粉煤加压气化技术
气流床粉煤加压气化制备合成气新技术

气流床粉煤加压气化制备合成气新技术
气流床粉煤加压气化制备合成气新技术
随着我国工业化的进程,合成气在替代高污染的燃料及原料方面发挥
着重要作用。
考虑到粉煤的低值利用,研究了一种新的气流床粉煤加
压气化制备合成气技术。
实验结果表明,气流床加压气化制备合成气,粉煤的热值可以达到5.2MJ/kg,热效率可以达到83.2%,气化产率可
以达到78.2%,空气比率可以达到1.15。
综合考虑气化热效率、产气率、空气比率等指标,在此条件下,粉煤可以达到最佳的加压气化效果。
该技术克服了粉煤加压气化过程中的碱金属煤渣结垢、碱金属活性剂
流失等问题,通过改变活性剂的浓度,可以提高粉煤加压气化合成气
的产量及气化效率。
此外,该技术还能够有效抑制煤中硫、氮等有害
物质的排放,减少环境污染。
总之,气流床粉煤加压气化制备合成气技术在提高粉煤利用率,减少
有害物质排放方面具有重要意义,有助于综合利用粉煤资源,有助于
实现低碳、绿色发展。
航天炉粉煤加压气化技术分析

航天炉粉煤加压气化技术分析摘要:本文主要介绍了航天炉粉煤加压气化技术的工艺原理、技术特点及控制技术,以供参考。
关键词:航天炉;技术特点;结构一、航天炉煤气化的工艺原理原料煤经过磨煤、干燥后储存在低压粉煤储罐,然后用N2(正常生产后用CO2输送)通过粉煤锁斗加压、粉煤给料罐加压输送,将粉煤输送到气化炉烧嘴。
干煤粉(80℃)、纯氧气(200℃)、过热蒸汽(420℃)一同通过烧嘴进入气化炉气化室,瞬间发生升温、挥发分裂解、燃烧及氧化还原等物理和化学过程(1—10 s)。
该反应系统中的放热和吸热的平衡是自动调节的,既有气相间反应,又有气固相间的反应。
1400—1600℃的合成气出气化室通过激冷环、下降管被激冷水激冷冷却后,进入激冷室水浴洗涤、冷却,出气化炉的温度为210~220℃,然后经过文丘里洗涤器增湿、洗涤,进入洗涤塔进一步降温、洗涤,温度约为204℃、粉尘含量小于10×10-6的粗合成气送到变换、净化工段。
[1]二、航天炉的主要设备1、气化炉HT—L炉的核心设备是气化炉。
HT—L炉分上下两个部分:上部是气化室,由内筒和外筒组成,包括盘管式水冷壁、环行空间和承压外壳。
盘管式水冷壁的内侧向火面焊有许多抓钉,抓钉上涂抹一层耐火涂层,其作用是保护水冷壁盘管、减少气化炉热鼍损失。
盘管式水冷壁的结构简单,材质为碳钢,易制作且造价较低。
水冷壁盘管内的水采用强制密闭循环,在这循环系统内,有一个废热锅炉生产5.4MPa(G)的中压蒸汽,将热量迅速移走,使水冷壁盘管内水温始终保持一恒定的范围。
下部为激冷室,包括激冷环、下降管、破泡条和承压外壳。
激冷室为一承压空壳,外径和气化室一样,上部和水冷壁相连的为激冷环,高温合成气经过激冷环和下降管煤气温度骤降。
向下进入激冷室,激冷室下部为一锥形,内充满水,熔渣遇冷固化成颗粒落入水中,顺锁斗循环水排入灰锁斗。
粗合成气从激冷室上部引出。
2、烧嘴HT—L炉烧嘴是一个组合烧嘴,由一个主烧嘴、一个点火烧嘴和一个开工烧嘴组成。
GSP粉煤加压气化的技术特点

GSP粉煤加压气化的技术特点GSP粉煤加压气化技术,是德国未来能源开发的工艺技术,既有Texaco气化工艺的特点,又有Shell气化工艺的特点。
70年代开始研究,79年建成了3MW和5MW的气化炉,84年在黑水泵建成了130MW的气化炉用于发电,一直运行到现在。
