第五章线性系统的根轨迹法5.1根轨迹的基本概念5.2根轨迹

合集下载

自动控制原理第5章根轨迹分析法

自动控制原理第5章根轨迹分析法

04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。

根轨迹的概念和系统分析

根轨迹的概念和系统分析


此时,系统的闭环极点与开环零点相同(重合),
我们把开环零点称为根轨迹的终点,它对应于
开环根轨迹K增r益

下面分三种情况讨沦。
1.当m=n时,即开环零点数与极点数相同时, 根轨迹的起点与终点均有确定的值。
2.当m<n时,即开环零点数小于开环极点 数时,除有m条根轨迹终止于开环零点(称为 有限零点)外,还有n-m条根轨迹终止于无穷 远点(称为无限零点)。如例6-1。
允许范围
动态性能
0 当
Kr
1
时,所有闭环极点均位于实轴上,
系过K程统r 。为1 当过阻尼系统,其单位阶跃 时,特征方程的两个相等
响 负
应 实
为 根
单 ,
调 系
上 统
升 为

K

非周 r界阻1
期 尼
系 时
统 ,
,特单征位方阶程跃为响一应对为共响轭应复速根度,最系快统的为非欠周阻K期r尼过系程统。,当单
通常系统的开环零、极点是已知的,因此建
立开环零、极点与闭环零、极点之间的关系,有助
于闭环系统根轨迹的绘制,并由此引导出根轨迹方
程。设控制系统如(s)图6-2所G示(s,) 闭环传递函数为
1 G(s)H(s)
(6-1)
R(s)
C(s) G(s)
H(s)
-图6-2 控制系
前向通路传递函数G(s)和反馈通路传递函数 H(s)可分别表示
益 当 方
程根的复变量S在平面上的变化也是连续的,
因此,根轨迹是n条连续的曲线。
由于实际的物理系统的参数都是实数,如 果特征方程有复数根,一定是对称于实轴的 共轭复根,因此,根轨迹总是对称于实轴的。

自动控制第五章根轨迹法

自动控制第五章根轨迹法

15
绘制根轨迹的规则
【例5-2】已知负反馈系统的开环传递函数为:
解:(1)根轨迹的分支数和对称性 开环极点分别为: 系统的根轨迹有三条分支 (2)根轨迹的起点与终点 起始于系统的三个开环极点,并趋向于无穷远处
K1 Kb
j Kc
K1

(3)根轨迹的渐近线
Kc K1
16
绘制根轨迹的规则
闭环特征根s1,s2 随着K1值得 改变而变化。
(1) K1= 0:s1 = 0,s2 = 2,是根轨迹的起点,用“”表示。 j K1 (2) 0 < K1<1 :s1 ,s2 均是负实数。 K1 s1 ,s2 。 s1从坐标原点开 始沿负实轴向左移动; s2从(2, K1= 0 K1= 0 K1=1 j0)点开始沿负实轴向右移动。 1 0 2 (3) K1= 1: s1 = s2 = 1,重根。
+

K s(0.5s+1)
C(s)
式中,K为系统的开环比例系数。 K1 = 2K 称为系统的开环 根轨迹增益。
系统的闭环传递函数为:
K1 ( s) 2 s 2s K1
系统的闭环特征方程为: s2 + 2s + 2K1 = 0
4
一、根轨迹
用解析法求得系统的两个闭环特征根为:
s1,2 1 1 K1
K1
分离角为:
Kb

Kc K1
17
绘制根轨迹的规则
一般情况下,如果根轨迹位于实轴上相邻的开环极点之间, 则在这两个极点之间至少存在一个分离点;同样,如果根 轨迹位于实轴上两个相邻的开环零点之间(其中一个可在 无穷远处),则这两个零点之间至少存在一个汇合点。

线性系统的根轨迹法实验报告

线性系统的根轨迹法实验报告

线性系统的根轨迹法实验报告实验二线性系统的根轨迹法一,实验目的1,掌握matlab绘制根轨迹的方法。

2,观察k值变化对系统稳定性的影响。

3,掌握系统临界稳定情况下k值得求取。

4,了解增设零点对系统稳定的影响以及改善系统稳定性的方法。

二,实验原理根轨迹的概念:所谓根轨迹就是当开环系统某一参数从零变到无穷大时,闭环系统特征方程式的根在s平面上变化的轨迹。

根轨迹与系统性能:有了根轨迹就可以分析系统的各种性能了,稳定性的判定,当开环增益从零变到无穷大时,根轨迹不会越过虚轴进入s平面的右半平面,此时K的范围为系统稳定的范围,根轨迹与虚轴的交点处的K值,为系统的临界开环增益,开根轨迹进入s平面的右半平面时所对应的K值为系统不稳定的情况。

