人教版八年级下册分式的运算
数学:16.2分式的运算(第1课时)课件(人教版八年级下)

a2 4
a 3
(5)
2x 6 4 4x x
2
( x 3)
x x6
2
3 x
2 x2
熟练运用
1.化简( xy x )
2
x 2 2 xy y 2 xy
x y x
2
= -y
2、 x 2004, y 2005时 当 求 x y
4 2 4 2
x 2 xy y
yx x y
2 2
先化简 再求值
的值
原式= -(x+y)=-(2004+2005)=-4009
2
a 1
( a 2 ) ( a 1)
2
( a 1) ( a 2 )( a 2 )
2
a2 ( a 1)( a 2 )
例2 计算:
1
2
49 m m 7m 1 2 2 (m 7m) m 49 m(m 7) ( m 7 )( m 7 )
500
500
∴ a 2 1 < ( a 1) 2 “丰收2号”小麦的单位面积产量高 500 500 500 a2 1 a 1 (2)
( a 1) 2 a2 1 ( a 1) 2 500 a 1
“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位 面积产量的 a 1 倍。
2
1
m m7
在分式有关的运算中,一般总是先把分子、
分母分解因式;
注意:过程中,分子、分母一般保持分解因
式的形式。
例3
“丰收1号”小麦的试验田是边长为a米的正方形减去 一个边长为1米的正方形蓄水池后余下的部分, “丰收2号” 小麦的试验田是边长为(a-1)米的正方形,两块试验田的 小麦都收获了500千克。 (1)哪种小麦的单位面积产量高? (2)高的单位面积产量是低的单位面积产量的多少倍? 解(1)∵ 0<(a-1)< a 2-1
分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
八年级数学下册 第17章分式 17.2分式的运算 2分式的加减法习题课件

(1)①分式加减的两种运算是:同分母的分式加减和异分母的分
式加减.
②同分母的分式加减方法是:分母不变,分子(fēnzǐ)相加减;异分母的 分式加减方法是:先通分,转化为同分母的分式运算,再按同分母
的分式加减方法运算.
第六页,共二十五页。
(2)按照(1)的探究(tànjiū)计算:
m 1 m1 1 ; m1 m1 m1
第十六页,共二十五页。
【跟踪训练】
4.(2012·临沂中考)化简 (1 4 ) 的a 结果(jiē guǒ)是( )
(A) a2
(B) a a2 a2
a
a2
(C) a2
(D) a
a
a2
【解析】选A. (1 4)a (1 4)a 2
a 2a 2 a 2 a
1a24 a2a2. a a2 a a
第十七页,共二十五页。
bb
b
提示:不成立.
理由是当分式的分子是多项式时,进行减法运算时要加括号.即
acdacdacd.
bb b
b
第五页,共二十五页。
分式的加减运算
【例1】计算:(1)(2012·泉州中考)
m 1 ________; m1 m1
(2 )2 a b 2b b 4 a 2 2 a ; (3 )x 1 3 6 1 2 x x x 2 6 9 .
【解析(jiě xī)m 】 62m 6 m 3
m 3m 2 9m 3m 3m 3 ( m 3 ) 2
m 3 m 31.
答案m :13 m 3 m 3
第二十三页,共二十五页。
5.先化简,再求值:(1)(2012·珠海(zhū hǎi)中考(x)x1x21x)x1,
2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。
初中数学八年级下册 16.2 分式的运算 课件1

法则53用1式25
35125ba14d0c5
9a c 2b d
子表3示 1为5 : 3 52 5
ba125
c d
531ba25dc765
ab22d5c
类比分数的乘除法法则,你能想出分式
的乘除法法则吗?
乘法法则:分式乘分式,用分子的积作为积 的分子,分母的积作为积的分母.
除法法则:分式除以分式,把除式的分子、 分母颠倒位置后,与被除式相乘.
例1 计算:
4 3
x y
y 2x
3
4xy 6x3 y
2 3x2
ab3 2c 2
5a2b2 4cd
ab3 4cd 2c2 5a2b2
4ab3cd 10a 2b 2c 2
2bd 5ac
例2 计算:
a2 4a 4 a 1 a2 2a 1 a2 4 (a 2)2 a 1 (a 1)2 (a 2)(a 2)
“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位
面积产量的 a倍。1
a 1
练习1 计算 :
3a 16b 4b 9a2
12xy 8x2 y 5a
3xy 2 y2 3x
x yxy xy x y
练习2 计算 :
3a 3b 25a2b3 10ab a2 b2
x2 4y2 x2 2xy y2
(1)哪种小麦的单位面积产量高?
(2)高的单位面积产量是低的单位面积产量的多少倍?
解(1)∵ 0<(a-1)< a 2-1
∴ (2)
50<0
5“00丰收2号”小麦的单位面积产量高。
a2 1 (a 1)2
500 500 500 a2 1 a 1 (a 1)2 a2 1 (a 1)2 500 a 1
八年级下册数学分式的加减法