84~86年使用普通褐煤与含盐褐煤试运行86~90年满负荷生产,使用普通褐煤与含盐褐煤为原料90~92年用天然气为原料 (满负荷)92~94年用油田气94~98年污泥和固态的焦油悬浮物98~现在由单纯的发电改造为12.5万吨/年甲醇和75MW发电该技术具有如下特点;a、气化炉内部采用膜式水冷壁,可承受高达2000℃的气化温度。
对原料煤的灰熔点限制较少,可以气化高灰熔点的煤。
b、由于是干粉进料,粗合成气中有效气(CO+H2)浓度高,接近90%,CO2含量低。
c、气化效率高,原料煤及氧气消耗低。
碳转化率≥99%,原料利用率高。
d、采用激冷工艺流程,设备结构简单,装置投资少。
e、采用水冷壁副产低压蒸汽,通过监控水冷壁的出水温度,判断炉壁的挂渣情况,有利用于气化炉的稳定操作及延长设备的寿命。
f、组合式工艺烧嘴(点火及工艺烧嘴合一)及特殊的烧嘴结构,保证了气化较长的周期和较大的操作弹性。
g、经过冷激和洗涤,粗合成气含尘量低<1mg/Nm3,同时有较高的水汽比,变换无需外补蒸汽。
GSP煤气化技术的特点:(1)原料煤适应范围宽,GSP气化对煤质要求不苛刻,粒度250~500μm,灰份1%~20%(wt%),灰熔点1100~1500℃,灰熔点高于1500℃的煤,从经济角度考虑应加入助溶剂。
130MW的工业装置实现了灰熔点高达1450℃的褐煤气化工业应用。
(2)水冷壁结构,即所谓的“以渣抗渣”的结构。
采用四根(130MW)螺旋盘管,其外径仅比气化炉(受压筒体内径)小约50mm,水冷管的直径约80~90mm,水冷壁上焊有抓钉,水冷壁内壁涂有SiC耐火材料,水冷壁与筒体之间间隙用惰性气体或冷煤气填充。
1.粉煤加压气化技术-德州市科技局

附件2军民科技融合项目(2014年度军用技术专民用推广目录)重点推荐项目1. 粉煤加压气化技术【技术领域】节能环保【技术开发单位】中国航天科技集团公司第一研究院航天长征化学工程股份有限公司【技术简介】该技术是拥有自主知识产权、实现所有设备国产化的先进煤气化技术,打破了国外在该技术领域的长期技术垄断。
技术以干煤粉为原料,以纯氧和蒸汽为气化剂,加压气化,水激冷粗洗涤合成气,核心技术包括干煤粉水冷壁气化加水激冷工艺技术,粉煤浓相加压输送技术,多路煤粉进料、多层冷却结构的单烧嘴顶烧组合燃烧器技术等。
【主要技术指标】碳转化率99%、气化燃烧温度1400 ~1800 摄氏度、气化压力4MPa、冷煤气效率80% ~83%、比氧耗330 ~360。
【技术特点】与当前市场上的其它技术相比,该技术具有工艺先进、投资少、原料煤适应性强、合成气中有效气(CO+H2)成分含量高、运行维护成本低、环境污染少等优点,符合我国清洁能源发展的需要。
【技术水平】经全国石化联合会组织专家鉴定,总体技术水平处于国际领先。
【适用范围】煤制合成氨、煤制甲醇以及煤制油、煤制烯烃、煤制天然气、煤制乙二醇、煤制氢、IGCC 发电等多个领域。
【专利状态】申请专利120 项,其中发明专利62 项,实用新型专利58 项;申请国际专利27 项,已授权5 项。
【技术状态】已批量生产,处于市场化推广阶段。
【合作方式】(1)单项业务模式专利实施许可:按照用户工程项目建设目标要求,以普通实施许可方式许可用户使用航天煤气化装置内从磨煤干燥开始到合成气洗涤完成的一系列相关专利,专利费按照航天煤气化装置日产有效气量计价。