三,实验内容A、设单位负反馈系统的开环传递函数为G(s)=K/(s*(s+1)(s+5)) (1) 绘制系统的根轨迹,并将手工绘制结果与实验绘制结果比较; (2) 从实验结果上观察系统稳定的K 值范围;(3) 用simulink 环境观察系统临界稳定时的单位阶跃响应分析:绘制根轨迹的matlab文本为clfnum=1;den=conv([1 1 0],[1 5]); rlocus(num,den) %绘制系统根轨迹1,得到如图的根轨迹图:2,用鼠标点击根轨迹与虚轴处的交点可得到临界稳定的开环增益K=30,所以系统稳定的K值范围为0―30。

3,在simulink环境下按下图连接电路:取增益为30的时候在示波器下观察单位节约响应,输出波形为:由图可以看出单位阶跃响应的输出为等幅的震荡输出,所以此时系统为临界稳定状态。

当改变开环增益为50和20时观察示波器,得到输出波形分别为:由图可知当增益K为50时输出为不稳定的震荡输出,此时系统不稳定,当增益K为20时输出的波形震荡越来越缓慢,最后趋于稳定,所以此时的系统是稳定的。

B,设单位反馈控制系统的开环传递函数为G(S)=K(s+3)/s(s+1)(s+2)(1) 仿照上题绘制系统的根轨迹,并判断系统的稳定性; 参照第一题得到matlab命令文本为:clfnum=1;den=conv([1 1 0],[1 2]); rlocus(num,den) %绘制系统根轨迹得到如图的根轨迹图:1,由图可知根轨迹没有进入s平面右半平面,所以系统在K=0到K=?都是稳定的。

第五章根轨迹法

第五章根轨迹法
根轨迹法 根轨迹法是根据系统开环传递函数的零点与极点在
s平面上的分布,用作图的方法求得闭环传递函数在s平面内随开
环传递函数的某个参数变化而变化的轨迹。
5.1.1根轨迹
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程的根在 s 平面上随之连 续变化而形成的轨迹称为根轨迹。
若闭环系统不存在零点与极点相消,闭环特征方程 的根与闭环传递函数的极点是一一对应的。
为了用图解法确定所有闭环极点,令闭环传递函数表达式 分母为零,得特征方程(根轨迹方程)为:
Ds 1 G(s)H (s) 0
m
(s zj)
其中: GsH s K*
j1 n
(s pi )
i1
K*为前向通路根轨迹增益,从0→∞
Zj 为开环传函零点 pi为开环传函极点
m
(s zj)
Ds 1 K*
①无论k怎样变化,“х”均位于虚轴左侧,系统是稳定 的
② 0<k<1 系统特征根为实根,系统处于过阻尼状态 ③ k=1 ,闭环两个实数极点重合,系统处于临界阻尼
状态
④ k>1,闭环极点为共轭复数极点,系统处于欠阻尼状 态
5.1.2 根轨迹方程
根轨迹是系统所有闭环极点的集合。
(s) G(s) 1 G(s)H (s)
规则3:根轨迹渐近线 当开环有限极点数n大于有限零点数m时,有n-m条根轨迹分支沿着
与实轴交角为 a ,交点为 a 的一组渐进线趋于无穷远处,且有
5.2 根轨迹绘制的基本法则
5.2.1绘制根轨迹的一般法则
规则1:根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点。
简要证明: ①起点
n
m

根轨迹法

根轨迹法

绘制根迹的数学依据:
绘制根轨迹的基本法则:

1参数根轨迹 2多回路系统的根轨迹 3正反馈回路根轨迹 4非最小相位系统根轨迹
参数根轨迹:
前面讨论系统根轨迹的绘制方法时,都是以开环增
益K为可变参数,这是在实际上最常见的情况。上 述以开环增益K 为可变参量绘制的根轨迹称为常规 根轨迹。从理论上讲,可变参量可以选择为系统的 任何参数,如开环零、极点,时间常数和反馈系数 等,这种以K以外的系统其他参量作为可变参量绘 制的根轨迹,称作参数根轨迹,又称广义根轨迹。 用参数根轨迹可以分析系统中的各种参数,如开环 零、极点,时间常数和反馈系数等对于系统性能的 影响。 G(s)=5/s(s+a)
多回路系统的根轨迹:
前面介绍单环系统根迹,不仅适合单环,而
且也适合多环系统。
正反馈回路根轨迹:
前面介绍的绘制根迹的依据、法则,都是针
对负反馈系统的。对于正反馈,前面的依据、 规则,需要作些修改,修改以后的规则,可 被用来画正反馈回路的根迹
非最小相位系统根轨迹:
所谓非最小相位系统:
如果系统的所有极点和零点均位于s左半平面,
根轨迹法
经典控制理论有三种基本分析方法:
1. 时域分析法 2. 根轨迹分析法 3. 频域分析法
根轨迹法定义:

定义1948年,W.R.Evans提出了 一种求特征根的简单方法,并且 在控制系统的分析与设计中得到 广泛的应用。这一方法不直接求 解特征方程,用作图的方法表示 特征方程的根与系统某一参数的 全部数值关系,当这一参数取特 定值时,对应的特征根可在上述 关系图中找到。这种方法叫根轨 迹法。根轨迹法具有直观的特点, 利用系统的根轨迹可以分析结构 和参数已知的闭环系统的稳定性 和瞬态响应特性,还可分析参数 变化对系统性能的影响。在设计 线性控制系统时,可以根据对系 统性能指标的要求确定可调整参 数以及系统开环零极点的位置, 即根轨迹法可以用于系统的分析 与综合。

根轨迹法的基本概念

根轨迹法的基本概念

K*
s1,2 1
1 K*
令K*(由0到∞ )变动,s1、s2在s平面的移动轨 迹即为根轨迹。
K* 0, s1 0, s2 2 K* 1, s1 1, s2 1 K* 2, s1 1 j, s2 1 j K* 5, s1 1 2 j, s2 1 2 j
特征方程的根 运动模态 性、系统性能)
1
1
1 ,d 4
m
(s zi )
1 G(s)H(s) 0
G(s)H(s) K*
i1 n
m
(s pj )
(s zi )
j 1
K * i1 n
1
(s pj )
j 1
m
n
模值条件: (s zi ) (s pj ) (2k 1)
i1
j1
n
s pj
相角条件: K *
j 1 m
s zi
i 1
相角条件是确定根轨迹的充分必要条件。相角条件满足(2k 1) 称为180º根轨迹。
4-2 绘制根轨迹的基本法则
一、基本法则
1、 根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点;如果开环零点个数少于 开环极点个数,则有(n-m)条根轨迹终止于无穷远处。
起点: K* 0 s pi
K* s p1 s z1
i 1, 2, n
s pn s zm
终点: K* s zi j 1, 2, m
例题:单位反馈系统的开环传递函数为:G(s)H (s) K *(s 1)
s(s 2)(s 3)
试绘制闭环系统的根轨迹
解: 1、开环零点z1=-1,开环极点p1=0,p2=-2,p3=-3, 根轨迹分支数为3条,有两个无穷远的零点。

