线性系统的根轨迹分析.

合集下载

夏德钤《自动控制原理》(第4版)章节题库-第4章线性系统的根轨迹分析【圣才出品】

夏德钤《自动控制原理》(第4版)章节题库-第4章线性系统的根轨迹分析【圣才出品】

夏德钤《⾃动控制原理》(第4版)章节题库-第4章线性系统的根轨迹分析【圣才出品】第4章 线性系统的根轨迹分析1.系统的开环传递函数试证明:点在根轨迹上,并求出相应的和系统开环增益K。

证明:根据系统的开环传递函数可知,系统的开环极点为由闭环根轨迹的相⾓条件可得:当时,故点在根轨迹上。

由闭环根轨迹的幅值条件可知,此时即相应的根轨迹增益和系统开环增益仿真曲线如图4-1所⽰。

MATLAB程序:exe402.m2.设单位反馈控制系统的开环传递函数为试⽤解析法绘出K*从零变到⽆穷时的闭环根轨迹图,并判断下列点是否在根轨迹上:(﹣2+j0),(0+j1),(﹣3+j2)解:闭环传递函数为则闭环特征⽅程为闭环特征根为当。

可逐个描点得闭环根轨迹如图4-2所⽰,从图4-2中明显可见,只有(-2,j0)在根轨迹上。

图4-23.设单位反馈控制系统的开环传递函数如下,试概略绘制闭环根轨迹图。

解:(1)系统的开环传递函数令为根轨迹增益。

①实轴上的根轨迹:[0,-2],[-5,-∞)。

②根轨迹的渐近线:③根轨迹的分离点:根轨迹的分离点坐标满⾜解得④根轨迹与虚轴的交点:由系统的开环传递函数可知系统的闭环特征⽅程令s=jω,将其代⼊上式可得即由于ω≠0,故可解得则根轨迹与虚轴的交点为±j3.16。

根据以上⼏点,可以画出概略根轨迹如图4-3所⽰。

图4-3 系统(1)概略根轨迹图(2)系统的开环传递函数①实轴上的根轨迹[0,-2],[-3,-5]。

③根轨迹的分离点:根轨迹的分离点坐标满⾜通过试凑可得d=-0.89。

根据以上⼏点,可以画出概略根轨迹如图4-4所⽰。

图4-4 系统(2)概略根轨迹图(3)系统的开环传递函数①实轴上的根轨迹:[-1,-3],[-10,-5]。

②根轨迹的渐近线:③根轨迹的分离点:根轨迹的分离点坐标满⾜通过试凑可得d=-7.27。

根据以上⼏点,可以画出概略根轨迹如图4-5所⽰。

图4-5 系统(3)概略根轨迹图(4)系统的开环传递函数实轴上的根轨迹为[-2,-1],系统概略根轨迹如图4-6所⽰。

自动控制原理-线性系统的根轨迹实验报告

自动控制原理-线性系统的根轨迹实验报告

一、 实验结果及分析1.(1) )136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: 运行结果:num=[1];den=[1 8 27 38 26 0];rlocus(num,den)[r,k]=rlocfind(num,den)gridxlabel('Real Axis'),ylabel('Imaginary Axis')title('Root Locus')选定图中根轨迹与虚轴的交点,单击鼠标左键得:selected_point =0.0021 + 0.9627ik = 28.7425 r =-2.8199 + 2.1667i-2.8199 - 2.1667i-0.0145 + 0.9873i-0.0145 - 0.9873iG=tf([1,12],[1,23,242,1220,1000]);rlocus (G);[k,r]=rlocfind(G)G_c=feedback(G,1);step(G_c)结论:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。

由根轨迹图和运行结果知,当0<K<28.7425时,系统总是稳定的。

(2) )10)(10012)(1()12()(2+++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: 运行结果:num=[1 12];den=[1 23 242 1220 1000];rlocus(num,den)[k,r]=rlocfind(num,den)gridxlabel('Real Axis'),ylabel('Imaginary Axis')title('Root Locus')选定图中根轨迹与虚轴的交点,单击鼠标左键得:selected_point =0.0059 + 9.8758ik =1.0652e+003 r=-11.4165 + 2.9641i -11.4165 - 2.9641i -0.0835 + 9.9528i -0.0835 - 9.9528i 结论:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。

线性系统的根轨迹-自动控制原理实验报告

线性系统的根轨迹-自动控制原理实验报告

自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。

《自动控制原理》第4章 线性系统的根轨迹法

《自动控制原理》第4章 线性系统的根轨迹法
s=-2 分离角=±90。 o 与虚轴的交点
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,