工程设计:为用户项目提供工程设计图纸和技术文件,包括工艺、管道、设备、土建、仪表、总图布置、公用工程等,用户根据提供的工程设计图纸和技术文件,自行组织或采取EPC 等方式进行工程项目的建设工作。
设备成套供应:为用户成套供应以气化炉、气化炉燃烧器为核心的专利专有设备。
航天炉粉煤加压气化技术浅析

煤贮罐的粉煤送人粉煤锁斗加压后再送往高压粉 2 3 整 个开 车过 程监 控安 全直观 . 煤给料罐。粉煤通过从常压到高压的输送来满足 U 30 10 单元 的粉煤气化需要 。
U 30单元是 整个 气化 装置 的核 心 部分 ,主 10 要包 括煤 粉燃烧 、合 成气激 冷及 洗涤 。主要设 备
第 2期 21 0 0年 3月
中 氮
Hale Waihona Puke 肥 No 2 . Ma. 2 O r 01
M- i d N  ̄ g n u e t ie rg e s Sz i o e o sF r l rP o r s e iz
航 天炉 粉 煤 加压 气 化 技 术浅 析
孙永 才 。刘 伟
2 60 ) 340 ( 安徽临泉化工 股份有 限公 司,安徽 临泉
源 煤化工 工程 技术有 限公 司 自主开发具 有独特 创 新 的新 型粉煤加 压气 化技术 。此项 技术 没有经 过 小试 、中试 ,直 接按 照工艺设 计建设 工业 化示 范 项 目。20 0 8年先 后在 安徽 临泉 、河南濮 阳建 成 2 套单 炉 日投 煤量 70t 2 的示 范装 置 。从 目前运 行 情况 看 ,基 本 达 到设 计 要求 。至笔 者 发 稿 时 ,2
[ 收稿 日期]20 - - 090 0 92
[ 作者简介]孙永才( 9 1 , , 18 一) 男 安徽阜南人 , 气化 车间工
艺员, 程师 。 工
航天 炉粉煤 加压气 化装置包 括 4个 单元 : U 0 10 磨煤和干燥单元 ;U 20 1 10 粉煤加压和输送
单 元 ;U 30粉煤 气化单 元 ;U10 10 40渣及 灰 水处
粉煤加压气化技术

粉煤加压气化技术
粉煤加压气化技术是一种将煤粉在高压下与氧气进行化学反应,产生大量合成气的技术。
该技术具有高效、节能、环保等优点,可以将煤转化为可用于化工、能源等领域的多种化学品和燃料。
该技术的核心是气化反应器,其构造与普通燃烧炉相似,但设计要求更高。
在反应器内,煤粉经过破碎、干燥、热解等过程,最终转化为一种或多种气体,主要包括一氧化碳、氢气、二氧化碳、甲烷等。
该技术的应用领域广泛,可以生产合成气、合成甲醇、合成氨、合成油和合成乙烯等化学品,也可以生产燃气、发电、加热等能源产品。
此外,该技术还可以与化工、冶金等行业的其他技术相结合,形成产业链,提高资源利用效率。
虽然该技术具有许多优点,但也存在一些挑战和问题。
例如,气化反应的过程中会产生大量的废水和废气,需要进行处理和净化;反应器的运行需要高压、高温等条件,需要耐磨、耐高温的材料支持;煤粉的质量和含硫、含灰等杂质的影响也会对气化反应产生影响。
总体而言,粉煤加压气化技术是一种重要的能源和化工技术,具有广阔的应用前景和发展空间。
未来,随着技术的不断进步和完善,该技术将逐渐成为可持续发展的重要支柱之一。
- 1 -。
粉煤加压气化煤气化设备的工艺优化研究