八年级下册数学分式的加减法摘要:一、分式的基本概念1.分式的定义2.分式的组成部分3.分式的基本性质二、分式的加减法1.分式加法的规则2.分式减法的规则3.分式加减混合运算的顺序三、分式的加减法实际应用1.实际问题中的分式加减法2.利用分式的加减法解决实际问题正文:一、分式的基本概念分式是数学中一种常见的表达形式,它由分子和分母组成,用斜杠“/”表示。
分式的定义是:如果A 和B 是两个整式,并且B 不等于零,那么我们用A 除以B 所得到的商A/B 就叫做分式。
分式的组成部分包括分子、分母和分数线,其中分子和分母都是整式,分数线表示分式的开始和结束。
分式的基本性质有:分子和分母同时乘以或除以一个非零数,分式的值不变;分子和分母同时加上或减去一个相同的数,分式的值不变。
二、分式的加减法分式的加减法是数学中常见的运算,其规则如下:1.分式加法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的和就是(A+C)/B;如果分母不同,需要将它们通分,然后将分子相加,分母保持不变。
2.分式减法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的差就是(A-C)/B;如果分母不同,需要将它们通分,然后将分子相减,分母保持不变。
3.分式加减混合运算的顺序:在没有括号的情况下,先进行乘除运算,再进行加减运算。
如果有括号,先进行括号内的运算。
三、分式的加减法实际应用分式的加减法在实际问题中有很多应用,例如在物理、化学、地理等学科中,常常需要用分式的加减法来解决问题。
例如,在化学中,可能会遇到需要将两种物质的摩尔质量相加或相减的问题,这时候就需要用到分式的加减法。
在解决实际问题时,我们需要先将问题抽象成数学模型,然后根据问题中给出的条件,选择合适的数学方法,包括分式的加减法,来解决问题。
以上就是八年级下册数学分式的加减法的内容。
分式的加减法是数学中重要的基本概念和基本运算,它在解决实际问题中有着广泛的应用。
分式典型知识点与例题总结

人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。
知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。
2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。
1.最简公分母= 。
2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。
知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。
知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。
数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.2 分式的运算
15.2.1 分式的乘除
1、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:a c a c b d b d
⋅⋅=⋅ 2、分式的除法法则:分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为:a c a d a d b d b b c c
⋅÷=⋅=⋅ 3、分式的乘方:把分子、分母分别乘方。
式子表示为:n n n b a b a =⎪⎭
⎫ ⎝⎛ 例1.111a b c d b c d ÷⨯÷⨯÷⨯
等于( ) A.a B.
222a b c d C .a d
D .222ab c d 例2.化简
211m m m m --÷的结果是( ) A .m B .
1m C .m -1 D .11m - 例3.化简的结果为 .
例4.(1)411244222--⋅+-+-a a a a a a (2)m
m m 7149122-÷-
(3))4(3)98(23232b x b a xy y x ab -÷-⋅ (4)x
x x x x x x --+⋅+÷+--3)2)(3()3(444622
15.2.2 分式的加减
1、分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为:c
b a
c b ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为:
bd
bc ad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
2、分式的加、减、乘、除、乘方的混合运算的运算顺序
先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要
随便跳步,以便查对有无错误或分析出错的原因。
加减后得出的结果一定要化成最简分式(或整式)。
例1.化简
222624
x x x x x --+-的结果为( ) A .214x - B .212x x + C .12x - D .62x x -- 例2.化简2933
m m m ---的结果是( ) A .m+3 B .m ﹣3 C .
33m m -+ D .33
m m +- 例3.计算:+= . 例4.化简x
x x -+-1112的结果是( ) A .1+x B .11+x C .1-x D .1
-x x 例5.已知2
410x x --=,求代数式314x x x ---的值. 例6.(1)
b a a b b a b a b a b a 22255523--+++ (2)m n m n m n m n n m -+---+22
(3)
96312-++a a (4)b
a b a b a b a b a b a b a b a --++-----+-87546563
15.2.3 整数指数幂
1、引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正整数幂的法则对负整数指数幂一样适用。
即:
n m n m a a +=⋅a ()mn n
m a a = ()n n n b b a a = n m n m a a -=÷a (0≠a )
n n b a b a =⎪⎭⎫ ⎝⎛n n a 1=-n a 0≠a ) 10=a (0≠a ) (任何不等
于零的数的零次幂都等于1) 其中m ,n 均为整数。
例1.
(1)321)b a -( (2)32221)(---⋅b a b a
例2. 下列等式是否成立?
(1)n m n m a a a a -⋅=÷ (2)n n n b a b
a -=)(
总结
题型一 分式的混合运算
(1))12()21444(222+-⋅--+--x x x x x x x (2)x
x x x x 22)242(2+÷-+-
(3))2
122()41223(2+--÷-+-a a a a (4)8743218141211-11x x x x x x x x +-+-+-+-
题型二 先化简后求值
(1)已知x=-1,求)]121()144[(48122x
x x x -÷-+--的值。
(2)已知的值。
求22232,432z
y x xz yz xy z y x ++-+== (3)已知的值。
,求)1)(1(013222a
a a a a a --=+- (4)已知2211
,5--+=+x x x x )求( (2)44-+x x 题型三 求待定字母的值
(1)若111312-++=--x N x M x x ,试求M 、N 的值。
(2)若
1
21)12)1(45---=---x B x A x x x (,试求A 、B 的值。
题型四 科学计数法的计算 (1)
22-3-102.8103)()(⨯⨯⨯ (2)32-23-102104)()(⨯÷⨯。