自动控制理论 线性系统的根轨迹法

自动控制理论  线性系统的根轨迹法

z1
p3
3
1
p2
s2
s1
p1 s3
4
z2
2
p4
先看试验点s1点: ①成对出现的共轭极点p3、 p4对实轴上任意 试探点构成的两个向量的相角之和为0°; ②成对出现的共轭零点z1、 z2对实轴上任意试探点构成的两个向量的 相角之和为0°; ③试探点左边的极点p2对试探点构成的向量的相角为0°; ④试探点右边的极点p1对试探点构成的向量的相角为180°; 所以s1点满足根轨迹相角条件,于是[-p2 ,-p1]为实轴上的根轨迹。 再看s2点:不满足根轨迹相角条件,所以不是根轨迹上的点。
2、根轨迹的对称性
一般物理系统特征方程的系数是实数,其根必为实根或共 轭复根。即位于复平面的实轴上或对称于实轴。
3、根轨迹的支数、起点和终点: n阶特征方程有n个根。当 K* 从0到无穷大变化时,n个根
在复平面内连续变化组成n支根轨迹。即根轨迹的支数等于系统 阶数。
线性系统的根轨迹法>>根轨迹绘制的基本法则
j 1
i 1
n
d ln (s p j )
d ln m (s zi )
j1
i1
ds
ds
d
n j 1
ln(s
p j )
d
m i 1
ln(s
zi )
ds
ds
n d ln(s p j ) m d ln(s zi )
j 1
ds
i 1
ds
n
1
m
1
j1 s p j i1 s zi
设 K* Kgd 时,特征方程有重根 d ,则必同时满足
F(d ) 0 和 F'(d ) 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K* 0
K1
K1
K*
分离点 Re
0 K* 0
K1 0
0
K*
分离点
K* 0
K1
K1
K1 0 北京科技大学自动化学院自动化系
Im
Re K1 0
21
例5-3
绘制开环系统传函数为
Gk (s)
s(s
kg 1)(s
2)
的单位负反馈系统的(180°)根轨迹。
解 1)此系统无开环零点,有三个开环极点,分别为: 2)渐近线: p1 0 p2 1 p3 2
2020/5/27
北京科技大学自动化学院自动化系
2
5.1 根轨迹的基本概念
一、一个例子
例5-1 一单位负反馈系统的开环传递函数为:
Gk
s
kg s(s
2)
试分析该系统的特征方程的根随系统参数
k
的变化在S平面
g
上的分布情况。
解 系统的闭环特征方程: s2 2s kg 0
特征方程的根是: s1,2 1 1 k g 设 k的g 变化范围是〔0, ∞﹚
s1
z1
0 Re
p2
p2
北京科技大学自动化学院自动化系
12
规则五 渐近线
当开环极点数 n大于开环零点数m时, 系统有n-m条根轨 迹终止于S平面的无穷远处,这n-m条根轨迹变化趋向的直线 叫做根轨迹的渐近线,因此渐近线也有n-m条, 且它们交于实 轴上的一点。
渐近线与实轴的交点位置 和与实轴正方向的交角 分别为:
2020/5/27
北京科技大学自动化学院自动化系
10
规则三 根轨迹的分支数、连续性和对称性
根轨迹的分支数即根轨迹的条数。根轨迹是描述闭环系统特 征方程的根(即闭环极点) 在s平面上的分布,那么,根轨迹 的分支数就应等于系统特征方程的阶数。
由例5-1 看出,系统开环根轨迹增益k(g 实变量)与复变量 s有一一对应的关系。
D(s) - (s p1)(s p2 )L L (s pn )