4第四章__根轨迹法(2)

4第四章__根轨迹法(2)
3
2
1
Imag Axis
0
-1
-2
-3 -2
-1.5
-1
-0.5 Real Axis
0
0.5
1
第四章 线性系统的根轨迹分析
2)确定内环的闭环极点 要求内环的反馈系数 内环的特征方程 3.2<Kf<3.5
( s 0.6)(s2 2s 4) K f 0
在实轴上选取试验点进行试探,P1=-1.6时,Kf =3.36 可求得内环的另外两个闭环极点为 p2 0.5 j1.83 p3 0.5 j1.83 3)绘制外环的根轨迹图 外环的开环传递函数
(2)根轨迹的起点 (3)实轴上的根轨迹
0,-1,-3
终点 均为∞
[0 , ] [3 , 1]
第四章 线性系统的根轨迹分析
(4)根轨迹的渐近线
a
n
2k 180 0 ,120 nm
m j i 1 i
k 0、 1
a=
( p ) ( z )
i 1 j与虚轴的交点 (相同) (9)闭环极点的和 (相同)
第四章 线性系统的根轨迹分析
例:控制系统方框图如下所示
R(s )


Kc s2


K0 s( s 1)
C (s )
1 s3
系统的内环为正反馈,绘制内环根轨迹图。 解: (1)内环的开环传递函数
G1 ( s ) H1 ( s ) K0 s( s 1)(s 3)
第四章 线性系统的根轨迹分析
4-3
广义根轨迹
其它种类的根轨迹: 1.参数根轨迹
2.多回路系统的根轨迹 3.正反馈回路和零度根轨迹

第四章线性系统的根轨迹法

第四章线性系统的根轨迹法
2. 零度根轨迹: 1 实轴上根轨迹区间右侧开环零极点数目之和为偶数 2 实轴与渐近线正方向夹角2kπ/n-m 3 求出射角和入射角时2kπ
4 分离角不变
1-G(S)H(S)=0 G(K)=1 例题:开环传递函数:
绘制系统的根轨迹。
解:①n=3.所以根轨迹有三条。 ②极点: ③渐近线: 5 分离点:
令 1. 闭环零极点由前向通道的零点和反馈通道的极点构成,对于单 位负反馈系统的闭环零点就是开环零点。 2. 闭环极点与开环极点,开环零极点及根轨迹都有关系。
4).根轨迹方程:
幅值条件: 相角条件: ①满足相角条件的点肯定是根轨迹上的点,相角条件是确定根轨迹 的充要条件。 ②幅值条件是用来确定根轨迹上的点所对应的根轨迹增益。 5).绘制更轨迹的法则: ①根轨迹的连续性:根轨迹是连续变化的直线或曲线。 ②根轨迹的对称性:根轨迹位于幅平面的实轴上或对称的实轴上。 ③根轨迹的条数;等于系统的阶次。即:闭环特征根最高次幂。 ④根轨迹的起点和终点:起源于n个开环极点,终止于m个开环零点。 以及n-m个无穷远零点。
闭环极点。
解 (1)系统的开环极点为,,是根轨迹各分支的起点。由于 系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有条渐进线
渐进线的倾斜角为 取式中的K=0,1,2,得=π/3,π,5π/3。
渐进线与实轴的交点为
三条渐近线如图的虚线所示。 (3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图中 的粗实线所示。 (4)确定分离点:系统的特征方程式为 即
所以 即: ②分离点: 证明:
②除以①式
无零点 分离点重根 ③分离角:指根轨迹进入分离点的切线方向与离开分离点的切线方向之 间的夹角。当l条根轨迹进入并立即离开分离点时 8)根轨迹的出射角和入射角: 出射角:起始于开环极点的根轨迹在起点处,切线方向与正实轴的夹 角。 入射角:终止于开环零点的根轨迹在终点处切线方向与正实轴的夹角。

