断框内的条件就是限制计数变量i的,故应为i≤30.算法中的变量p实质是表示参与求和的各个数,由于它也是变化的,且满足第i个数比其前一个数大i-1,第i+1比其前一个数大i故应有p=p+i.故(1)处应填i≤30;(2)处应填p=p+i.(II)根据程序框图写出程序i=1p=1s=0WHILE i<=30s=s+pp=p+ii=i+1WENDPRINT s【考点】1.判断框的设置.2.当型循环程序的编写.7.运行如图所示的程序框图,则输出S的值为()A.-2B.3C.4D.8【答案】A【解析】根据题意,由于起始量为n=1,s=1那么满足条件,可知s=0,n=2;依次得到s=2,n=3;s=-1,n=4;s=3,n=5;s=-2,n=6,此时终止循环得到s的值为-2,故答案为A【考点】程序框图点评:主要是考查了程序框图的运用,属于基础题。

高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析1.如图是求样本平均数的程序框图,图中空白框中应填入的内容为()A.B.C.S=S+n D.S=S+【答案】A【解析】由于,故第次循环为.【考点】程序框图的应用.2.下图为某算法的程序框图,则程序运行后输出的结果是()A.2B.1C.3D.4【答案】C【解析】这里外是一个循环结构,一共循环了次,而内部是一个选择结构,根据条件确定的值是还是,然后把的值加给,次循环结束后,输出的值,便是正确答案,结果选择C.只要读懂题意,然后把人设想成计算机,按步骤逐步操作,最后就能得到正确答案.【考点】算法中的程序框图和循环结构与选择结构的嵌套.3.如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ).A.c>x?B.x>c?C.c>b?D.b>c?【答案】A.【解析】本题是寻找三个数中最大的数,在令a为x后,判断x与b的大小,因此第二个判断框里要判断的是x与c的大小,由于此时判断“是”时,c赋值为x,最后输出x,所以要填的是“c>x?”.【考点】程序框图的理解与应用,填写判断框处的语句是常考的一个考点.4.按右边程序框图运算:若,则运算进行几次才停止?A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,第五次循环。

【考点】直到型循环程序框图。

5.执行如图所示的程序框图,如果输入,那么输出的a值为()A.B.C.D.【答案】C【解析】根据程序框图的描述,是求使成立的最小a值,故选C.【考点】程序框图.6.执行下图的程序框图,若输入的x=2,则输出的y的值为【答案】23【解析】根据题意,本程序框图为求y的和循环体为“直到型”循环结构,输入x=2,第一次循环:y=2×2+1=5,x=5;第二次循环:y=2×5+1=11,x=11;第三次循环:y=2×11+1=23,∵|x-y|=12>8,∴结束循环,输出y=23.故答案为:23.【考点】本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题.7.若某程序框图如图所示,则输出的p的值是 ()A.30B.28C.21D.55【答案】A【解析】根据框图的循环结构,依次;;。

高二数学算法和程序框图试题

高二数学算法和程序框图试题

高二数学算法和程序框图试题1.执行如图所示的程序框图,若输出,则框图中①处可以填入()A.B.C.D.【答案】C【解析】程序在运行过程中各变量的值如下表示:是否继续循环 S n循环前/0 1第一次是 1 2第二次是 3 4第三次是 7 8第四次是 15 16,因为输出:S=15.所以判断框内可填写“n>8”,故选:B.【考点】程序框图.2.已知某程序框图如图所示,则执行该程序后输出的结果是().A.B.C.2D.1【答案】A【解析】由程序框图得:,即输出的值具有周期性,最小正周期为3,且,所以输出的值为.【考点】程序框图.3.给出如图的程序框图,则输出的数值是().A.B.C.D.【答案】A【解析】该程序框图的功能是计算的值;因为所以输出的数值是.【考点】程序框图、裂项抵消法求和.4.执行如图的程序框图,输出S的值为( ).A.1B.2C.3D.4【答案】B【解析】该程序框图的功能是计算的值,故选B.【考点】程序框图.5.执行如图的程序框图,若输出的,则输入整数的最大值是()A.15B.14C.7D.6【答案】A【解析】初始值:成立,运行第一次成立,运行第二次成立,运行第三次成立,运行第四次不成立,循环终止,输出输入整数的最大值是15.故选A.【考点】循环结构.6.如图是向量运算的知识结构图,如果要加入“向量共线的充要条件”,则应该是在____的下位.【答案】数乘.【解析】知识结构图的作用是用图形直观地再现出知识之间的关联,由于向量共线的充要条件是向量数乘中的一种,故在知识结构图中,向量共线的充要条件应该放在数乘的下位.【考点】结构图.7.按流程图的程序计算,若开始输入的值为=2,则输出的的值是()A.3B.6C.21D.156【答案】C【解析】第一次运行,计算,不成立,往否的方向进行;第二次运行,计算,不成立,往否的方向进行;第三次运行,计算,不成立,往否的方向进行;第四次运行,计算,成立,往是的方向进行;输出。