d [ln N (s)] 1 1 L L 1
ds
s z1 s z2
s zm
所以
d
1
1
1
[ln D(s)]
L L
ds
s p1 s p2
s pn
m
1
n
1
i1 s zi j1 s p j
2020/5/27
北京科技大学自动化学院自动化系
第五章 线性系统的根轨迹法
5.1 根轨迹的基本概念 5.2 根轨迹的绘制规则 5.3 广义根轨迹 5.4 零度根轨迹 5.5 系统性能分析
2020/5/27
北京科技大学自动化学院自动化系
1
本章重点
➢ 根轨迹的概念、幅值条件、 相角条件 ➢ 根轨迹的基本绘制规则 ➢ 等效传递函数的概念 ➢ 根轨迹的简单应用
π 180(k 1)
渐近线如图所示。
1800
-4 -3 -2 -1
300 0
0
60 0
C
2020/5/27
北京科技大学自动化学院自动化系
16
2020/5/27
北京科技大学自动化学院自动化系
17
规则六 根轨迹的分离点、会(汇)合点
K1
K1 0
K1
K1 K1 0
K1 0
会合点 K1 0
s zj s pi
得到
ma na 180o(2k 1)
所以渐近线的倾角:a
180o(2k 1) nm
,
k 0,1, 2,L , n m 1
因共有(n-m)条渐近线,所以只要取(n-m)个不同的倾角即可。
2020/5/27
北京科技大学自动化学院自动化系
14
(2)渐近线与实轴的交点
幅值条件:
K* s p1 L L s pn s z1 L L s zm
当 K* ,则对应于 s ,此时 s zi s pi ,上式可写成:
(s p1)(s (s z1)(s
p2 )L z2 )L
L L
(s pn ) (s zm )
(s
a
)nm
上式左边展开:s nm [( p1 p2 pn ) (z1 z2 zm )]s nm1
规则一 根轨迹的起点
m
由根轨迹的幅值条件可知: s z j j 1 n s pi
1 kg
i1
当 kg 0 ,必有 s pi (i 1, 2,L , n)
此时系统的闭环极点与开环极点相同(重合),把开环极点 称为根轨迹的起点。
2020/5/27
北京科技大学自动化学院自动化系
9
规则二 根轨迹的终点
N s Ds
0
即:
N (s) D(s)
1
kg
n
(s zi )
i 1
n
(s pj)
j1
zi 开环的零点
pi
开环的极点
2020/5/27
北京科技大学自动化学院自动化系
6
根轨迹图是闭环系统特征方程的根(闭环极点)随开环系 统某一参数由0变化到∞时在S平面上留下的轨迹。
由此可得到满足系统闭环特征方程的幅值条件和相角条件为:
19
事实上,分离点还可由下式确定
因为
m
1
n
1
i1 s zi j1 s p j
D(s)N(s) D(s)N(s) 0
即 其中
N (s) D(s) N (s) D(s)
d [ln N (s)] d [ln D(s)]
ds
ds
N(s) (s z1)(s z2 )L L (s zm )
幅值条件:
n
n
1 kg
(s zi )
i 1
n
(s pj)
(s zi )
i 1
n
(s pj)
j1
j1
相角条件:
m
n
(s zi ) (s pi ) (1 2k) , k 0,1, 2, 3....
i 1
j1
2020/5/27
北京科技大学自动化学院自动化系
7
我们可以把系统的闭环特征方程的根描述成: 凡是满足幅值条件和相角条件的s值称为特征方程 的根——即闭环极点。
根据规则可知,系统根轨迹有三条分支,当 kg 0分别从
开环极点 p1、p2、p3出发,kg 时趋向无穷远处,其渐
近线夹角为:
2k 1
600 ,1800
n m
k 0,1, 2,L ,n m 1
渐近线与实轴的交点为
n
m
Pi Z j
i1
j1 1
nm
2020/5/27
北京科技大学自动化学院自动化系
20
一般来说: 如果根轨迹位于实轴上两相邻的开环极点( 零点)之间;则出现分离点(会合点) 。如果根轨迹位于 实轴上一个开环极点与一个开环零点之间,则或者既 不存在分离点,也不存在会合点,或者既存在分离点 ,又存在会合点。
四重分离点
复数分离点
K* K* 0
K* 2020/5/27
Im
K1 0
K1
分离点
根轨迹在s平面上相遇,表明系统有相同的根。即在分离点
和会合点处必有闭环特征重根,令闭环特征方程为:
F(s) kg N(s) D(s) (s d ) (s 1)(s 2)L (s n ) 0
如果令
dF (s) ds
(s d )
d ds
[(s
1
)(s
2
)L
(s n )]
动态性能 当0 kg 1 时, 所有闭环极点均位于实轴上,系统为过
阻尼系统,其单位阶跃响应为单调上升的非周期过程。
当 kg 1 时,特征方程的两个相等负实根,系统为临界阻尼
系统,单位阶跃响应为响应速度最快的非周期过程。
当 kg 1 时,特征方程为一对共轭复根系统为欠阻尼系统,
单位阶跃响应为阻尼振荡过程,振荡幅度或超调量随K g值的 增加而加大,但调节时间不会有显著变化。
2020/5/27
北京科技大学自动化学院自动化系
5
三、根轨迹的概念
设系统的开环传递函数为:
Gk
s
kg N (s) D(s)
k g为根轨迹增益(或根轨迹的放大系数)
其中:
n
N (s) (s z j ),
n
D(s) (s pj )
j 1
j 1
可得到系统的闭环特征方程式为:
1 Gk
s
0
1
kg
(s d ) 1[(s 1)(s 2 )L (s n )] 0
即可求得 dF (s) 0 ds
2020/5/27
北京科技大学自动化学院自动化系
18
故在重根处有:
dF (s) ds
d (kg
N
(s) ds
D(s))
kg
N
'(s)
D
'(s)
0
D(s)
因为: kg N (s)
所以: D(s) N '(s) D '(s) 0
n
m
Pi Z j
i1
j1
nm
2k 1 ,k 0,1, 2,L , n m 1
nm
2020/5/27
北京科技大学自动化学院自动化系
13
(1)根轨迹渐近线的倾角
根据幅角条件:
m
(s
z
j
)
n
(s
pi
)
180o(2k
1),
k 0, 1, 2,L
j 1
i 1
当 s 时,零点 z j 、极点 pi 与 s 矢量复角可近似看成相等
相关文档
最新文档