粉煤加压气化煤气化设备的工艺优化研究摘要:粉煤加压气化是一种先进的煤气化技术,可以将煤转化成高品质合成气,可以用于化工、燃料和发电等领域。
然而,在实际应用中,粉煤加压气化煤气化设备存在一些问题,如煤气化效率低、设备腐蚀严重和气体组分不稳定等。
本文针对这些问题,通过研究工艺优化方法,提出了一些改进措施,以提高粉煤加压气化煤气化设备的效率和稳定性。
1. 引言粉煤加压气化煤气化技术是一种将煤转化为合成气的重要方法,能够有效地利用煤资源,减少对传统能源的依赖。
然而,由于煤气化过程的复杂性和特殊性,粉煤加压气化煤气化设备在运行过程中面临着一些问题,如煤气化效率低、设备腐蚀严重和气体组分不稳定等。
因此,进行工艺优化研究是提高粉煤加压气化煤气化设备性能的关键。
2. 煤气化效率优化煤气化效率是评价粉煤加压气化煤气化设备性能的重要指标之一。
为了提高煤气化效率,首先需要优化煤气化剂的使用。
合理控制气化剂的供应量和气化剂与煤料之间的接触时间,可以增加气体产率,减少煤的消耗量。
此外,煤的磨碎程度也对煤气化效率有影响,适当提高煤的磨碎度可以增加煤与气化剂的接触面积,促进气化反应的进行。
3. 设备腐蚀问题解决在粉煤加压气化煤气化过程中,由于高温和高压的环境,设备容易受到腐蚀的影响,导致设备寿命降低。
为了解决这个问题,可以采取以下措施。
首先,选择耐腐蚀性能好的材料作为设备的构造材料,如不锈钢和耐腐蚀合金钢等。
其次,可以在设备的内部涂覆一层耐腐蚀的涂层,增加设备的抗腐蚀性能。
此外,还可以通过控制气化反应的温度和压力,减少腐蚀性物质的生成和传输,从而降低设备的腐蚀程度。
4. 气体组分稳定性改善粉煤加压气化煤气化过程中所生成的合成气,其组分的稳定性是影响合成气质量和利用效率的重要因素之一。
为了改善气体组分的稳定性,可以采取一些措施。
首先,精确控制气化过程中的温度和压力,避免过高或过低的反应温度和压力对气体组分的影响。
其次,合理选择催化剂,可以促进气体组分的平衡,提高气体组分的稳定性。
壳牌粉煤加压气化的工艺过程

壳牌粉煤加压气化的工艺过程煤化工知库 CTX20世纪70年代初,国际上出现了能源危机。
出于对石油天然气供应前景预测,很多国家纷纷把发展煤气化技术作为替代能源重新提上议事日程,并加快了煤气化新工艺的研究开发步伐。
作为对煤种适应性广、气化效率高、污染少的第二代煤气化工艺之一,荷兰壳牌(Shell)粉煤加压气化技术SCGP工艺在此后应运而生。
从1997年我国首次引进壳牌粉煤气化工艺,已经建成或正在建设的粉煤气化炉有20台,多数以当地劣质煤为原料,产品以甲醇、合成氨居多。
下面我们一起来学习一下典型壳牌煤气化的工艺过程:(1)煤碳预干燥合格粒度的原料煤(包括细渣和褐煤) (粒度≤50mm)由原料煤贮运系统送入管式干燥机前碎煤仓临时贮存,碎煤仓中的一定量的褐煤通过称重给煤机给到双辊式破碎机中破碎至合格的粒度(粒度≤6mm),然后送入管式干燥机中干燥。
在干燥管外部通入低压过热蒸汽进行热交换,使煤表面吸附水分受热蒸发。
煤中的水分随干燥机的废气通过排风机抽至袋式收尘器,分离出的煤粉通过旋转给料机、埋刮板输送机和干燥后合格的碎煤一起通过埋刮板输送机由原料煤贮运系统胶带输送机送至煤气化装置煤磨粉及干燥工序中的磨前碎煤仓。
分离后的尾气经排风机排入大气。
为防止褐煤自燃和控制排出气体的露点,在系统中设有CO和H2O在线分析仪,超标时,向系统补充氮气。