高中数学算法与框图练习题练习题(含解析)

高中数学算法与框图练习题练习题(含解析)
又由不等式 时,根据程序框图,可得 ,
所以输出的 的最大值为 .
故选:D.
8.C
【分析】根据程序流程图,代入 ,计算出结果即可.
【详解】① , , , ,此时 ;
② , , ,此时 ;
③ , , ,此时 ;
④ , , ,此时 ;
⑤ , , ,此时 ;
⑥ , , ,此时 ,
结束程序,输出结果为44,
故选:C
第四步:判断 是否成立?若是,则 之间的任意值均为满足条件的近似根;若不是,则返回第二步.
【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用.
【详解】(1) ,所以98的二进制数是 .
(2) , ,所以 与 的最大公约数为 .
(3) .
【点睛】本题考查二进制,辗转相除法,秦九昭算法等知识,属于基础题.
16.见解析
【分析】根据题目中的条件,找出各要素之间的关系,校长只负责两名副校长和校长办公室,所以校长下只有两名副校长和校长办公室,依次类推,两名副校长又各自管理教务处、教科室和保卫科、政教处、总务处;班级由所有的科室负责.
A.35B.56C.84D.120
二、填空题
11.运行如图所示的伪代码,输出的T的值为________.
12.用秦九韶算法求函数 ,当 时的值时, ___________.
13.执行如图所示的程序框图,若输1455的最大公约数为 ,则 化为三进制为__________.
根据程序框图可知,输出的 ,
又 , , , , , ,
所以 .
故选:B.
11.16
【分析】模拟程序的运行过程,即可得出程序运行后的输出结果.
【详解】当 时, ;
当 时, ;
当 时, ;