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

系统的信号流图见图4-28,从信号流图中看出,系统中含有一个积分环节, 因此为1型系统,因此系统对阶跃输入信号的稳态误差为0。
K m 变化时系统的根轨迹, 2)为了绘制电动机传递系数(含放大器附加增益) 可将有关参数代入传递函数中,并将系统的特征方程进行整理,等价根轨迹增 益方程为:
1 K* P( s ) ( s 6.93 j 6.93)( s 6.93 j 6.93) 1 K * Q( s ) s 2 ( s 13.86)
当所有根轨迹分支都在左半平面时,系统稳定。 2) 稳态性能:
回忆:稳态性能主要取决于系统的开环增益和积分环节个数。
由根轨迹图不仅可以方便的确定开环增益和积分环节个数,而且可以根据给定系统 的稳态误差要求, 确定闭环极点位置的容许范围。
3)动态性能: 回忆:动态性能形态主要取决于系统的——闭环极点。 从根轨迹图上,可以直观地看到特征根随着参数的变化情况,从而,可以方便地 确定动态性能随着参数的变化情况。
K * lim
s

j 1 i 1 m
n
s pi s zj
lim s
s
nm
, 0 ,
nm nm
(无穷零点)
(无穷极点)
(n m 1)
(续)
且均为实数开环零、极点。
(续)
(续)
小结论: 由两个极点(实数极点或者复数极点)和一个有限零点组成的开环系 统,只要有限零点没有位于两个实数极点之间,当 K * 从零变化到无穷时, 闭环根轨迹的复数部分,是以有限零点为圆心,以有限零点到重根点的距 离为半径的一个圆,或圆的一部分。这在数学上是可以严格证明的。
例如,在上列程序之后增加语句: [k,p]=rlocfind(num,den)

第4章 线性系统的根轨迹分析

第4章  线性系统的根轨迹分析

3.暂态性能 (1) 当0<K< 0.25时, 闭环特征根为实根,系统是过 阻尼状态,阶跃响应为非周期 过程。
∞ K K=0 × -1 K

K=0.25 K=0 ×
σ
(2) 当K=0.25时,两 特征根重合,均为-0.5,系 统处于临界阻尼状态。

(3) 当K>0.25时,两特征根变为共轭 复根,系统处于欠阻尼状态,阶跃响应为衰 减振荡过程。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1)( j 2) K 1 0 j ( 2 j 3 2) K 1 0 j 3 3 2 j 2 K 1 0

j 2
K1=6
实部 虚部
K 13 2 0 2 3 0
i 1
n
q 0,1,2,

(**)
三.根据相角条件确定根轨迹上的点
设某一系统的开环零极点如图, 在S平面中的任意一点 s 0 ,用 相角条件可以判断 s 0 是不是根 轨迹的点。 1.从 s 0 到各零极点连直线 2.用量角器量(s0 p1 ) ,…等 各个角. 3.将量好的值代入(**) 式,若等式成立,则 s 0 就是根 轨迹上的点.
§4-1根轨迹的基本概念

G H
绘制根轨迹是求解特征方程的根,特征方程可改 写为 G ( S ) H ( S ) 1
G( S ) H ( S ) 是复变量S的函数,根据上式两边的
幅值和相角分别相等的条件,可以得到
§4-1根轨迹的基本概念
G( S ) H ( S ) 1
G( S ) H ( S ) 180(2q 1),
z1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n

(S
i1
Pi) 0
根轨迹起始于开环极点 Pi 根轨迹终点在K1= ∞ 处
m (Sj1 Nhomakorabea Z j) 0
根轨迹终止在开环零点 Zj
n条轨迹从开环极点出发,只能有m条 终止在开环零点, n>m, 另外n-m 条应终止何处? 根轨迹法
余下n-m条根轨迹将终止在无穷远处

(S Z 1 )(S Z 2 ) (S Zm) (S P 1 )(S P 2 ) (S Pn) (S Z 1 )(S Z 2 ) (S Zm) (S P 1 )(S P 2 ) (S Pm)(S Pm 1 ) (S Pn) 1 K1 1 K1
(M+ N)* 180O = -[2q+1]*180O M+ N= 2q+1



( S a Z 1 ) 180 (S a (S a

幅角为零的零、极点在实轴上试验点左边 共轭零、极点的幅角其和为零 实轴上试验点右边的零、极点其幅角为180°
要判断实轴上的 某点Sa是不是根轨迹上的点,只要计算 一下它右边的实轴上零极点的幅角和是否符合幅角条件
P 3 ) 180 P 4 ) 180
1 G (s)H (s)
G (s)H (S )
1
m
G ( s ) H ( S ) 180 ( 2 q 1 ), q 0 ,1 , 2
m