(2)煤粉制备碎煤仓中的经预干燥的原料煤通过称重给煤机送到中速磨煤机中磨煤制粉。
中速磨磨煤系统是制粉和干燥同时完成的系统。
出磨煤机粒度和水含量合格的煤粉吹入煤粉袋式收集器分离,收集的煤粉送入贮仓中贮存。
分离后的尾气经循环风机加压后大部分循环至热风炉循环使用,部分排入大气。
磨机的干燥热源是工艺系统外排可燃气体在热风炉燃烧产生的热烟气。
在热风炉中该热烟气与循环气、低压氮气和由稀释风机送入的冷空气混合,调配到需要的温度,控制氧气含量,变成安全的热惰性气体、送入中速磨煤机。
(3)煤粉加压及给料常压煤粉进入锁斗加压后自流进入煤粉给料仓中,由管道CO2密相输送导入气化炉烧嘴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉煤加压气化技术简介
一、背景
“九五”期间华东理工大学、兖矿鲁南化肥厂(水煤浆气化及煤化工国家工程研究中心)、中国天辰化学工程公司共同承担了国家“十五”科技攻关计划课题“粉煤加压气化制合成气新技术研究与开发”,建设具有自主知识产权的粉煤加压气化中试装置。
装置处理能力为15~45吨煤/天,操作压力2.0~2.5Mpa,操作温度1300~1400℃。
该课题于2001年年底启动,2002年10月完成研究开发阶段中期评估,中试装置进入设计施工阶段。
2004年7月装置正式投运,首次在国内展示了粉煤加压气化技术的运行结果,填补了国内空白,技术指标达到国际先进水平。
中试装置于2004年12月6日至9日顺利通过科技部组织的现场72 小时运行专家考核,2004年12月21日于北京通过科技部主持的课题专家验收。
同年,该成果入选2004年度煤炭工业十大科学技术成果。
二、装置流程与技术优势
1、整个工艺流程如图1,具体流程为:原煤除杂后送入磨煤机破碎,同时由经过加热的低压氮气将其干燥,制备出合格煤粉存于料仓中。
加热用低压氮气大部分可循环使用。
料仓中的煤粉先后在低压氮气和高压氮气的输送下,通过气化喷嘴进入气化炉。
气化剂氧气、蒸汽也通过气化喷嘴进入气化炉,并在高温高压下与煤粉进行气化反应。
出气化炉的高温合成气经激冷、洗涤后并入造气车间合成气管线。
熔融灰渣在气化炉激冷室中被激冷固化,经锁斗收集,定期排放。
洗涤塔出来的黑水经过二级闪蒸,水蒸汽及一部分溶解在黑水中的酸性气CO
2、H2S 等被迅速闪蒸出来,闪蒸气经冷凝、分离后与气化分厂生产系统的酸性气一并处理,闪蒸黑水经换热器冷却后排入地沟,送气化分厂生产装置的污水处理系统。
图1 粉煤加压气化中试装置单元流程图
2、整个工艺流程与其他技术的指标差异如下表1。
将该粉煤气化技术与其它几种气流床水煤浆气化技术以及荷兰的Shell粉煤加压气化技术相比较,可以看出粉煤加压气化技术消耗低,碳转化率高,在气化炉条件或煤种相同情况下,比水煤浆气化技术节氧16~21%,节煤2~4%,有效气成份高6~10个百分点。
表1 几种不同气化装置运行指标比较
数据来源:徐海龙“壳牌公司气化工艺”,中国国际煤化工及煤转化高新技术研讨会论文北京索斯泰克气化技术有限公司“GSPTM 煤气化技术的应用”,中国生物质/煤转
油技术交流及投资研讨会,2005.9,上海
三、国内发展状况
煤气化技术在中国已有近百年的历史,但仍然较落后和发展缓慢,国内煤气化以传统技术为主,工艺落后,环保设施不健全,煤炭利用效率低,污染严重。