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-算法与程序框图、基本算法语句分层练习一、选择题(每小题5分,共25分)1.执行如图所示的程序框图.若输出y=-,则输入角θ=( )A. B.- C. D.-【解析】选D.当θ=时,y=sin=;当θ=-时,y=sin=-;当θ=时,y=tan=;当θ=-时,y=tan=-.2.(·山东高考)执行如图的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为( )A.x>3B.x>4C.x≤4D.x≤5【解析】选B.输入x为4,要想输出y为2,则程序经过y=log24=2,故判断框填x>4.3.根据下列程序语句,当输入x为60时,输出y的值为 ( )A.25B.30C.31D.61【解析】选C.该语句可转化为分段函数求函数值的问题,y=当x=60时,y=25+0.6×(60-50)=31.4.(·天津高考)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为 ( )A.0B.1C.2D.3【解析】选C.阅读程序框图可得,程序执行过程如下:首先初始化数值为N=19,第一次循环:N=N-1=18,不满足N≤3;第二次循环:N==6,不满足N≤3;第三次循环:N==2,满足N≤3;此时跳出循环体,输出N=2.【变式备选】(2016·天津高考)阅读如图所示的程序框图,运行相应的程序,则输出S的值为( )A.2B.4C.6D.8【解析】选B. 第一次:S=8,n=2,第二次:S=2,n=3,第三次:S=4,n=4,满足n>3,输出S=4.5.执行如图所示的程序框图,则输出的λ是( )A.-4B.-2C.0D.-2或0【解析】选B.依题意,若λa+b与b垂直,则有(λa+b)·b=4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa+b与b平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图,输出的λ是-2.二、填空题(每小题5分,共15分)6.运行如图所示的程序,若输出y的值为1,则可输入x的个数为________.【解析】模拟程序运行,可得程序的功能是求y=的值,故x≤0时,1=2x,解得x=0,x>0时,1=-x3+3x,x>0时函数f(x)=x3-3x+1的图象与x轴有2个交点,即有2个零点, 综上可得可输入x的个数为3.答案:37.(·宁德模拟)如图是一个程序框图,则输出的k的值是________.【解析】根据程序框图可知,k=1时,12-1×6+5≤0;k=2时,22-2×6+5≤0;k=3时,32-3×6+5≤0;k=4时,42-4×6+5≤0;k=5时,52-5×6+5≤0;k=6时,62-6×6+5>0,故输出的k的值是6.答案:6【一题多解】本题还可以采用如下解法:只需求出不满足k2-6k+5≤0的最小正整数k就行,显然是6.答案:68.阅读如图的程序框图,若输出的y=,则输入的x的值为________.【解析】由程序框图可知是计算分段函数y=的值,当x≤2时,由y=sin=,可得x=+2kπ或x=+2kπ,k∈Z,解得x=1+12k或x=5+12k,k∈Z,此时x的值为1.当x>2时,由y=2x=,解得x=-1(舍去).综上知,输入的x的值为1.答案:1三、解答题(每小题10分,共20分)9.如图所示,运行该程序框图相应的程序,试求输出的x的值.导学号12560765【解析】当x=1时,执行x=x+1后x=2;当x=2时,执行x=x+2后x=4,再执行x=x+1后x=5;当x=5时,执行x=x+1后x=6;当x=6时,执行x=x+2后x=8,再执行x=x+1后x=9;当x=9时,执行x=x+1后x=10;当x=10时,执行x=x+2后x=12,此时12>8,因此输出的x的值为12.10.设计程序框图,求××××…×的值.【解析】程序框图如图所示.1.(5分)执行如图所示的程序框图,若输入的n=5,则输出的结果为( )A.4B.5C.6D.7【解析】选B.由程序框图得,n=5,i=1;n=3×5+1=16,i=2;n==8,i=3;n==4,i=4;n==2,i=5;n=1,结束循环,输出i值,即i=5.2.(5分)运行程序,输入n=4,则输出y的值是 ( )A. B.C. D.【解析】选C.模拟程序的运行,可得程序框图的功能是计算并输出y=的值,由n=4,可得y=sin=sin cos +cos sin =.【变式备选】程序框图如图所示,其输出结果是,则判断框中所填的条件是( )A.n≥5?B.n≥6?C.n≥7?D.n≥8?【解析】选B.由题意可知,第一次运行后S=,n=2;第二次运行后S=,n=3;第三次运行后S=,n=4;第四次运行后S=,n=5;第五次运行后S=,n=6;此时停止运算,故判断框内应填n≥6?.3.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n= ( )A.4B.5C.2D.3【解析】选A.第一次循环,得S=2,S≥10?否;第二次循环,得n=2,a=,A=2,S=,S≥10?否;第三次循环,得n=3,a=,A=4,S=,S≥10?否;第四次循环,得n=4,a=,A=8,S=>10,是,所以输出的n=4.4.(12分)如图所示,程序框图输出的各数组成数列{a n}.(1)求{a n}的通项公式及前n项和S n.(2)已知{b n}是等差数列,且b1=a2,b3=a1+a2+a3,求数列{a n·b n}的前n项和T n.【解析】(1)由程序框图知a n=3a n-1,{a n}是a1=3,q=3的等比数列,所以a n=3n,S n==.(2)因为所以d=15,所以b n=15n-6,a n·b n=(15n-6)·3n,所以T n=9×31+24×32+39×33+…+(15n-6)×3n,3T n=9×32+24×33+39×34+…+(15n-21)×3n+(15n-6)×3n+1,两式相减得-2T n=9×3+15×32+15×33+…+15×3n-(15n-6)×3n+1=27+15×-(15n-6)×3n+1=27+15×-(15n-6)×3n+1=27+(3n+1-32)-(15n-6)×3n+1所以-4T n=54+15×3n+1-15×9-(30n-12)×3n+1=-81-(30n-27)×3n+1所以T n=.【变式备选】运行如图所示的程序,如果输入的n是2 016,那么输出的S的值是多少.【解析】模拟程序的运行过程知,该程序运行后输出的是算式S=1×2+2×22+3×23+…+2 016×22 016①, 所以2S=1×22+2×23+3×24+…+2 016×22 017②;②-①得,S=-2-22-23-…-22 016+2 016×22 017=-+2 016×22 017=2+2 015×22 017.所以输出的S是2+2 015×22 017.5.(13分)对任意函数f(x),x∈D,可按如图构造一个数列发生器产生数列{x n}.(1)若定义函数f(x)=,且输入x0=,请利用数列发生器写出数列{x n}的所有项.(2)若定义函数f(x)=2x+3,且输入x0=-1,请利用数列发生器求数列{x n}的通项公式.【解题指南】(1)函数f(x)=的定义域D=(-∞,-1)∪(-1,+∞),由此能推导出数列{x n}只有三项x1=,x2=,x3=-1.(2)f(x)=2x+3的定义域为R,若x0=-1,则x1=1,则x n+1+3=2(x n+3),从而得到数列{x n+3}是首项为4,公比为2的等比数列,由此能求出数列{x n}的通项公式.【解析】(1)函数f(x)=的定义域D=(-∞,-1)∪(-1,+∞),把x0=代入可得x1=,把x1=代入可得x2=,把x2=代入可得x3=-1,因为x3=-1∉D,所以数列{x n}只有三项,x1=,x2=,x3=-1.(2)f(x)=2x+3的定义域为R,若x0=-1,则x1=1,则x n+1=f(x n)=2x n+3,所以x n+1+3=2(x n+3),所以数列{x n+3}是首项为4,公比为2的等比数列,所以x n+3=4·2n-1=2n+1,所以x n=2n+1-3,即数列{x n}的通项公式x n=2n+1-3.。

相关文档
最新文档