0
K 1 (S G ( S ) H ( S )
j1 n
Z j) 1
K ( G ( S ) H ( S )
j1 n
z2
根据绘制根轨迹的两个基本条件, 演绎出八条绘制根轨迹的基本规则; 根据这些规则绘制根轨迹不必计算 特征根而只要做简单的计算和判断。
根轨迹法 二、 绘制根轨迹的基本规则 规则一 根轨迹连续且对称于实轴
因为K1连续变化;系数为实数,有复根必共轭
规则二
m
根轨迹起始于开环极点,终止在开环零点
(S
j1 n
共轭复根 两根对称
∞ - 4+j∞ - 4-j∞
16
K
实根 -ζω<0
根轨迹如下:
根轨迹可以提供有关 系统性能的信息
根轨迹提供的信息: 1、K1从0→∞变化,根轨迹不 会进入右半平面。即:无论 如何该系统是稳定的 2、K1>16,根轨迹进入复平面。 即:此时系统阶跃响应会振 荡(ωd不为零) ; K1越大 振荡越厉害(ζ小)、振荡 频率越高(ωd大) 3、K1=16 时系统阶跃响应临 界振荡
规则三
实轴上的根轨迹

P5 Z2 P2 Sa P4 Z1 P3 0
例如,某系统开环零极点分布 如图。现在要判断实轴上的 某点Sa是不是根轨迹上的点

各开环零、极点的幅角: (Sa Z 2 ) 0 观察左边等式有如下结论:
(S a (S a (S a P 5) 0 P1 ) 1 P2 ) 2
|S
i1 m
-
Pi |

幅角条件
z1
d P2 b a Sa
j

j1
(S
Z j)

i1
(S

Pi) (2q 1) * 180

左例:幅值应满足: a b 1
c d

c
k1

幅角应满足:

P1
1 2 3
4
( 2 q 1 )180
实轴上的某一点如果在根轨迹上, 那麽,在它右边的零、极点总数 应为奇数个。 ——规则三 根 轨 迹 法
设实轴上试验点右边有 M个零、N个极点,根据幅角条件则有: M*180O - N* 180O = -(2q+1)180O 两边同时加上 得 得 2N* 180O 即M+ N为奇数
P1 j Sa P5 Z2 P2 P4 Z1 P3 0
§4-2 绘制根轨迹的 基本条件和基本规则
一、 绘制根轨迹的基本条件
系统闭环特征方程为:
D ( S ) 1 G ( s ) H ( s )
R (s)
G (s)
H (s)
G (s)
C (s)
系统闭环特征方程的根为:
1 G (s)H (S ) 0 G (s)H (S ) 1
G B (s)
zj
S

Z j) 1
(S
i1

Pi)
(
i1
pi
S

Pi)
绘制根轨迹的两个基本条件 :
幅值条件和幅角条件
m
幅值条件
|S
j1 n

Zj | 1 K1
n
由 于 S 是 复 数 , 所 以 D(s) 也是复数;上式两边的幅 值和幅角应分别相等;从 而,得到绘制根轨迹的两 个基本条件:幅值条件和 幅角条件
Z j) Pi) 1 K1
(S
i1
以 K1 为参变量的根轨迹: 是K1 从0(起点)到(终点)变化时 系统闭环极点在根平面上的轨迹 起点和终点确定方法如下页:
m
(S
j 1 n
Z j) Pi) 1 K1
(S
i1
根轨迹法
K1从0→∞变化,根轨迹起点在K1=0处
不妨假设极点p1,p2,…,pm;分别终止在z1,z2,…,zm 那麽,余下n-m个极点只能是S→∞ 即:终止在无穷远处 例如,上一节的二阶系统例子
由幅角条件很容易得到实轴上的根轨迹:
m n

j 1
(S

Z j)

i 1
(S

Pi) (2q 1) * 180

根轨迹法
P1 j
第四章 线性系统的根轨迹分析
§4-1 根轨迹的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 广义根轨迹 §4-4 迟后系统的根轨迹 §4-5 利用根轨迹分析系统的性能
§4-1 根轨迹的基本概念
例:已知单位反馈系统开环传递函 数,求K1从0→∞变化时,系统闭 环根轨迹
解:系统闭环特征方程为:D(s)=S2+8S+K1=0 特征根为: S1,S2= - 4 ±
16 K 1
K s(s 8)
当K1从0到无穷变化时,两根在根平面上的轨迹是两条连 续曲线 - 系统闭环根轨迹
根 S1= - 4 + S2= - 4 16
K1
K
1 1
0 0 -8
0 → 16 0 →- 4 - 8→ - 4
16 - 4 - 4
重 根
16 → ∞ - 4 + j K 1 16 - 4 - j K 1 16
相关文档
最新文档