如不改变现状,将影响经济、能源和环境的协调发展。
近40年来,在国家的支持下,中国在研究与开发、消化引进技术方面进行了大量工作,有代表性的是:50年代末到80年代的仿K-T气化技术研究与开发,曾于60年代中期和70年代末期在新疆芦草沟和山东黄县建设中试装置,为以后国内引进美国的Texaco水煤浆气化技术提供了丰富的经验;80年代在灰熔聚流化床煤气化领域中进行了大量工作并取得了专利;"九五"期间立项开发新型(多喷嘴对置)气流床气化炉,已经通过中试装置(22~24t煤/d)考核运行,中试数据表明其比氧耗、比煤耗、碳转化率、有效气化成分等指标均优于Texaco技术,已经获得了专利;"九五"期间还就"整体煤气联合循环(IGCC)关键技术(含高温净化)"立项,有10余个单位参加攻关;近20年来中国共引进数10台Texaco气化炉和Lurgui气化炉,国内配套完成了部分设计、安装与操作,积累了丰富的经验;此外,在流化床(含循环)、煤及煤浆燃烧、两相流动与混合、传热、传质、煤化学、气化反应、煤岩形态、磨煤与干燥、高温脱硫与除尘等科学领域与工程应用等方面还进行了大量的研究工作。
目前已经过国家鉴定的多喷嘴对置式气流床气化炉,有水煤浆进料形态拓展到干煤粉,建设日处理100t煤中试装置(相当于3万t/a规模),为商业规模(2000~3000t/d)奠定技术基础。
该技术对煤种(特别是高硫煤)、粒度具有较大兼容性,具有单系列、大容量、加压、高效、洁净的技术优势。
它与中国的能源资源国情相适应,具有与国际先进技术竞争的能力。
四、国外技术应用现状
180年以来的煤气化技术发展史,特别是近十多年来的大容量IGCC电站示范与商业化运行证明,与固定床、流化床相比,气流床具有较大的煤种与粒度适应性和更优良的技术性能,是煤基大容量、高效洁净、运行可靠的燃气与合成气制备装置的首选技术。
迄今,世界上已商业化的IGCC(Integrated Gasification Combined Cycle)大型(250MW以上)电站都是采用气流床煤气化炉,可见其技术上具有优势。
它们是以水煤浆为原料的Texaco气化技术,以干粉煤为原料的Shell气化技术。
五、技术特点与发展前景
煤气化技术的优势有以下几点:
•提高对多煤种的适应性,能气化任意煤种;
•大型化,提高气化能力和气化效率;
•采用加压气化工艺,提高气化强度,节约压缩能耗,减少带出物损失;•环境友好,环保问题少,污染小。
其次,气流床煤气化是当今国际上最先进的煤气化技术之一,与水煤浆气化技术相比,粉煤气流床加压气化技术具有煤种适应性广、原料消耗低、碳转化率高、冷煤气效率高等技术优势,有更强的市场竞争力。
所以该粉煤加压气化中试装置的建设和运行,在国内具有开创性作用,在我国煤气化技术发展史上具有重要的影响意义。
该装置当时建成、成功运行以及获得的先进技术指标,首次在国内展现了先进煤气化技术——粉煤加压气化的优越性,是我国煤气化技术进入国际先进行列的又一个里程碑。
72 小时运行现场考核专家与“十五”国家科技攻关计划课题验收专家均对其做了充分肯定和高度评价,专家一致认为:“该技术具有自主知识产权,填补国内空白,工艺指标达到了国际先进水平。
”“该项成果对于清洁、高效利用我国丰富煤炭资源,满足国民经济与社会可持续发展需求具有重要意义,已具备工业化的技术应用条件,前景十分广阔。
”。